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Abstract: The electrochemical performance of lithium–sulfur batteries (LiSBs) has been hampered
by the slow redox kinetics and shuttle effect of lithium polysulfides (LiPSs), which require the
rational design and synthesis of highly active electrocatalysts towards this reaction. Herein, worm-
like N-doped porous carbon nanotube-supported low-crystalline Co nanoparticles (a-Co-NC@C)
were derived from binary Zn–Co ZIF via a two-step thermal annealing method. Initial thermal
annealing 950 ◦C in Ar + H2 atmosphere results in the carbonization of binary Zn–Co ZIF and
the formation of high crystalline Co nanoparticles. Thermal annealing in ammonia atmosphere
at 350 ◦C not only results in the reduced crystallinity of cobalt nanoparticles; it also promotes the
growth of highly graphitized and heavily N-doped intertwined carbon nanotubes. The enlarged
porous carbon nanotube structure offers accommodation for sulfur content, while the doped carbon
and Co nanoparticles with reduced crystallinity facilitate the redox kinetics of LiPSs, improving
the cycling stability, rate performance and capacity of LiSBs batteries. As a result, the a-Co-NC@C
cathode displays a specific capacity of 559 mAh g−1 after 500 cycles at 1 C, and a specific capacity
of 572 mAh g−1 at 3 C. It delivers a specific capacity of 579 mAh g−1 at high sulfur loading of a
2.55 mg cm−2 at 1 C after 400 cycles. This work highlights the importance of phase engineering of
carbon matrix and transition metal nanoparticles in electrochemical performance of Li-S batteries.

Keywords: porous carbon nanotube; low crystalline; cobalt nanoparticles; promoted redox kinetics;
Li–S batteries

1. Introduction

As the demand for energy storage continues to grow, commercially mature and widely
used lithium-ion batteries, which are close to their theoretical energy density, are no longer
able to meet society’s energy storage needs [1,2]. In particular, the emergence of electric
vehicles requires batteries with high energy density, small size and high safety perfor-
mance [3–6]. Among the many secondary batteries, lithium–sulfur (Li–S) batteries have
become a hot research topic in recent decades due to their high theoretical specific capacity
and energy density, as well as their low environmental contamination [7–9]. However, the
practical application of Li–S batteries is constrained by their own disadvantages [10–12],
such as the non-conductive nature of the sulfur itself, the dissolution and “shuttle effect” of
lithium polysulfide (Li2PSs) and the slow redox kinetics of polysulfide [13–15].

Extensive efforts have been made to improve the charge capacity, cycling and rate
performance of Li–S batteries. Porous carbon materials have been used as the sulfur host,
which can not only improve the electrical conductivity of the cathode but also suppress the
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dissolution of LiPSs. For instance, the coral-like N-doped multilayer porous carbon [16],
when utilized as the cathode of Li–S batteries, delivers an initial discharge capacity of
1617 mAh g−1 at 0.1 C and a capacity decay rate of only 0.05% per cycle up to 500 cycles
at 0.5 C. N-doped porous carbon microspheres (NPCSM), derived from microalgae [17],
greatly inhibit the diffusion of PSs by strong physical and chemical adsorption and exhibit
a specific capacity of 1030.7 mAh g−1 at a current density of 0.1 A g−1 as a cathode of Li–S
batteries and a capacity of 692.3 mAh g−1 at a high current density of 5 A g−1.

Due to the weak interaction between the non-polar carbon material and PSs, the elec-
trochemical performance of Li–S batteries is still unsatisfactory. Therefore, metal contents
are introduced into the porous carbon materials, which behave as electrocatalyst towards
redox reaction of PSs. Metal organic frameworks (MOF) have been widely used to prepare
porous carbon as the sulfur host in Li–S batteries due to their tunable structural composi-
tion, rich void structure and large specific surface area [18]. In particular, heteroatom-doped
carbon materials based on the zeolitic imidazole framework (ZIF-67) have been extensively
investigated in Li–S batteries. The N-doping carbon materials provide high adsorption ca-
pacity to LiPSs, and the cobalt nanoparticles promote the redox kinetics of PSs and improve
the utilization of the active sulfur content [19]. In another study, the Co–Nx active sites
derived from carbonization of Zn/Co-ZIF [20], when used as a separator interlayer, demon-
strate good electrocatalytic activity towards the redox reaction of Li2PSs and a 31% increase
in capacity. Searching for excellent sulfur-hosting carbon materials and electrocatalysts
towards the redox reaction of Li2PSs is central to the community of Li–S batteries.

Additionally, engineering of the morphology and phase of the carbon and metal
nanomaterials has been demonstrated to be effective in regulating electrochemical perfor-
mance. For instance, the amorphous transition metal nanomaterials, which are featured
via short-range ordering and anisotropy, have been demonstrated as superior to their
crystalline counterparts’ electrocatalytic water splitting, etc. [21,22]. The reactions involved
in morphology, phase and surface and interface engineering are very complicated, and
how the carbon materials and metal species interact with each other remains elusive and
challenging to understand.

Herein, a composite composed of worm-like N-doped intertwined porous carbon tubes
and Co nanoparticles with low crystallinity (a-Co-NC@C) was prepared by a sequential
thermal annealing method, as shown in Scheme 1. Firstly, Zn–Co-ZIF was wrapped
by a PAN through a phase inversion method, which was further carbonized in Ar/H2
atmosphere at 950 ◦C, resulting in the formation of high-crystalline Co nanoparticles
supported on carbon materials. Further annealing in ammonia atmosphere at 350 ◦C results
in the growth of intertwined porous carbon nanotubes with large surface area, possibly
benefiting from the catalytic effect of Co nanoparticles, and also their reduced crystallinity.
Due to the synergy of the uniformly distributed worm-like porous carbon nanotubes and
the heavily N-doped low-crystalline cobalt nanoparticles, a-Co-NC@C delivers a superior
performance, with a capability of 572 mAh g−1 at a current of 3 C and a capacity of
559 mAh g−1 after 500 cycles at a current density of 1 C. Even at a high sulfur loading of
3.95 mg cm−2, a specific capacity of 564.1 mAh g−1 remains after 200 cycles at 0.1 C.
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2. Results

The crystalline structure and polyhedron morphology of Zn–Co-ZIF was examined by
XRD (Figure S1) and SEM (Figure S2). The XRD patterns of Zn–Co-ZIF are consistent with
those of ZIF-8 and ZIF-67, indicating the successful preparation of Zn–Co-ZIF. The clear
sharp peaks in XRD indicates the high crystallinity of Zn–Co-ZIF. The morphology of Co-
NC@C and a-Co-NC@C nanocomposites is characterized by SEM and TEM. In Figure 1a,d,
Co-NC@C displays a smoother surface and denser structure, and a-Co-NC@C exhibits a
rougher surface and porous structure. In the further magnified image in Figure 1b,e, a more
detailed surface morphology can be observed. It can be seen that Co-NC@C was covered
by finer nanoparticles, which are densely packed together. In contrast, a-Co-NC@C shows a
worm-like structure, which consists of carbon nanotubes grown during thermal annealing
in ammonia atmosphere under the catalysis of Co nanoparticles.
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Figure 1. SEM images of at low magnification (a); high magnification (b) and high-resolution TEM
(c) for Co-NC@C; SEM images of at low magnification (d); high magnification (e) and high-resolution
TEM (f) for a-Co-NC@C.

It can be seen that thermal annealing at 950 ◦C causes the carbonization of Zn–Co-
ZIF@PAN and the formation of a porous carbon-supported Co nanoparticles composite
(Co-NC@C). The coating of PAN on Zn–Co-ZIF results in the thorough dispersion and
reduced size of the Co nanoparticles on the carbon matrix [23]. Further annealing of
Co-NC@C in ammonia atmosphere induces the formation of worm-like heavily N-doped
intertwined porous carbon nanotubes in the Co-NC@C composite [24,25]. Such porous
carbon nanotubes show high electronic conductivity and a low-weight network for sulfur
accommodation [26], and they behave as an excellent electrocatalyst towards the redox
reaction of polysulfides [27]. The size of the Co nanoparticles was determined to be 30.6 and
33.3 nm in dimeter for Co-NC@C and a-Co-NC@C, respectively, as shown in Figure 1c,f,
which apparently does not change. Usually, such large Co nanoparticles will not show
catalytic activity [24,25] towards the growth of carbon nanotubes during thermal annealing
in Ar or Ar/H2 atmosphere. It is speculated that such a strong interaction between Co
nanoparticles and ammonia may result in reduced Co nanoparticles and further dissolution
of Co species into the adjacent carbon support, which may show good catalytic activity
towards the carbon nanotube growth.

The crystallinity of Co nanoparticles after thermal annealing in ammonia atmosphere
was monitored by XRD, as shown in Figure 2a. For the Co-NC@C sample, the very sharp
diffraction peaks are indexed to Co, indicating the high crystallinity of Co nanoparticles.
On the contrary, only very weak and broad diffraction peaks are observed for a-Co-NC@C,
indicating the much-reduced crystallinity of Co nanoparticles due to thermal annealing
in ammonia atmosphere. This process might be caused by the insertion and subsequent
coordination interaction of NH3 molecules with Co, which disrupts the crystalline structure
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of Co nanoparticles, spreading the Co atoms into a larger space and thus reducing the
crystallinity of Co nanoparticles. Thermal annealing in ammonia atmosphere may further
change the graphitization degree, porosity and N-doping level. As shown in Figure 2b, the
D (defect) and G (graphite) bands are observed at 1340 and 1590 cm−1, respectively [28].
The intensity ratio of D to G (ID/IG) is similar for Co-NC@C and a-Co-NC@C. However,
much high noise was observed for a-Co-NC@C, possibly induced by the high doping
content of nitrogen into carbon in Co-NC@C [29].
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Figure 2. (a) XRD, (b) Raman spectra, (c) nitrogen adsorption/desorption isotherm and (d) pore
size distributions of Co-NC@C and a-Co-NC@C, respectively. (e) XRD pattern and (f) TGA of
a-Co-NC@C/S.

The porosity of Co-NC@C and a-Co-NC@C is characterized by nitrogen adsorp-
tion/desorption isotherms, as shown in Figure 2c,d. The a-Co-NC@C composite shows a
surface area of 291.77 m2 g−1 and a pore volume of 0.411 cm3 g−1, which is much higher
than those of the Co-NC@C composite (131.45 m2 g−1 and 0.289 cm3 g−1), indicating
remarkably enhanced surface area and pore volume by thermal annealing in ammonia
atmosphere, which offers a large surface area for electrochemical reaction and is also ben-
eficial to the penetration of the electrolyte and mass transfer [30]. Moreover, the pore
size of a-Co-NC@C and Co-NC@C is distributed around 1–7 nm and 30 nm, indicating
a mesoporous structure of the carbon matrix. When a-Co-NC@C is loaded with sulfur,
a-Co-NC@C/S exhibits clear diffraction peaks of sulfur in XRD spectra (Figure 2e), with a
sulfur loading of approximately 60 wt%, as revealed by TGA (Figure 2f).

The chemical content of carbon, nitrogen and Co in Co-NC@C and a-Co-NC@C is
explored by X-ray photoelectron spectroscopy (XPS). As shown in Figure S3, the fitted
C 1s spectrum can be deconvoluted into three peaks which, at 284.8 eV, 285.8 eV and
287.6 eV, respectively, can be ascribed to sp2 carbon, C=N bonds and C–N species. The
surface sites of the N-doped carbon can be used as a conductive Lewis base catalyst to
improve the adsorption of PSs [31]. Figure 3a shows the high-resolution spectrum of N
1s, which can be deconvoluted into a pyridinic N at 398.5 eV and a graphitic N peak at
401.14 ev [32]. It is observed that the content of graphitic N decreases and the content of
pyridinic N increases for a-Co-NC@C. In addition, the N content has been increased from
3.62 at% to 4.57 at%. The ability of pyridinic N to introduce strong elements near the Fermi
energy level to give electronic states has been reported to change the reaction site and
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increase the adsorption on PSs [33]. Therefore, increasing the content of the pyridinic N of
a-Co-NC@C can improve the anchoring and catalytic capacity of the LiPSs by increasing the
immobilization and catalytic sites. From the high-resolution XPS spectrum of Co 2p3/2 in
Figure 3b, it is observed that the amount of metallic Co at 778.49 eV in Co-NC@C is higher
than that in a-Co-NC@C, while only the Co–N bonding component located at 780.06 eV [34]
was observed for a-Co-NC@C, indicating heavily doped N content in Co nanoparticles via
thermal annealing in ammonia atmosphere. Such positively charged and low-crystalline
N-doped Co nanoparticles may provide enhanced interactions with the PSs through both
Co–S and Li–N bonds concurrently [35], thus suppressing the shuttle effect [36].
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Figure 3. High-resolution XPS spectrum of (a) N 1s and (b) Co 2p3/2 for Co-NC@C and a-Co-NC@C.

The electrochemical performances of Co-NC@C/S and Co-NC@C-N/S as cathodes of
Li–S batteries are shown in Figure 4. The cyclic voltammetry (CV) profiles are shown in
Figure 4a. The reduction peaks A and B correspond to the conversion of solid S8 to long-
chain PSs and of short-chain PSs to Li2S/Li2S2, respectively. The oxidation peaks C and D
correspond to the conversion of Li2S/Li2S2 to short-chain PSs and, further, to long-chain PSs
as well as S8, respectively [37–39]. It is observed that the current density on the a-Co-NC@C
composite is 1.5~2 times that of Co-NC@C, and the polarization voltage between peak A and
C is lower than that of Co-NC@C (0.270 vs. 0.354 V) (Table S1), which indicates the evidently
enhanced redox kinetics of PSs on a-Co-NC@C composite. Figure 4b shows the rate
performance, where a-Co-NC@C displays a capacity of 651 and 572 mAh g–1 2 C and 3 C,
much higher than that of Co-NC@C (514 and 342 mAh g–1) [40,41]. The polarization voltage
at different current densities of a-Co-NC@C from rate curves (Figure S4) is smaller than
that of Co-NC@C, as shown in Figure 4c. This indicates that a-Co-NC@C/S exhibits higher
redox kinetics of PSs than Co-NC@C [42]. The high redox kinetics and holding capacity
of a-Co-NC@C compared to Co-NC@C may induce an improved cycling performance.
As shown in Figure 4d, a-Co-NC@C, as a cathode of Li–S batteries, delivers a specific
capacity of 559 mAh g–1 after 500 cycles at 1 C and a decay rate of 0.066% per cycle, which is
superior to those of the Co-NC@C composite (a capacity of 371 mAh g–1 after 500 cycles at
1 C and decay rate of 0.11%). The long cycling performance of a-Co-NC@C/S as a cathode
of the Li–S battery was tested at 2 C and 3 C, respectively (as shown in Figure S5), which
still exhibits a specific capacity of 509 mAh g–1 500 after cycles at 2 C, and a capacity of
393 mAh g–1 after 800 cycles at 2 C.

GITT tests were further performed for Li–S batteries in the first charge and discharge
cycle, as shown in Figure 5a for Co-NC@C and Figure 5b for a-Co-NC@C electrodes,
respectively, from which the reaction resistance was derived (Figure 5c,d). It is observed
from the reaction that the resistance of a-Co-NC@C during discharging is apparently
smaller than that of the Co-NC@C electrode, which indicates faster redox kinetics and
lithium-ion diffusion on the former than on the latter [39].
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The commercialization of Li–S batteries requires high sulfur loading for high capacity
and energy density [39,40]. As shown in Figure 6a, at a sulfur loading of 3.95 mg cm–2,
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an initial capacity of 1071 mAh g–1 at the first cycle and a starting discharge capac-
ity of 737.7 mAh g–1 after activation at 0.05 C was achieved. The capacity remains at
564.1 mAh g–1 after 200 cycles at 0.1 C. At a lower sulfur loading of 2.29 mg cm–2, the
starting discharge capacity after activation at 0.05 C was 973.5 mAh g–1 and a capacity
of 642.8 mAh g–1 was achieved after 200 cycles at a current of 0.2 C (Figure 6b). The
rate performance of a-Co-NC@C composite at 2 mg cm–2 was shown in Figure 6c, which
display a capacity of 813, 669, 583, 534, 478 and 428 mAh g–1 at 0.1, 0.2, 0.5, 1, 2 and 3 C,
respectively, indicating good rate performance for the a-Co-NC@C composite at a high
sulfur loading. The a-Co-NC@C composite also showed superior long-cycling performance
at high sulfur loading. As shown in Figure 6d, at a load of 2.55 mg cm–2, a capacity of
945 mAh g–1 after activation and a capacity of 579 mAh g–1 after 400 cycles at 1 C were
achieved, corresponding to a capacity decay rate of 0.097% per cycle.
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Figure 6. The performance of a-Co-NC@C cathode at high sulfur loading: (a) cycling performance
at 0.1 C for a sulfur loading of 3.95 mg cm–2; (b) cycling performance at 0.2 C at a sulfur loading of
2.29 mg cm–2; (c) rate performance at a sulfur loading of 2 mg cm–2; (d) cycling performance at 1 C at
a sulfur loading of 2.55 mg cm–2. The arrows indicate the related axis for the plot in the panels.

3. Materials and Methods
3.1. Materials

Co(NO3)2·6H2O, Zn(NO3)2·6H2O, 2-methylimidazole (2-MeIM), methanol, N,N-Dime
thylformamide (DMF) and polyacrylonitrile (PAN, MW = 150,000) was obtained from
Shanghai Macklin Biochemical Co., Ltd., Shanghai, China. All materials have not been
further purified before use.

3.1.1. Synthesis of Zn–Co-ZIF and Zn–Co-ZIF@PAN

Typically, 20 mmol of Co(NO3)2·6H2O, 20 mmol of Zn(NO3)2·6H2O and 80 mmol
2-methylimidazole (molar ratio of Co2+ to Zn2+ is 1:1) were added in a beaker containing
500 mL anhydrous methanol and stirred for 1 h. The solution was centrifuged at a rate
of 8000× g r min–1 for 24 h, and the precipitate was collected, washed three times with
methanol and desiccated in an oven at 60 ◦C for 12 h. The collected purple product was
named Zn–Co-ZIF.

A total of 0.5 g Zn–Co-ZIF powder was added into 15 mL DMF and dispersed by
ultrasonication for 1 h, into which 0.5 g PAN was then added into and stirred for 4 h. The
resulting mixture was dripped into 500 mL of deionized water using a syringe to obtain
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a flake product, which was collected by filtration, washed several times with deionized
water and desiccated overnight in an oven at 60 ◦C. The obtained sample is denoted as
Zn–Co-ZIF@PAN.

3.1.2. Preparation of Co-NC@C and a-Co-NC@C

Co-NC@C nanocomposites were prepared by thermal annealing Zn–Co-ZIF@PAN
powder at 950 ◦C for 3 h under Ar/H2(10%). Co-NC@C was further annealed at 350 ◦C for
3 h in an ammonia atmosphere to obtain a-Co-NC@C.

3.1.3. Sulfur Loading to Co-NC@C and a-Co-NC@C

Co-NC@C (or a-Co-NC@C) and sulfur powder were ground at a mass ratio of 3:7
for 30 min to achieve a homogeneous mixture, which was then placed in a tube furnace
under an Ar atmosphere and annealed at 155 ◦C for 12 h and then heated to 200 ◦C
for 2 h to remove the excess sulfur. The resulting samples are named Co-NC@C/S and
a-Co-NC@C/S, respectively.

3.2. Electrochemical Measurements

Cyclic voltammetry (CV) tests were carried out on an electrochemical workstation
CHI 750E with a scan rate of 0.1 mV s–1 and an operating voltage window of 1.8–2.7 V.
The electrochemical impedance spectroscopy (EIS) was carried out on the CHI 750E in
the frequency range 0.01 to 100,000 Hz. Electrochemical performance tests such as long
cycling performance, rate performance and charge/discharge curves were carried out on
the LAND electric test system.

3.3. The Assembly of Batteries

To load sulfur into Co-CN (or a-Co-CN), Co-CN (or a-Co-CN) was mixed with sulfur
powder by grinding for 30 min, transferred into an ampoule and thermally annealed at
155 ◦C for 12 h with a ramp rate of 2 ◦C min–1 and then 200 ◦C for another 2 h to obtain
Co-NC@C/S (a-Co-NC@C/S). To prepare an active electrode, a slurry was prepared in
advance by dispersing Co-CN (or a-Co-CN), super P and PVDF in a mass ratio of 8:1:1
into NMP in a beaker, which was then coated on an Al foil and dried in an oven at 60 ◦C
for 24 h. Battery assembly was carried out in the glove box. The button cell was type
CR2016. The cathode material was the Co-NC@C/S and a-Co-NC@C/S obtained above,
the anode electrode was lithium metal flake, the separator was a Celgard 2400 and the
main component of the electrolyte was LiTFSI dissolved in a 1:1 volume ratio DOL/DME
(1, 3-dioxolane = DOL; dimethyl ether = DME) mixture, to which 0.2 M LiNO3 was added.
The sulfur loading of the cathode was about 1.2–1.5 mg cm–2, and the ratio of the electrolyte
to the sulfur content on the cathode was 25 mL g–1.

4. Conclusions

In this work, we reported the preparation of heavily N-doped worm-like porous
carbon nanotube structure mixed low-crystalline Co nanoparticles by sequential thermal
annealing of ZnCo-ZIF in Ar+H2 and ammonia atmosphere. The porous carbon was
heavily doped with pyridinic N content, and the Co species were completely converted to
N-bonded. The formation of porous carbon nanotube structure was ascribed to the catalytic
effect of Co nanoparticles endowed by N-doping and reduced crystallinity, which facilitates
the adsorption and redox kinetics of LiPSs. Therefore, the a-Co-NC@C/S composite, as
sulfur host of the cathode, delivers a specific capacity of 559 mAh g−1 after 500 cycles at
1 C and a specific capacity of 572 mAh g−1 at 3 C. At a high sulfur loading of 2.55 mg cm−2,
it achieves a specific capacity of 579 mAh g−1 after 400 cycles at 1 C. Under 2 C and 3 C, it
is able to cycle up to 500 and 800 cycles, respectively, and still releases a capacity of 509 and
391 mAh g−1, respectively. This work highlights the importance of the low crystallinity of
Co nanoparticles in improving the redox kinetics of LiPSs in LiSB.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/inorganics11070305/s1: Figure S1: XRD pattern of Zn–Co-ZIF;
Figure S2: SEM of Zn–Co-ZIF; Figure S3: High resolution XPS spectra of C 1s of Co-NC, Co-NC@C
and a-Co-NC@C; Figure S4: Charge/discharge profiles at various rates of the cell with cathode of
Co-NC@C and a-Co-NC@C; Figure S5: Long term cycling performance at 1 C, 2 C of a-Co-NC@C/S
electrode. Table S1: Current density values at different redox peaks and polarization voltages of
composite cathodes of Co-NC@C and a-Co-NC@C.
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