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Abstract: This review describes the progress of the gas-phase study of endometallofullerenes (EMFs)
by mass spectrometry and theoretical calculation over the past 15 years. The attention herein focuses
on the gas-phase syntheses, reactions, and generation mechanisms of some novel EMF ions, along
with their structures and properties. The highlighted new species include EMFs with small-size
carbon cages of C2n (n < 60), multiple metal atoms (Mx@C2n, x ≥ 3), late transition metals, and
encaged ionic bonds. Furthermore, the gas-phase experimental and calculational supports for top-
down or bottom-up models are summarized and discussed. These gas-phase results not only provide
experimental evidence for the existence of related novel EMF species and possible synthesis methods
for them, but they also provide new insights about chemical bonds in restricted space. In addition,
the opportunities and further development directions faced by gas-phase EMF study are anticipated.
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1. Introduction

Interestingly, the history of endometallofullerenes (EMFs) is almost as long as that of
fullerene [1,2]. Just one week after the wonderful experiment on the magic cluster ion of
C60

+, ions of LaC2n
+ (2n = 46–70) were observed in the laser ablation mass spectrum of the

La-loaded graphite by Smalley and his co-workers. The endohedral structure proposal
was further supported by the “shrink wrapping” experiment and reaction test with oxygen
or ammonia gas [3,4]. About six years later, which is one year after the success of the
synthetization of solid C60 [5], solid EMFs of La@C82 and La2@C80 were also synthesized
by the laser ablation method and the Krätschmer–Huffman method [4,6]. The number of
known EMFs has been rapidly and constantly growing in the past twenty years, which is
mainly attributed to the improvement of synthesis, separation, and analysis methods [7–10].
Carbon cages are now able to encapsulate metal atoms in different forms, such as metallic
nitrides, oxides, sulfides, and carbides. Because the cage can serve as an ideal nanoscale
container for research on exceptional structures and unique clusters or chemical bonds,
EMFs have great potential for showcasing new physical and chemical properties, as well as
molecular devices [11–14].

However, due to the great success and rapid development of solid-state synthesis
technology for EMFs, there was a time when interest in gas-phase EMF studies decreased.
Notably, progress in new materials such as graphene and mass spectrometry technology
bring new opportunities for gas-phase research on EMFs [15]. It can be seen that in the
past 15 years, gas-phase EMF study has mainly focused on two aspects. The first one is
the discovery of novel EMFs, which are difficult to prepare using existing methods and are
often considered very difficult or impossible to generate, such as EMFs with small cages,
with multiple metal atoms, and with transition metals or ionic bonds. This type of research
can inform researchers about the stability of these novel EMFs and provide methodological
recommendations for their synthesis. The second one is the generation mechanism of EMFs,
which helps us to understand the generation process of EMF in principle and provides
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guidance for new methods aimed at EMF synthesis. Both aspects will be summarized
and discussed in this review. In summary, we focus on the discovery of new endohedral
species in gas-phase experiments, which is typically related to the method of laser ablation
mass spectrometry. The structures and properties of important species, mostly based on
theoretical calculations, are also included. The mechanisms of generation of these novel
EMFs are summarized and discussed in the last section, and an outlook on the prospects of
gas-phase EMF studies is presented, too.

2. Experimental Method

From both historical and practical perspectives, gas-phase EMF study is mainly per-
formed with mass spectrometry technology, combined with different cluster ion sources.
Considering the diversity of ion species generated and the isotopic distribution of ions, high-
resolution mass spectrometry is necessary in these experiments. Although high-resolution
time-of-flight mass spectrometers are also applied, more experiments are conducted on
Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometers, which have higher
resolution and stronger capabilities for ion trapping and manipulation [16]. For the gen-
eration of the EMF ions to be studied, the Smalley-type laser-vaporization supersonic
expansion cluster beam source is widely used, and there are also many kinds of variations
of this type of source [1,2,17]. Generally, a rotatable solid target disk is vaporized by a
focused beam from a YAG laser at 532 nm. In the source, pulsed helium gas should be
adjusted in timing and pressure to coincide with the laser shot. However, there are also
other cluster sources based on laser ablation in vacuum without using the accompanying
pulsed helium gas. Two typical experimental setups applied by Dunk et al. in Florida
State University [18–20] and Kong et al. in Nankai University [21–23] are shown in Fig-
ure 1a,b, respectively. In Dunk et al.’s setup, the cluster source block (shown in the upper
corner of Figure 1a) includes vertical channels for helium gas and the laser beam. The
other channel, located downstream from the target, is aligned with the gas channel to
fulfill the free jet expansion and introduction of clusters into octopoles after the skim-
mer [18]. Dissimilarly, Kong et al. directly applied a commercial-matrix-assisted laser
desorption/ionization (MALDI) [24] source for the laser ablation experiments without
modifying any hardware [23]. In their experiments, the precursor was deposited on a metal
plate (the MALDI plate) in turn. A focused 355 nm YAG laser beam was applied. Although
a pulsed valve is also used in the source chamber (Figure 1b), its function is mainly to
help in the accumulation of the generated ions in the hexapole. It is worth noting that
although both experimental devices were implemented on FT-ICR mass spectrometers,
the EMF species produced and the dependence of their yields on experimental conditions
vary in the two setups due to their different cluster source designs and precursor mate-
rials used. This will be reflected in the examples mentioned in the following sections.
For the generated EMF ions, they can be mass selected in the cell with the method of
stored waveform inverse Fourier transform (SWIFT) [25] and can be further studied by
other tandem mass spectrometric methods, including collision-induced dissociation (CID),
ultraviolet photodissociation (UVPD), or reaction tests with reactive gas molecules (for
example, O2) [3,4,26].
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Figure 1. (a) Experimental setup for gas-phase EMF studies applied at Florida State University [18–
20]. A 9.4 T FT-ICR mass spectrometer combined with a self-designed cluster source was applied. 
The cut-away view of the source block is shown in the upper right of the graph. The vaporization 
of target rods is achieved by laser shots at 532 nm, in conjunction with the opening of the pulsed 
valve. (b) Experimental setup for gas-phase EMF study applied in Nankai University [21–23]. A 7.0 
T FT-ICR mass spectrometer with a commercial ion source (Varian IonSpec ProMALDI) was applied 
in these experiments without any modification. The precursor is deposited on the metal plate and 
irradiated by the 355 nm laser. The metal plate is controlled by a stepper motor and moves in the x–
y plane during experiments. 

3. Novel EMFs in the Gas Phase 
3.1. EMFs with Small-Size Carbon Cages of C2n (n < 60) 

As closed-cage carbon molecules, the theoretically predicted smallest fullerene is C20. 
However, for a very long time, questions regarding the existence of this structure have 
been raised due to its high curvature and reactivity. Prinzbach et al. reported the short-
lived species C20Br20 in 1993 [27] and showed in 2000 that the fullerene C20 with a cage 
structure can be produced from C20HBr13 by gas-phase debromination [28]. Calculation 
examples show that doping the metal atoms in C20 can change its electronic structure [29–
35]. On the other hand, Tomanek and Schluter predicted that closed carbon cages show a 
larger stability than other structures for clusters with sizes larger than 20, based on their 
theoretical calculations [36], and later Kent et al. predicted that the smallest stable 

Figure 1. (a) Experimental setup for gas-phase EMF studies applied at Florida State University [18–20].
A 9.4 T FT-ICR mass spectrometer combined with a self-designed cluster source was applied. The
cut-away view of the source block is shown in the upper right of the graph. The vaporization of
target rods is achieved by laser shots at 532 nm, in conjunction with the opening of the pulsed
valve. (b) Experimental setup for gas-phase EMF study applied in Nankai University [21–23].
A 7.0 T FT-ICR mass spectrometer with a commercial ion source (Varian IonSpec ProMALDI) was
applied in these experiments without any modification. The precursor is deposited on the metal plate
and irradiated by the 355 nm laser. The metal plate is controlled by a stepper motor and moves in the
x–y plane during experiments.

3. Novel EMFs in the Gas Phase
3.1. EMFs with Small-Size Carbon Cages of C2n (n < 60)

As closed-cage carbon molecules, the theoretically predicted smallest fullerene is
C20. However, for a very long time, questions regarding the existence of this structure
have been raised due to its high curvature and reactivity. Prinzbach et al. reported
the short-lived species C20Br20 in 1993 [27] and showed in 2000 that the fullerene C20
with a cage structure can be produced from C20HBr13 by gas-phase debromination [28].
Calculation examples show that doping the metal atoms in C20 can change its electronic
structure [29–35]. On the other hand, Tomanek and Schluter predicted that closed carbon
cages show a larger stability than other structures for clusters with sizes larger than 20,
based on their theoretical calculations [36], and later Kent et al. predicted that the smallest
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stable fullerenes should be the C26 and C28 clusters [37]. Thus, the possible stabilization
of C28 by an endohedral species has been a very intriguing topic and has attracted the
interest of many researchers [33,38–43]. The first experimental evidence in support of
the idea was reported by Smalley et al. in 1992, in which they investigated the mass
spectra of soot prepared by laser furnace and arc discharge methods [43]. Shrink-wrapping
experiments indicated their endohedral structures, in which the fragmentation of larger
endohedral uranofullerenes appeared to dissociate by only C2 loss. The authors claimed
that a tetravalent internal metal atom could donate four electrons to the fullerene to afford
a closed-shell M4+@C28

4− species with a large HOMO−LUMO gap and permit sufficient
stabilization for such species [43].

By using a pulsed laser vaporization cluster source, Kroto and Marshal et al. have
also reported that C28 fullerene could be stabilized by encapsulation with appropriate
metal forms [44]. Impressively, for the first time, they reported the high-resolution mass
spectrum of Ti@C28 (Figure 2). For a long time, titanium has been one of the most attractive
tetravalent candidates for C28 stabilization by encapsulation. However, its major isotope,
48Ti, which is just 52 mDa different in mass from C4, makes the ion of Ti@C28 hard to resolve
from the signal of empty-cage C32 with conventional mass spectrometers. Using a 9.0-T
Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR) mass spectrometer,
Kroto and Marshal et al. clearly identified the species, along with ions of Ti@C2n (n = 19–23),
in the mass spectrum [44]. Collision-induced dissociation (CID) experiments on Ti@C28
show that the ion can remain completely intact with neither the loss of Ti nor the loss of
C3 or C after many collisions, indicating the fact that the metal is not directly attached
to the skeleton, which is neither linear nor cyclic. Further CID experiments on Ti@C30
show that Ti@C30 can fragment to Ti@C28 by C2 loss, demonstrating that both species are
endohedral. They also investigated other metal elements in the periodic table and found
that both Zr@C28 and U@C28 formed in abundance, but Hf@C28 was much weaker.
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Figure 2. (a) Laser vaporization mass spectrum of a Ti-doped graphite target. Among the observed 
cations in the Ti@C2n family, Ti@C28 is observed in great abundance without the accompany of the 
empty-cage C28. (b) Isolated ions of Ti@C30 and C34, and (c) fragmentation pathway of Ti@C30. Taken 
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Dunk et al. have synthesized a series of uranium-endohedral fullerenes using the 
method of Krätschmer–Huffman arc discharge [45]. Several uranofullerenes were able to 
be observed in experiments utilizing solvents with different polarities. Via extractions 

Figure 2. (a) Laser vaporization mass spectrum of a Ti-doped graphite target. Among the observed
cations in the Ti@C2n family, Ti@C28 is observed in great abundance without the accompany of the
empty-cage C28. (b) Isolated ions of Ti@C30 and C34, and (c) fragmentation pathway of Ti@C30. Taken
with permission from [44].

Dunk et al. have synthesized a series of uranium-endohedral fullerenes using the
method of Krätschmer–Huffman arc discharge [45]. Several uranofullerenes were able
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to be observed in experiments utilizing solvents with different polarities. Via extractions
using pyridine and 1,2-Dichlorobenzene (o-DCB), species of U@C2n (2n = 28, 60, 66, 68, and
70) were observed in the FT-ICR mass spectra. The distribution of the series of uranium-
endohedral fullerenes was found to be different from that obtained in the early experiment
reported by Smalley and his colleagues [43]. Some missing species of uranium-endohedral
fullerenes have been observed for the first time in Dunk et al.’s experiment [45].

Due to its primary oxidation state at +4, it was predicted that thorium could form
Th@C28 via the method described above. However, Dunk et al. found that the species
Th@C28 was absent and replaced by the species Th@C36 in the resulting mass spectrum,
which could be attributed to the larger ionic radius of Th4+ relative to U4+ [20]. For the
purpose of creating mono-metallofullerene from metal-incorporated graphite, more than
80 components were examined separately in their experiment. The detectable species with
the smallest carbon cages are M@C50 for Group 1 elements (K, Rb, Cs), M@C42 or M@C44
for Group 2 elements (Ca, Sr, Ba), M@C36 for trivalent rare earth metals (Sc, Y, La, Ce, Pr,
Nd, Gd, Tb, Dy Ho, Er, Lu), M@C44 for divalent lanthanides (Sm, Eu, Yb), and M@C50
for Ga and In. The results indicate that the oxidation states of the encapsulated metals
(corresponding to the charge transfer to the carbon cage outside) and the ionic radius are
determining factors that govern the size limits of the observed EMFs and the corresponding
EMF formation.

Alternatively, Rodríguez-Fortea et al. recently reported the cation species of U@C2n−1B
(2n − 1 = 27–59) using their laser vaporization source [46]. As shown in Figure 3, mass spec-
trometric results identified the boron-doped U@C27B as the most prevalent borafullerene
within the U@C2n−1B family. According to density functional theory (DFT) calculations,
the U atom is positioned in the middle of the cage and interacts with every other atom there
as though it were a 28-hapto ligand. This exotic radical shows us an intriguing example of
unique host–guest chemistry in metallofullerenes.
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Figure 3. (a) Distribution of cations of U@C2n−1B+ formed by laser vaporization of U-containing
graphite. The region 2n − 1 = 29 to 59 is expanded in the inset for clarity. (b) Bader charges and
(c) AIM critical points (CPs) and bond paths for U@C27B. Atom CP in white, bond CP in red, ring CP
in green, and cage CP in light blue. Taken with permission from [46].
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The observed new EMF species in small carbon cages in the gas phase were also
simulated using theoretical methods on their structure and properties [31–35,47–49]. For
example, Rodrñguez-Fortea, Kroto, and Pobletand have reported their theoretically cal-
culated results of the Ti@C2n (2n = 26–50) family [47]. The stability and unique electronic
characteristics of the two main species, Ti@C28 and Ti@C44, account for their abundance. It
is demonstrated that all of the optimum isomers in the family are connected by a straightfor-
ward C2 insertion, with the exception of a few cages that need an extra C2 rearrangement.
Da et al. studied the ground-state electronic structures of U@C28 in its neutral, monovalent,
and bivalent cationic forms [41]. The findings indicate that, rather than the (5f)1 (cage)1

ground state with a D2 symmetry, the neutral U@C28 is characterized by a (cage)2 ground
state with a Td symmetry [41]. Meng et al. studied the geometric and bonding properties
of EMFs, including an f-block metal atom or ion enclosed in a C20 cage [48]. Munoz-Castro
investigated the availability of U2@C36 as an example for the small endohedral dimetallo-
fullerene. The result indicates its neutral and dicationic forms can behave as plausible
candidates with a U-U distance of 2.27Å [49]. Zhou et al. reported the structures and
properties of TM@Cn (n = 20, 24, 28) based on their DFT calculations, showing that after
the embedding of TM atoms, the stability of TM@C20 is greatly enhanced [33]. Their recent
results show that the general species of Mg2+@[C20] n−2 can be classified as superatoms [35].

3.2. EMFs including Multiple Metal Atoms (Mx@C2n, x ≥ 3)

The Coulomb repulsion among the metal ions in EMFs with multiple metal atoms
creates a barrier to their stabilities. As the number and size of metal atoms increase, this
situation becomes more serious. There are two ways to solve the problem [50]. One is to
introduce electronegative elements (such as N, S, and O) to compensate for the Coulomb
repulsion; the other is to adopt fullerene cages with large sizes. For the generation and
structure study of EMFs that include multiple metal atoms, gas-phase experiments provide
a convenient and effective method, especially when combined with DFT calculations.
Graphene has been found to be a powerful precursor for the generation of EMF ions that
encage multiple metal atoms in the gas phase [23,51–58]. For example, the laser ablation
of LaCl3/graphene can generate EMF ions of Lan@C2m

+ with a long accumulation time
in the cell of the FT-ICR mass spectrometer [53]. As shown in Figure 4a, compared to the
wide distributions of La@C58–194

+ and La2@C74–168
+, the distribution of trimetallofullerene

ions is narrower (2n = 96–160), with a center located at La3C110. The primary products are
the monometallofullerene ions; nonetheless, the species ranked second in abundance is
La3C2m, instead of La2C2m. Other EMF ions of La4C112–160, La5C2m (132 ≤ 2 m ≤ 170), and
La6C2m (152 ≤ 2 m ≤ 180) ions were also identified.

Although the diverse species generated in these experiments make the clear isolation
of a special EMF ion difficult, the CID experiments have also been applied to some EMF
ions, such as CaC60

+, SrC60
+, BaC60

+, BaC92
+, and BaC130

+ [23]. For other EMF ions with
more metal atoms or larger carbon cages, the gas-phase oxygen reaction test was applied to
verify their endohedral structures. Nevertheless, since endohedral carbide cluster fullerene
structures cannot be ruled out, it is not possible to properly identify their structures based
solely on these mass spectrometric experiments.

The laser ablation of the mixture of graphene and LuCl3 generated EMF ions with
more metal atoms encaged (Figures 4b and 5) [54]. As shown in Figure 5, EMF ions of
LunC2m

+ (n = 1–9, 50 ≤ 2m ≤ 198) were observed in the mass spectrum. The gas-phase
reaction test experiments confirmed their endohedral architectures. A few mono-EMF ions,
such as LuC50

+ and LuC66
+, exhibit appreciable relative intensities, suggesting that the

encaged metal atom significantly stabilizes relative IPR-violating cages. Similar to the cases
of La and Y, the yield of trimetallofullerene ions, Lu3C2m

+, is the highest among all of
the multimetallic metallofullerene ions. The intensities of Lu4C2m

+ and Lu5C2m
+ are still

strong, suggesting the potential of their practical synthesis. The more Lu atoms contained
in the EMFs, the larger the required carbon cage size. It has been found that the cage’s
average size rises by 12 carbon atoms for every additional Lu atom within the fullerene.
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Other rare earth metals were also considered in order to obtain a general under-
standing of the multi-metallofullerene ions generated by laser ablation. Together with the
previous data for alkali metal and alkali earth metal species, Table 1 summarizes all the
multi-metallofullerene species created under identical experimental conditions in such
studies [23,52–55]. As shown here, EMF ions with numerous metal atoms (n > 4) are only
available in the cases of Y, La, Tb, Ho, and Lu. The increased number of encaged metal
atoms also creates requirements for the size of carbon cages, but these requirements vary
for different metals. For instance, the distribution of La5C2m falls between 132 and 170
in terms of 2m, whereas the ranges for Tb, Ho, and Lu are 124 and 150, 114 and 160, and
104 and 160, respectively. The outcomes show the impacts of the metals’ ionic radii in
addition to the interaction of metal clusters with carbon cages. For the majority of these
rare earth metals, it is possible to generate distinct multi-EMF ions (n ≥ 2); however, Sm
and Eu exhibit divergent outcomes, with no metallofullerene ions reported in the studies.
For alkali metals and alkaline earth metals, only dimetallofullerene ions were observed in
the examples of calcium and barium.

Table 1. Observed multi-metallofullerene ions of different metals in gas-phase laser ablation experi-
ments.

M Oxide States Observed Multi-Metallofullerene Ions Ref.

La +3 La2C+
74−168 , La3C+

96−160, La4C+
112−160, La5C+

132−170, La6C+
152−180 [53]

Ce +3 +4 Ce2C+
88−106 , Ce3C+

94−136, Ce4C+
100−150 [55]

Pr +3 +4 Pr2C+
88−102 , Pr3C+

94−134 , Pr4C+
108−138 [55]

Nd +3 Nd3C+
96−130 [55]

Sm +2 +3 None [55]
Eu +2 +3 None [55]
Gd +3 Gd2C+

86−108 , Gd3C+
90−128 , Gd4C+

106−134 [55]
Tb +3 +4 Tb2C+

80−112 , Tb3C+
86−130 , Tb4C+

100−144 , Tb5C+
124−150 , Tb6C+

134−164 , Tb7C+
148−176 [55]

Dy +3 Dy2C+
82−108 , Dy3C+

90−128 [55]
Ho +3 Ho2C+

74−104 , Ho3C+
86−124 , Ho4C+

98−112 , Ho5C+
114−154 , Ho6C+

132−162 [55]
Er +3 Er2C+

82−96, Er3C+
90−114 [54]

Tm +2 +3 Tm2C+
80−100 , Tm3C+

88−122 , Tm4C+
110−132 [54]

Yb +2 +3 Yb3C+
90−110 [54]

Lu +3 Lu2C+
76−128, Lu3C+

82−130 , Lu4C+
100−142, Lu5C+

104−160, Lu6C+
126−174 , Lu7C+

140−180 , Lu8C+
146−198 , Lu9C+

172−198 [54]
Y +3 Y2C+

74−130 , Y3C+
88−128 , Y4C+

102−142 , Y5C+
128−154 , Y6C+

130−154 [53]
Li +1 None [52]
Na +1 None [52]
Rb +1 None [52]
Cs +1 None [52]
Mg +2 None [23]
Ca +2 Ca2C+

96−160 [23]
Sr +2 None [23]
Ba +2 Ba2C+

80−182 [23]

3.3. EMFs including Late Transition Metals

Although EMFs with rare earth metals and their adjacent elements (groups I–IV) have
been investigated in the gas phase, those containing post-transition metals are very rarely
experimentally studied. Entrapping these transition metals in fullerene cages is still a chal-
lenge [56]. There may be many reasons for this, but one of them is that these metal species
usually exhibit high reactivity with carbon atoms during the generative process. Thus, it is
suggested that the most performable way to make EMFs containing post-transition metals
is to use heterometal clusters to reduce the reactivity of these metal species.

Recently, Kong’s group successfully synthesized metal fullerene ions containing plat-
inum atoms in the gas phase for the first time [56]. By laser ablation of a mixed sample of
graphene/LaCl3/PtCl4 in vacuum, the EMF ions of LamPtC2n

+ were observed (Figure 6a)
and verified with oxygen reaction tests [50,56]. An example is shown in Figure 6. Apart
from the EMF ions of La2@C2n

+ and La3@C2n
+, LamPtC2n

+ (m = 2–3; n = 43–65) was also ob-
served. The distributions of the observed EMF ions are compared and shown in Figure 6b.
It can be found that EMF ions of La2PtC2n

+ have a distribution from 2n = 86 to 114 centered



Inorganics 2024, 12, 68 9 of 18

on the La2PtC98
+, and those of La3PtC2n

+ have a distribution from 2n = 98 to 130 centered
on the La3PtC112

+.
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Extensive theoretical studies have been performed for the neutral forms of these two
selected species, La2PtC90

+ and La3PtC98
+ [50,56]. For La2PtC90 (the neutral species of

La2PtC90
+), the two most stable structures are La2Pt@C2(99915)-C90 and La2Pt@C2(99916)-

C90, with the energy of the latter being 8.1 kcal/mol greater than that of the former. More-
over, large HOMO-LUMO gaps of 1.28 and 1.13 eV have been found for the two isomers.
Impressively, the most stable isomer of the corresponding metal carbide EMFs, which has
been identified to be La2PtC2@D2(81738)-C88, has a much higher energy (>89 kcal/mol)
than La2Pt@C2(99915)-C90. As shown in Figure 7a,b, the internal La2Pt clusters in both
structures exhibit a “V” shape, with La coordinating with the carbon cage and Pt located
at the center of the La2Pt cluster, serving as a connecting point to stabilize the EMFs.
Within the triatomic cluster, the distances between La–La and La−Pt are ∼4.01 and 2.73 Å,
respectively, indicating the existence of the La–Pt bond.

The two most stable isomers of La3Pt@C98 were found to be La3Pt@C2(231010)-C98
and La3Pt@C1(231005)-C98 [50]. Their structures are shown in Figure 7c,d. In both isomers,
the La3Pt clusters form pyramidal tetrahedrons in carbon cages. The distances between
two nearby La atoms are 4.18~4.40 Å, a little longer than those in the top two isomers of
La2Pt@C90. The encaged clusters of La3Pt in both isomers have typical La–Pt bonds with
a length of about 2.80 Å, and La–Pt–La bond angles of ~100◦, with a shape similar to the
metal nitride clusters in M3N@C80 (M = Y, Tb, Gd), but different from planar triangles in
the cases of M3N@C80 (M = Sc, Lu, Dy).

In order to explore the role of the encaged Pt atom, Mulliken charge distribution
calculations were carried out for these structures [50,56]. Results show that the carbon
cages and the endohedral La atoms are negatively and positively charged, respectively.



Inorganics 2024, 12, 68 10 of 18

Very interestingly, it is noted that Pt atoms within La2Pt or La3Pt clusters appear to have
a negative valence and may mediate the interactions between two La or among three La
atoms. For La2Pt@C2(99915)-C90, the charges of the two La atoms are +1.82 and +1.81,
and the Pt atom is negatively charged (with a charge of −0.64). This role is similar to that
of Pt in the embedded tetrametallic fullerene La3Pt@C98. For both La3Pt@C1(231005)-C98
and La3Pt@C2(231010)-C98, the La atoms present positive states (from 0.49 to 0.52), while
the Pt atoms are negatively charged (around −0.24). In the case of La3Pt@C98, all three
of the La atoms create 2c–2e bonds with the negatively charged Pt atom, which serves
as a mediator. Interestingly, the entire molecule is stabilized by the 4c–2e tetrametallic
bond, with the highest occupancy number in the unit of La3Pt. It is noteworthy that seven
electrons have transferred from the inner metal cluster to the outside fullerene cage in this
instance, which is quite rare and has not been documented before. This is further evidenced
by the adaptive natural density partitioning (adNDP) analysis, where Pt takes two electrons
to fill its 5d-shell from La atoms and shares its 6s2 pair as a back-donation with La atoms,
resulting in its unique electron distribution in a form of [(La3+)3Pt2−]7+@C98

7−.
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3.4. EMFs including Ionic Bonds

There are still big challenges to encapsulating various ionic bonds in fullerenes (except
for metal oxides) [57–61]. The confinement of an individual ionic bond is very difficult,
since it has neither sharing electrons nor a fixed pairing relationship between the two
ions. Due to the difficulty in generation, they have only very rarely been the subject of
experimental research. Using a Smalley-type ion source, Martin et al. observed such
fullerene ions in the gas phase in their pioneering works. They identified ions of CaCl@C66

+

and HoCl@C60
+ in the gas phase and gave a justification for the species’ threshold sizes

using the spherical approximation [61].
Recently, Kong’s group reported the identification of endohedral ions of LuClC2n

+

(2n = 90−190) with high-resolution laser ablation mass spectrometry [57]. In the experi-
ments, a mixture of graphene/LuCl3/LiCl was applied as the precursor, and oxygen gas
was used as the reaction gas to verify their endohedral structures. Similarly, mixtures of
graphene and sodium halides (NaX) (X = Cl, Br, I), EMF ions of NaCl@C2n

+ (2n = 120–244),
NaBr@C2n

+ (2n = 110–240), and NaI@C2n
+ (2n = 116–198) were also observed by the same

group [58]. Interestingly, Li or K could not substitute for the encapsulated metal ion in
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these studies, indicating that the metal cation’s effects on the EMFs outweigh those of
halide anions.

To figure out the structures and properties of the endohedral ionic bond fullerenes, the
species of LuCl@C90 was selected and studied systematically using DFT methods [57].
LuCl@C2(99917)-C90 and LuCl@C2(99914)-C90 were found to be the top two isomers
(Figure 8), which have significant HOMO−LUMO gaps of 1.61 and 1.82 eV, respectively. Sta-
tistical thermodynamic analysis shows that the former prevails inside a small temperature
range of 0 to 500 K. With the temperature increasing, it is exceeded by LuCl@C2(99914)-C90
at 650 K and by LuCl@C2(99913)-C90 at 3000 K. For all optimized isomers, it was found that
the Lu atoms are situated between the Cl atoms and the cages, and the Cl atoms are found
in the hubs of the cages. The potential curve of an encaged ionic bond is distinct from that
of isolated ionic bonds, which are identified by their usual Morse or Morse long-range
potentials. As shown in Figure 7, infinite potential wells exist due to the restriction of the
carbon cages, and the wells are deeper than those of unprotected ionic species, clearly
showing that they have different characteristics. In addition, the calculation shows that the
equilibrium distances of the Lu–Cl bonds in both isomers is 2.49 Å, which is larger than
that of LuCl2+ (2.30 Å) and a little smaller than that of LuCl (2.55 Å).
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An interesting effect of endohedral ionic bond fullerenes is that it is possible to rotate
the bond inside the carbon cages. The energy barrier mainly depends on the interaction
between the metal ion and the cage [57]. For instance, seven energy minima were discovered
during the rotation of the Cl−Lu bond in the lowest energy isomer of LuCl@C2(99917)-C90,
and the energy barriers were found in the range of 20−220 kcal/mol. However, the results
depend very much on the selected plane for rotation. If the perpendicular rotation plane is
selected, there are only four energy minima and the rotation energy barrier is considerably
larger, reaching up to 600 kcal/mol.

In fact, the properties of encaged ionic bonds have previously been noticed by theo-
retical chemists and have always been a focus of their attention [62–65]. Foroutan-Nejad
et al. proposed a single-molecule switch based on the neutral dipolar molecule that uses
alkali metal halides contained in a C70 cage for data storage [65]. The encaged ionic bonds
have two local energy minima separated by an energy barrier relative to the fullerene.
Attractively, an external electric field can be used to manipulate the dipolar system inside
the fullerene. This is possible with contemporary instruments like scanning tunneling
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microscopes. The ionic bond aligns along the main axis of C70 to minimize the steric clash.
The conformations with the dipole moment along the electric field are more stable than the
others when the electric field is on. With an increasing electric field, the stabilization should
lead to the reorientation of the encaged ionic bond. The same group has also proposed
using a two- or four-electrode system to speed up the switching procedure, showing their
potential in the application of random-access memories and memristors [64]. As illustrated
in Figure 9, the dipolar MX causes the system to operate like a diode by polarizing the
fullerene shell electrons. A series of species of MX@C70 (M = a metal or hydrogen, X = a
halogen or a chalcogen) have been studied to be identified as possible molecular memristors
by the same research group.
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Figure 9. The principle of an MX@C70 molecular memristor (EEF stands for the external electric field).
(a) MX@C70 with two local minima (LM and LM′) separated by a transition state (TS) with an energy
barrier. (b) Upon application of external voltage, one of the local minima becomes unstable. This
leads to the rotation of MX between LM and LM′ (or LM′ and LM), and thus to the switching of the
system’s polarity and conductivity. (c) The four-electrode setup in which the source–drain voltage
(VSD) is applied horizontally and the gate voltage (VG) is perpendicular to the VSD. Taken with
permission from Ref. [64].

Impressively, Gan et al. recently reported the preparation of an open-cage fullerene as
a selective molecular trap for ionic bonds of LiF/[BeF]+ [60]. They made use of a hydroxy
group-containing open-cage C60 derivative. LiF and [BeF]+ were encapsulated as a result of
the hydroxy group’s ability to coordinate lithium or beryllium cations, functioning as a bait
or hook. The whole structures were clearly identified by single-crystal X-ray diffraction.
A bright future lies ahead for the development of more cage-opening reactions for the
prospective uses of fullerene-based molecular containers, especially in light of the recent
advancements in the logic-in-memory operations of a two-terminal single-metallofullerene
device at room temperature [62].

4. Mechanism Study

Similar to those of fullerenes, the suggested mechanisms for the formation of EMFs
can be generally classified into two types: bottom-up or top-down [20,44,47,66–82]. For
example, Dunk et al. demonstrated that U@C28 acts as a precursor for larger uranofullerenes
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while itself being formed through a bottom-up process [44]. They have identified the
structures of Ti@C2n (2n = 26–50) and uncovered essential features in their growth processes
by DFT calculations and molecular dynamics (MD) simulations [47]. Further studies
by the same group show more proofs of the suggested bottom-up formation process
of giant mono-EMFs from Pr@C2v-C82 [20]. They proposed that, under EMF synthesis
circumstances, mono-metallofullerenes with small to giant sizes might form in the gas
phase via a bottom-up mechanism. The extent of charge transferred to carbon cages appears
to be determined by the elements’ ionization energies during graphite/metal evaporation.
It has been suggested that the unconventional small-sized EMFS could stabilize by charge
transfer, although the existing strain energy resulted in the impeding of C2 insertion
and the inhibition of overall bottom-up formation of large-sized metallofullerenes. MD
simulation also plays an important role in understanding the formation mechanisms of
EMFs [83–87]. Using constructed multi-body potential functions, Yamaguchi et al. found
that the clustering process of a system containing 500 isolated carbon atoms and five
La atoms under a controlled temperature of 3000 K can result in lanthanum-containing
caged clusters. For the Ni–C system, the Ni atom ultimately stayed on the face of caged
structures [83]. Deng et al. investigated the effects of the inert cooling gas helium in the
Sc-EMF forming process with the method of quantum chemical molecular dynamics. Their
results show that Sc encapsulation involves nucleation of carbon clusters with Sc atoms at
early stages, and the existence of He gas reduces the size of the self-assembled cages [84].
An extended simulation with an Fe atom shows no formation of such Fe-EMF, which is
consistent with experimental results [71]. Fan et al. found that the growth patterns of
Sc-EMFs resemble those of hollow cages, and the He gas could promote both the formation
of carbon cages and the encapsulation of scandium atoms [86].

The bottom-up mechanism is suitable for the formation of mono-metallofullerenes
from metal-incorporated graphite [20]. However, the generation of multiple metallo-
fullerenes in some experiments, such as the examples shown in Figures 3–5, may have
different mechanisms. The top-down mechanism offers another kind of possibility [71–78].
There is evidence to support the theory that giant fullerenes formed from large-size poly-
cyclic aromatic hydrocarbons (PAHs), or graphene sheets shrunk into smaller ones, through
interstellar and laboratory observations as well as theoretical calculations [71,77,78]. For
example, Irle et al. use a ‘shrinking hot giant fullerene’ mechanism in which giant car-
bon cages occur first, followed by multiple C2 losses with self-assembly to appropriate
symmetric fullerene cages, such as Ih-C60 and D5h-C70 [71]. Moreover, the transforma-
tion of graphene to a fullerene cage was demonstrated by Chuvilin et al., based on their
transmission electron microscopy and theoretical studies [74].

For EMFs, the top-down mechanism is also applied in some cases [23,48–56,79–82].
Dorn et al. isolated and characterized metal carbide metallofullerenes M2C2@C1(51383)-C84
(M = Y, Gd) and proposed that the cage with fused pentagons is a preserved ‘missing link’
in the top-down mechanism [80]. The unique asymmetric structure can form many sym-
metric fullerenes that account for some well-known solvent-extractable metallofullerenes
using limited, well-established rearrangement steps. Lu et al. presented the identified
La2C2@C2(816)-C104 as an origin formation of other known ideal tubular cages by remov-
ing the pyracylene motif, providing support for the top-down formation mechanism of
such fullerenes [79]. Using the method of transmission electron spectroscopy, Sinitsa et al.
proposed a method for synthesis of nickel EMFs, in which the formation was initiated by
electron irradiation of a metal cluster surrounded by amorphous carbon inside a carbon
nanotube [87]. Their MD simulations also rationalize the experimental observations. On
the other hand, Kong et al. suggested the top-down mechanism to explain the multiple
EMF ions produced in the process of laser ablation of graphene flakes mixed with metal
salts [23,48–56]. It is proposed that the instantaneous process of wrapping metal atoms or
clusters inside curved graphene flakes produced by laser irradiation can lead to the pro-
duction of EMFs with large-sized cages and multi-metal atoms. Moreover, the mechanism
can be used to interpret the generation of fullerenes with encaged ionic bonds in a similar
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way. It is important to notice the difference between the use of graphene and graphite as
precursors in these experiments, since their differently reported mass spectra indicate their
different laser ablation processes and mechanisms.

5. Prospect

The gas-phase EMF study provides valuable information in many ways. The impor-
tance of gas-phase research on EMFs in their discovery can never be overstated, and they
are going to remain essential in interdisciplinary investigations of new species in this big
family. In this review, we summarized the progress of gas-phase EMF studies in the past
15 years, focusing on novel EMF species identified in the gas phase and the relative mech-
anism study, which provided valuable information for the structural research, synthesis,
and design of such new molecules. Although the research undertaken in gas-phase EMF
research is much less widespread compared to those engaged in the synthesis, separation,
and application of EMFs, the gas-phase results still provide valuable clues for new mem-
bers in the family of EMF. On the one hand, these novel EMF species observed in the gas
phase provide direct experimental evidence for their existence and valuable clues for their
solid-phase synthesis methods, which can promote the exploration and discovery of new
synthesis methods for EMFs. On the other hand, the structural study of these new EMF
species can provide insights into their novel structures and new chemical bonds, different
properties, and potential applications.

Experimentally, high-resolution mass spectrometry is widely applied to qualitatively
identify charged EMF species and their molecular compositions. The distributions of
EMF ions related to different experimental conditions, precursors, and metal elements
can provide valuable information on the mechanism of the generation of important and
novel EMF species, especially when combined with theoretical calculations. Among them,
the selection of precursors is found to be important, and it is worth noting that, in future
research, the synthesis of specific novel EMFs can be more effectively achieved by selecting
appropriate precursors. However, it should be pointed out that a great deal of essential
work in gas-phase EMF study still needs to be done. First, new methods for the generation
of new or novel EMF ions are necessary. Considering that the bottom-up mechanism
dominates most laser ablation experiments, based on the Smalley-type source, different
generation and ionization methods based on the top-down mechanism are needed for large-
size or special EMF ions. Different precursors and new sample preparation methods are
important, too. Second, the formation of EMFs encaging transition metals is one of the most
fascinating topics in gas-phase EMF chemistry. It is also an important means of discovering
novel EMFs. Considering the examples of La2Pt@C90, and La3Pt@C98, it is natural to
assume that more types of embedded metal clusters or ionic bonds can be discovered
or synthesized. On the other hand, the ionic bonds composed of different elements can
provide new members for the EMF family and may be applied as crucial components
of molecular devices. Third, it is expected that more methods of ion chemistry should
be applied to the investigation of the structure and characteristics of gas-phase fullerene
ions. In addition to the widely used method of CID, other methods, such as reaction mass
spectrometry, collisional section measurement, UV photodissociation spectroscopy, etc.,
should be combined in tandem mass spectrometric study. Fourth, the gas-phase study of
EMF anions, which may open up a different path for discovering new EMFs, is still very
limited.
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