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Abstract: In this study, the Mg2+-doped anatase TiO2 phase was synthesized via the solvothermal
method by changing the ratio of deionized water and absolute ethanol Vwater/Vethanol). This enhances
the bleaching efficiency under visible light. The crystal structure, morphology, and photocatalytic
properties of Mg-doped TiO2 were characterized by X-ray diffraction, scanning electron microscopy,
high-resolution transmission electron microscopy, N2 adsorption-desorption, UV-Vis spectroscopy
analysis, etc. Results showed that the photocatalytic activity of the Mg2+-doped TiO2 sample was
effectively improved, and the morphology, specific surface area, and porosity of TiO2 could be
controlled by Vwater/Vethanol. Compared with the Mg-undoped TiO2 sample, Mg-doped TiO2

samples have higher photocatalytic properties due to pure anatase phase formation. The Mg-doped
TiO2 sample was synthesized at Vwater/Vethanol of 12.5:2.5, which has the highest bleaching rate of
99.5% for the rhodamine B dye during 80 min under visible light. Adding Mg2+-doped TiO2 into
the phase-separated glaze is an essential factor for enhancing the self-cleaning capability. The glaze
samples fired at 1180 ◦C achieved a water contact angle of 5.623◦ at room temperature and had high
stain resistance (the blot floats as a whole after meeting the water).

Keywords: solvothermal method; Mg-doped TiO2; Vwater/Vethanol; self-cleaning properties; visible light

1. Introduction

With the deterioration of environmental pollution, low-consumption and high-efficiency
pollution technologies have received more attention [1,2]. As the durative utilizes clean
energy, solar energy has vast potential for exploitation and application. Titanium dioxide
is an important photocatalyst that has been widely studied because of its high activity,
non-toxic characteristics, environmental friendliness, and good chemical stability [3–6]. As
the energy barrier of the metastable phase was less than that of the stability phase, it was
more likely to excite electrons and holes for the metastable phase [7,8]. Hence, anatase
TiO2 is considered to be the best photocatalyst of all of the structures of TiO2 [9,10]. It
can fully effectively utilize UV light from sunlight [11–13]. Several factors affect anatase
TiO2 photoactivity, such as crystal size, specific surface area, and crystallinity [14–16]. The
performance of the TiO2 was optimized by doping [17–20], loading [21,22], and thin-film
preparation [23,24]. Available studies indicated that some ions could enter the lattice as
substitutional or interstitial; the titanium ions are substituted by metal ions in the crys-
tal lattices. Some studies illustrate that rare-metal-ion-doped titania nanoparticles were
prepared by the hydrothermal method, and their photocatalytic performance was greatly
improved under UV irradiation [25,26]. At present, there exist a few studies concern-
ing magnesium-ion-doped TiO2 obtained by the sol-gel reaction synthesis route and the
solvothermal method [27,28], but its processing is complex and needs HF as a capping
agent to form the anatase phase. It would therefore be interesting to investigate how a
simple method can be used for preparing a glaze containing Mg(II)-doped anatase that is
stable in a medium-/high-temperature (>1000 ◦C) ceramic glaze [29] and has self-cleaning
properties, as anatase TiO2 has a nanometer size.
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This study presents the simple synthetic procedure of producing Mg-doped TiO2
anatase samples without surfactants or templates and evaluates the influence of the struc-
ture and Vwater/Vethanol on their photocatalytic activity in decomposing rhodamine B
(RhB). The self-cleaning activities of Mg-doped and undoped TiO2 anatase glaze samples
are evaluated by comparing their anti-pollution ability.

2. Experimental Section
2.1. Preparation of the Samples

The samples, with various deionized water and absolute ethanol contents, were
prepared from tetrabutyl titanate (TBOT), MgCl2•6H2O, and NaOH using the hydrothermal
method. In a typical synthesis, firstly, solution A was made, which included MgCl2•6H2O,
deionized water, and absolute ethanol. Subsequently, solution B was made, which included
TOBT and ethanol. Finally, suspension C was prepared by dripping solution B into system
A. The molar ratio of MgCl2•6H2O:TBOT:ethanol: water was 0.03:1:10:50. After 15 min,
after adding suspension C into the reactor, it was heated at 180 ◦C for 36 h and then
naturally cooled to room temperature. The final sample obtained was centrifuged and
washed with deionized water and absolute ethanol. The photocatalytic properties of the
samples were investigated by changing the molar ratio of water/ethanol (Vwater:Vethanol),
keeping other experimental parameters unchanged. Figure 1 is the schematic diagram of
Mg-doped TiO2 sample preparation.
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Figure 1. Schematic diagram of Mg-doped TiO2 sample preparation.

The Mg-doped TiO2 in the glaze sample was fabricated by sintering at 1180~1200 ◦C
using raw powders, i.e., 95% of the as-prepared Kaolin clay was subjected to phase sep-
aration melting at 1500 ◦C for 4 h and 5% by adding 5% Mg-doped TiO2 (Vwater/Vethnol
of 12.5:2.5) photocatalysts, and the self-cleaning and hyper-hydrophilic properties of the
fired glaze samples were characterized and tested, respectively. Figure 2 is the schematic
diagram of the glaze firing processes.
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Figure 2. Schematic diagram of the glaze firing processes.

2.2. Characterization of the Samples

The crystalline phase was identified by X-ray diffractometer (XRD, D8 Advance Bruker
AXS, Germany) using Cu Kα radiation. Compared with the standard pattern in the XRD
standard database, including JCPDS (i.e., PDF cards), the phase composition of the sample
was analyzed using Jade 6.0 software. Photocatalyst morphology was investigated by
scanning electron microscopy (SEM, JSM-6700F, Japan) using a device equipped with
an EDS system operating at an accelerating voltage of 5.0 kV or 15 kV (15 kV for EDS).
The crystal surface of nanocrystals was evaluated by high-resolution microscopy. The
microstructures of the samples were studied by transmission electron microscopy (TEM, FEI
Tecnai G2 F-30, Holland) and high-resolution transmission electron microscopy (HRTEM,
FEI Tecnai G2 F-30, Holland) at accelerating voltages of 160 kV and 200 kV, respectively.
The valence states of the samples were characterized by X-ray photoelectron spectroscopy
(XPS, ESCALAB Xi+, United States) using Al Kα radiation. The specific surface areas were
determined by the Brunauer–Emmett–Teller method, and the pore size was determined
by the Barrett–Joyner–Hallenda method. Nitrogen adsorption-desorption isotherms were
collected on a Micromeritics TriStar ii 3020 analyzer at 77 K. The analysis of samples by
UV-Vis diffuse reflectance spectroscopy was carried out. The hydrophilicity of the samples
was tested by a contact angle meter (JGW-360D, China).

2.3. Photocatalytic Activity of the Samples

The photocatalytic activity of the TiO2 was evaluated by bleaching the RhB with a
concentration of 10−4 mol/L. The total volume of RhB was 50 mL, irradiated with 0.05 g
of the photocatalyst and a 500 WXeon light with a cut-off filter of 420 nm. This was
to prove that the RhB was exhibiting bleaching rather than adsorption after the dark
experiment was carried out. Samples were taken out at 20 min intervals and analyzed
with a spectrophotometer. The photocatalytic activity was characterized by the apparent
first-order rate constant k, as in equation k = ln(A0/A), where A was the absorbance of RhB
at 553 nm after bleaching and A0 was the absorbance of the initial RhB solution at 553 nm.

3. Results and Discussion
3.1. Structural and Morphology

The crystal phase of the samples was studied as shown in Figure 3. The obtained
diffraction peak of the doped TiO2 matched very well with the standard values (PDF-#21-
1272) and the diffraction peaks at 2θ = 25.281(101), 37.800(004), 48.049(200), 53.890(105),
and 62.688(204), illustrating that the samples were in the anatase phase. However, the
obtained undoped TiO2 was in a mixed phase of anatase and brookite. The cell volume
was calculated by Fourier synthesis with the program SHELXS−97 [30]. When the solvent
was water, the sample consisted of nanoparticles 10~20 nm in mean size, as determined
by Nano Measurer 1.2 software using 10 nanoparticles. The average crystallite size of
TiO2 samples with different Mg-doped ions was calculated by XRD–Scherrer formula:
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d = 0.91 λ/βcos θ, where d is the mean crystallite size, k is 0.9, λ is the wavelength of
Cu Kα (i.e., λ = 0.15420 nm), β is the full width at half maximum intensity of the peak
(FWHM) in radian, and θ is Bragg’s diffraction angle [31]. The crystallite size and cell
volume were calculated as shown Table 1. When increasing Vwater/Vethanol, there are
differences in the diffraction peak intensity and minor shifts in the peak occur, which
indicates a reduction in crystalline size and an increase in the volume of unit cells (Table 1).
Since the ionic radius of Mg2+ (0.072 nm) is close to that of Ti4+ (0.061 nm), Mg2+ easily
enters the TiO2 lattice [32] and the lattice volume increases (Table 1), indicating that the
formation of a crystal defect. Based on the experimental results, the formation of the crystal
defect promotes the formation of the anatase phase, which is accordance with the reported
literature [27,29]. Hence, after the addition of the magnesium source, a pure-anatase TiO2
phase appears. The intensity of the (004) direction is significantly enhanced compared to
undoped TiO2. In addition, the FWHM of the (101) peak was calculated by using Lorentz
fitting. According to the Scherrer formula, d = 0.91 λ/βcos θ, the crystallite size was
calculated; it is shown in Table 1.
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Table 1. Effect of different ratios of water: ethanol in the solvent on the crystal size, BET surface area,
pore size, pore volume, and cell volume of Mg-doped TiO2.

Vwater/Vethnol
Crystal Size

(nm)
BET

(m2/g)
Pore Size

(nm)
Pore Volume

(cm3/g)
Cell Volume

Å3

Mg-doped TiO2

15:0 13.6 152 13.8 0.415 136.458

12.5:2.5 13.2 148 12.5 0.402 136.315

10:5 10.3 105 12.4 0.378 136.452

7.5:7.5 8.1 101 12.0 0.350 136.689

Pure TiO2 12.5:2.5 14.0 98 11.2 0.340 136.089

Figure 4 shows SEM images of the as-synthesized samples. When the solvent was
water, the sample consisted of nanoparticles 5–10 nm in size. When the Vwater/Vethnol ratio
was 12.5:2.5, agglomerated nanoparticles had a grape-like morphology (Figure 4b). With
the increase in ethanol dosage, nanoparticles increased (Figure 4c,d). The experimental
results show that the morphology of the samples was greatly affected by Vwater/Vethnol.
Their morphology is determined by the relationship between crystal formation and growth.
Moreover, crystal growth is influenced by the adsorption of certain crystalline facets into
OH−. This adsorption hinders the growth of these facets, resulting in different rates
of crystalline growth. Ethanol is a typical polar solvent and amphiphilic molecule. It
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was vertically adsorbed on the hydrophilic surface of the TiO2 particles, forming a two-
amphiphilic bilayer, which limited the immersion of the water molecule in the hydrophilic
side surface and the TiO2 particles [33]. The rapid hydrolysis of TBOT promoted the
rapid generation of TiO2, which led to TiO2 particle agglomeration with an increase in
Vwater/Vethanol. Figure 5a,b show TEM and the corresponding SAED pattern (inset) and
HRTEM images of the sample prepared at Vwater/Vethnol = 12.5:2.5. From Figure 5a, it is
observed that the aggregated particles in Figure 4b consist of nanoparticles. The major
diffraction rings for the crystal surface at (101), (004), and (105) match well with XRD
analysis. The d spacing is 0.325 nm (Figure 5b), and it matches well with the lattice
spacing of anatase TiO2 (101). Furthermore, the corresponding EDX spectrum shown in
Figures 5c and S1 verifies the existence of Mg, Ti, and O ions. Other impurities were not
detected in the EDX spectra.
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Figure 4. SEM images of TiO2 with different volume ratios of water: ethanol (a) 15:0, (b) 12.5:2.5,
(c) 10:5, (d) 7.5:7.5.

As can be seen from Table 1 and Figure 3, the morphologies of the samples strongly
depend on Mg-doped ions and Vwater/Vethanol. Because the current system contains ethanol,
water, Mg-doped ions, and TBOT, we can reasonably assume that the formation of anatase
TiO2 is due to the dehydrating condensation between Ti(OH)6

2− and Mg-doped ions under
solvothermal conditions [34]. Thus, due to the formation of a lower number of active OH−

ions and a lower number of soluble species, Ti(OH)6
2− and TiO6 octahedrons in one cluster

may construct a chain via the corner-sharing of Ti(OH)6
2− growth units. Due to doped

Mg ions entering the TiO2 lattice, resulting in TiO6 octahedron lattice distortion (Table 1)
and an increase in the charge density of Ti and reduction in the electron density of oxygen,
the preferred TiO6 octahedron chain-shaped clusters further adsorb OH− soluble species
into the (101) plane (Figure 5b) and anatase TiO2 monomers form through a dehydrating
condensation process. Therefore, these planes could be freely bonded by interactions
between OH− and nuclei to obtain aggregated nanoparticles (Figure 4). The solubility of
salt increases with the dielectric constant of the solvent [35], and the dielectric constant of
water is bigger than that of ethanol. When Vwater/Vethnol decreases, that is, ethanol content
increases, this could decrease the solubility of the precursor and increase the viscosity of
the solution, thereby decreasing the diffusion ability of Ti(OH)6

2− ions and causing the
crystal size of the TiO2 sample to decrease (Table 1).
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Figure 6 shows XPS spectra of pure and Mg-doped TiO2 samples. Peaks located
around 457 eV and 464 eV resulted from Ti 2p3/2 and Ti 2p1/2, respectively, corresponding
to the oxidation state of Ti4+. Meanwhile, due to the partial substitution of Tg4+ ions by
Mg2+, the binding energy of Ti decreases, thus increasing the charge density of Ti. The
binding energy of O 1s in the pure TiO2 sample is 529.8 eV, owing to the intrinsic binding
energy of oxygen in TiO2. The Mg-doped TiO2 sample shows a shoulder peak near 532.3 eV
in addition to the intrinsic binding energy of O 1s (shown in Figure 6b). This may be due to
the addition of small amounts of Mg atoms, causing new oxygen vacancies [36]. Oxygen
vacancies in TiO2 are usually created in doped TiO2 to maintain charge neutrality and
improve the service life of the photocatalyst [37]. When oxygen vacancies are generated, a
higher energy peak can be seen due to the decrease in the electron density of oxygen [37]. A
peak at 49.93 eV was associated with Mg 2p, which is further verified by the incorporation
of Mg2+ into the titanium dioxide lattice.

Figure 7 shows the typical FT-IR spectrum of undoped TiO2 and Mg-doped TiO2 sam-
ples with different Vwater/Vethnol ratios. All samples have absorption peaks at 3380 cm−1

and 1640 cm−1, corresponding to O-H stretching vibration and bending vibration, respec-
tively [38]. For the undoped TiO2 sample, the bands at 1450 cm−1 and 1538 cm−1 are
attributed to the H-O-H bending of the lattice water [39]. The band centered at 510 cm−1

is due to isolated tetrahedral TiO4 stretching vibrations and only occurs in the pure TiO2
sample [40]. As a result of Mg-doping, the bands at 1065 cm−1 and 458 cm−1 show the
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vibration of Ti-O-Mg [41]. With the increase in ethanol content, the intensities of the ab-
sorption peaks at 3380 cm−1 and 458 cm−1 increase, respectively. This indicates that Mg
ions are doped into the lattice of TiO2, and the HRTEM, TEM, and XRD results further
confirmed this point.
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3.2. BET Analysis

Figure 8 shows the BET analysis of the samples using nitrogen adsorption-desorption.
For all samples, the isotherms are type IV, and clear hysteresis loops can be identified.
With the increase in Vwater/Vethnol, the BET surface area of the Mg-doped TiO2 samples
decreases. However, the pore volume and porosity of the samples exhibit a prominent
enhancement compared with the undoped TiO2 sample, as shown in Table 1 and Figure 8.
The BJH average pore diameters, calculated from the adsorption branch of the isotherms, are
11.205 nm, 12.560 nm, 12.365 nm, and 12.807 nm for pure TiO2 and Mg-doped TiO2 samples
prepared with different Vwater/Vethnol ratios of 12.5:2.5, 10:5, and 7.5:7.5, respectively. The
mesoporous structure is mainly due to the porous accumulation of nanoparticles [42]. The
porosity increase is due to the crystal size reducing with the decrease in Vwater/Vethnol.
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Figure 8. N2 adsorption-desorption isotherm samples with different ratio of water: ethanol (a) doped
TiO2 12.5:2.5, (b) doped TiO2 10:5, (c) undoped TiO2 12.5:2.5.

3.3. Optical Properties

Figure 9 shows the UV-Visible diffuse reflectance spectra of TiO2. The absorption
edge of doped TiO2 had more of a blue shift than the undoped TiO2. The Kulbeka–Munk
formula, (E(ev) = hC/λ, h = 6.626 × 10−34 Js, C = 3.0 × 108 ms−1), was used to acquire the
exact band gap of TiO2 from 3.26 eV to 3.13 eV, which can be attributed to the Mg2+-doped
TiO2 in the framework. Since Mg2+ ions generated from oxygen vacancies are known to
cause the photoexcitation of long-wavelength light, the UV-Vis absorption spectrum was
inferred to verify the presence of Mg2+ in the TiO2-doped sample.
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Moreover, from the spectrum, the energy gap of the semiconductor nanoparticles is
related to the particle size. The band gap increases as the particle size decreases, resulting
in a phenomenon known as a “blue shift” in light absorption at a specific wavelength
due to the quantum size effect [43]. With the increase in ethanol content, the absorption
edge of the doped TiO2 is blue-shifted, illustrating the particle size reduction. The results
obtained are well-matched with the sizes of the crystals that were measured. The band
gap energies of the prepared TiO2 doped by adding 0 to 7.5 mL ethanol were found to be
3.17 ev, 3.03 ev, 3.13 ev, and 3.25 ev, respectively. From Figure 4, it is clear that the size of
anatase nanoparticles increases with the increase in ethanol content. Optical absorption is
highly dependent on the internal structure of the material [44]. Compared with pure TiO2,
the longer-wavelength region of Mg-doped TiO2 samples implies that the only possible
transition is from the oxygen vacancies causing a red shift of the absorption edge (Figure 6),
which also implies that Mg2+ has been incorporated into the lattice of TiO2 (Table 1). From
Figure 6, it can be observed that compared with the pure TiO2 sample, the Ti and O binding
energy in Mg-doped TiO2 samples has been shifted to a lower energy and a higher energy
peak, because some Ti4+ ions are replaced by Mg2+ ions in order to increase the charge
density of Ti and reduce the electron density of oxygen [45]. The new oxygen vacancies
are created through the doping of small amounts of Mg atoms [46]. For the Mg-doped
TiO2 sample, the peak of 49.9 eV is ascribed to Mg 2p (Figure 6c), which is consistent with
the value of Mg2+ [27,41]. These observations further verify the existence of Mg2+ in the
Mg-doped TiO2 sample, which is consistent with XRD (Figure 3), increased cell volume
(Table 1), and FT-IR spectrum (Figure 7).

3.4. Photocatalytic Activity

Figure 10 shows the photocatalytic bleaching of RhB through the as-prepared sample
under visible light. As shown in Figure 10, RhB concentration is unchanged, illustrating that
RhB adsorbed on the TiO2 surface had reached equilibrium in 30 min. Figure 10b shows
kinetic curves of ln(C0/C) versus irradiation time during RhB bleaching under visible
light irradiation. It has been found that the apparent rate constants [47] for the reaction
of RhB with Mg-doped TiO2 samples (Vwater/Vethanol = 15:0, 12.5:2.5, 10:5, 7.5:7.5) and
Mg-undoped TiO2 (Vwater/Vethanol = 12.5:2.5) were 0.01704, 0.06335, 0.04153, 0.01668, and
0.00203 min−1, respectively, which illustrates that the photocatalytic activity of the samples
was effectively improved by Mg2+-doping (due to pure anatase phase formation (Figure 3)).
Moreover, the photocatalytic properties of Mg-doped TiO2 can be further improved by
changing the ratio of water to ethanol. The photocatalytic properties of the samples
increased first and then decreased gradually with the increase in Vwater/Vethanol. When
the Vwater/Vethanol ratio was 12.5:2.5, Mg-doped TiO2 had the maximum photocatalytic
activity. In addition, by combining Table 1 with Figures 4 and 9, we can observe that
the aggregated nanoparticles increase in size and thus Eg increases, which leads to the
easy recombination of the electron and hole in the migration process, and therefore, the
photocatalytic activity of the samples decreases with the increase in ethanol volume (i.e.,
Vwater/Vethanol decreases). Although TiO2 (Vwater/Vethanol = 15:0) has a larger specific
surface area and smaller crystal size (Table 1) compared with the Mg-doped samples, the
sample had lower porosity and pore size, which caused the decrease in the sample of RhB
adsorption. This clearly indicates that the adsorption of samples was determined by the
surface area and characteristics of the pore. Obviously, Mg-doped TiO2 samples exhibited
better photocatalytic activities than pure TiO2 samples. The narrowing of the band gap is a
result of Mg doping into the TiO2 lattice, which enables the trapping of the photo-induced
electron and facilitates the separation of electron-hole pairs (Figure 11a).
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3.5. Self-Cleaning Properties of Mg-Doped TiO2 in Glaze Sample

It can be seen the wet angle of pure TiO2 glaze samples is obviously higher than those
of Mg-doped TiO2 glaze samples (Figure 12). The super-hydrophilicity of Mg-doped TiO2
glaze samples is attributed to several comprehensive factors. Based on the experimental
results, Mg ions are helpful for the growth of the TiO2 crystal grain, and thus separates
the phase size in Mg-doped TiO2 glaze more than pure TiO2. This makes the Mg-doped
TiO2 glaze surface rougher than that of the pure TiO2 glaze (Figure 12). A large surface
roughness could improve the hydrophilicity, according to the Wenzel equation (1): cos
θr = rcos θ, where r denotes the surface roughness of the glaze, cos θ is the classical
contact angle depicted by the Young equation, and θr is the measured real contact angle.
Moreover, the partial substitution of Mg2+ ions for Ti sites increases the slight TiO2 lattice
distortion, which is available for a low initial contact angle and hydrophilicity [48]. From
Figure 12, it can be seen that the contact angles of Mg-doped TiO2 samples are smaller
than that of the pure TiO2 glaze sample in the dark condition, indicating that the greater
roughness and lattice distortion are helpful for decreasing the contact angle. This could
be because the incorporation of Mg makes the band gap of TiO2 narrow, thus the visible
light can excite pairs of electrons and holes (Figure 11a), just as in the case of ultraviolet
irradiation for the pure TiO2 glaze. Ti4+ ions could be united with the photo-induced
electron and thus Ti3+ ions could be obtained. Ti3+ sites can be substituted by Mg2+ ions,
which produces one excess positive charge. Those excess positive charges could capture
the photo-induced electrons quickly, and thus photo-generated holes are available for
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combining more H2O adsorbed on the glaze surface and react with water, producing
hydroxyl radicals that are also available for maintaining the hydrophilicity of Mg-doped
TiO2 glaze samples [29]. Therefore, the super-hydrophilicity of Mg-doped TiO2 glaze
samples could be attributed to the visible-light-exciting photo-induced pairs of electrons
and holes. For the sample with a Vwater/Vethanol ratio of 10:5 and 7.5:7.5, the contact
angles of water droplets on Mg-doped TiO2 glaze samples increase slightly, which could be
attributed to the decrease in the Vwater/Vethanol ratio. However, when Vwater/Vethanol is 10:5
and 7.5:7.5, the hydrophilicity of Mg-doped TiO2 glaze samples decreases slightly, though
it still has super-hydrophilicity. The hydroxy groups anchoring on the Mg-doped TiO2
glaze surface have a significant impact on the hydrophilicity. The formation of hydroxy
groups results in the dissociative adsorption of water molecules at oxygen vacancy sites
on the Mg-doped TiO2 glaze surface. The extra hydroxy groups and oxygen vacancies on
the surface are produced by electron–hole pairs, which lead to the hydrophilicity of the
Mg-doped TiO2 glaze surface [39]. Because oxygen vacancy is produced by the doping of
Mg in the TiO2 crystal and the separation of electron–hole pairs is facilitated (Figure 11a),
the Mg-doped TiO2 glaze surface has more photo-induced wettability than the pure TiO2
glaze surface.
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Figure 12. Wetting angle of Mg-undoped TiO2 glaze sample prepared at Vwater/Vethanol of 12.5:2.5,
and Mg-doped TiO2 glaze samples with various Vwater/Vethanol ratios in dark and daylight illumi-
nation (a), respectively; SEM images of the Mg-doped TiO2 glazes prepared using Vwater/Vethano of

12.5:2.5 (b) and pure TiO2 glaze prepared using Vwater/Vethano of 12.5:2.5 (c); AFM surfaces of the
Mg-doped TiO2 glaze (d) and pure TiO2 glaze sample (e) with Vwater/Vethano of 12.5:2.5, respectively.
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The self-cleaning performance was tested using a Japan Marker pen. The glaze surface
was drawn on after drying for 1 h. After that, after placing a few drops of water on the
glaze, we could observe whether the ink blots were floating. Table 2 shows that after firing
at 1180~1200 ◦C, the water contact angle (5.623◦ vs. 15.23◦) and stain resistance (the blot
floats as a whole vs. not floating, as shown in Figure 13) of the sample fabricated were
improved compared to commercial self-cleaning ceramic glazes [49]. The above results
indicate the great potential application for enhancing the self-cleaning properties of glazes
by introducing Mg-doped TiO2.

Table 2. Performances of Mg-doped TiO2 in the ceramic samples obtained in this study and from
other literature studies.

Type Firing Temperature
(◦C)

Water Contact Angle (◦)
Stain Resistance Ref.

Before Use Irradiation after Use

Mg-doped TiO2 in glaze sample 1180~1200 5.623 5.124 After dripping water droplets,
the blot floats as a whole This work

TiO2 doped in glaze sample 1180~1200 12.26 13.56 Not floating This work
The commercial self-cleaning

ceramic products 1180~1200 21.23 28.96 Not floating This work

C-PEG/TiO2 coating - 26 11 Blot cannot be
completely removed [50]

Commercial ceramic tiles with
groove-like

microstructure surfaces
- 164.75 - Blot cannot be

completely removed [51]

Hybrid sol–gel coating and
industrial application on

polished porcelain
stoneware tiles

- - -
With the help of cleaning
agent, the stains can be

removed from the surface
[52]
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4. Conclusions 
In this paper, Mg-doped TiO2 samples with various Vwater/Vethanol ratios were success-

fully prepared through the solvothermal method at 180 °C for 36 h. The Mg-doped 
(Vwater/Vethanol = 12.5:2.5) sample had higher surface area, porosity, optical performance, 
and photocatalytic activity than other samples. Undoped and Mg-doped TiO2 glaze ce-
ramic samples were prepared using a medium-/high-temperature solid-firing process. 
Mg-doped TiO2 samples (Vwater/Vethanol = 12.5:2.5) illustrated superior hydrophilicity prop-
erties, photocatalytic activity in terms of bleaching organic dye, and self-cleaning capabil-
ity in ceramic glaze samples than other samples after visible light exposure. This study 
provides a preparation approach for the synthesis of TiO2 while controlling crystal size 
and morphology, which can be utilized with solar energy for bleaching the contaminants 
in water and enhancing the self-cleaning properties of medium-/high-temperature glazes. 
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Figure 13. Photos of the as-prepared samples immediately meeting the water in this study (a) Mg-
undoped TiO2 in glaze sample, (b) Mg-doped TiO2 in glaze sample.

4. Conclusions

In this paper, Mg-doped TiO2 samples with various Vwater/Vethanol ratios were suc-
cessfully prepared through the solvothermal method at 180 ◦C for 36 h. The Mg-doped
(Vwater/Vethanol = 12.5:2.5) sample had higher surface area, porosity, optical performance,
and photocatalytic activity than other samples. Undoped and Mg-doped TiO2 glaze ce-
ramic samples were prepared using a medium-/high-temperature solid-firing process.
Mg-doped TiO2 samples (Vwater/Vethanol = 12.5:2.5) illustrated superior hydrophilicity
properties, photocatalytic activity in terms of bleaching organic dye, and self-cleaning capa-
bility in ceramic glaze samples than other samples after visible light exposure. This study
provides a preparation approach for the synthesis of TiO2 while controlling crystal size and
morphology, which can be utilized with solar energy for bleaching the contaminants in
water and enhancing the self-cleaning properties of medium-/high-temperature glazes.
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