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Abstract: Eco-friendly magnesium-based thermoelectric materials have recently attracted significant
attention in green refrigeration technology and wasted heat recovery applications due to their
cost effectiveness, non-toxicity, and earth abundance. The energy conversion efficiency of these
thermoelectric materials is controlled by a dimensionless thermoelectric figure of merit (TFM), which
depends on thermal and electrical conductivity. The independent tuning of the electrical and thermal
properties of these materials for TFM enhancement is challenging. The improvement in the TFM of
magnesium thermoelectric materials through scattering and structural engineering is experimentally
challenging, especially if multiple elements are to be incorporated at different concentrations and
at different doping sites. This work models the TFM of magnesium-based thermoelectric materials
with the aid of single-hidden-layer extreme learning machine (ELM) and hybrid genetic-algorithm-
based support vector regression (GSVR) algorithms using operating absolute temperature, elemental
ionic radii, and elemental concentration as descriptors. The developed TFM-G-GSVR model (with a
Gaussian mapping function) outperforms the TFM-S-ELM model (with a sine activation function)
using magnesium-based thermoelectric testing samples with improvements of 17.06%, 72%, and
73.03% based on correlation coefficient (CC), root mean square error (RMSE), and mean absolute error
(MAE) assessment metrics, respectively. The developed TFM-P-GSVR (with a polynomial mapping
function) also outperforms TFM-S-ELM during the testing stage, with improvements of 14.59%,
55.31%, and 62.86% using CC, RMSE, and MAE assessment metrics, respectively. Also, the developed
TFM-G-ELM model (with a sigmoid activation function) shows superiority over the TFM-S-ELM
model with improvements of 14.69%, 79.52%, and 83.82% for CC, RMSE, and MAE assessment
yardsticks, respectively. The dependence of some selected magnesium-based thermoelectric materials
on temperature and dopant concentration on TFM was investigated using the developed model,
and the predicted patterns align excellently with the reported values. This unique performance
demonstrated that the developed intelligent models can strengthen room-temperature magnesium-
based thermoelectric materials for industrial and technological applications in addressing the global
energy crisis.

Keywords: thermoelectric figure of merit; extreme learning machine; ionic radii; genetic algorithm;
magnesium-based materials; support vector regression

1. Introduction

Thermoelectric-based technology has inherent and promising potential to resolve the
present environmental issues and energy crisis since it converts wasted heat energy into
electricity, and vice versa [1–3]. This technology offers sustainable and clean solutions for
the energy crisis, with the application domain cutting across solid-state refrigeration and
the harvesting of wasted heat [4]. A dimensionless parameter known as the thermoelectric
figure of merit controls the energy conversion efficiency of thermoelectric materials [5].
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The need for highly efficient thermoelectric materials is crucial for most applications. This
efficiency-measuring parameter is material-dependent and is related to other material
properties such as electrical conductivity, the Seebeck coefficient, absolute temperature,
and thermal conductivity [6,7]. To strengthen thermoelectric properties for improved
efficiency, the independent tuning of thermal and electrical conductivity is challenging
due to the strong coupling between them from a carrier concentration perspective [8].
Two main approaches adopted recently for energy conversion efficiency improvement
include electrical power factor enhancement (through band engineering and carrier con-
centration optimization) and lattice thermal conductivity reduction via boundary or alloy
scattering [8]. Carrier concentration optimization through doping has also been reported to
strengthen the thermoelectric figure of merit. The enhancement of thermoelectric properties
beyond the optimization of the carrier concentration requires more advanced concepts
such as scattering engineering (which includes modulation doping and energy filtering
effects) and structural engineering (which includes band convergence, band flattening, a
band position that is temperature-dependent, and resonant level) [9]. Recent progress in
magnesium-based thermoelectric materials has been reported in the literature [10]. The
impact of structure and compositions in enhancing the performance of these compounds
in various application domains has been extensively discussed [11,12]. Band convergence
that allows the convergence of different bands through temperature change or alloying
possibly translates into an increase in the effective mass density of states without carrier
mobility being degraded, with the ultimate enhancement of the thermoelectric material’s
power factor. Intelligent approaches are proposed in this work for modeling and designing
magnesium-based thermoelectric materials with the desired energy conversion efficiency.
The reason for the selection of the thermoelectric figure of merit is due to the fact that this
parameter aggregately controls the energy conversion efficiency of thermoelectric materials.

Magnesium-based thermoelectric materials have the characteristic of an excellent and
tunable thermoelectric figure of merit attributed to the presence of a multivalley conduction
band close to the Fermi level, which creates room for performance optimization [13,14].
Another significant factor governing the choice of thermoelectric materials for technology
applications is the cost of the synthesis materials [15]. The commercially available ther-
moelectric materials such as tellurium-based compounds are costly and extremely scarce,
which limits industrial production [8]. The approaches used for identifying and preparing
thermoelectric materials with a high figure of merit include the introduction of extrinsic
features into existing thermoelectric materials and searching for pristine materials with
intrinsic mechanisms of transportation [16]. Efforts are ongoing for the exploration of low-
cost thermoelectric materials with the characteristic of high energy conversion efficiency.
As such, magnesium-based materials are promising candidates due to their inexpensive
constituent elements, non-toxicity, and abundance [17]. Additionally, the excess magnesium
in the prepared magnesium-based thermoelectric samples forms an integral part of the
interstitials, resulting in improved performance [4,16]. Magnesium-based thermoelectric
materials such as magnesium stannides have further attracted significant attention due to
the ease of tuning their thermoelectric figure of merit and their adjustable power factor [18].
The power factor is the product of the square of the Seebeck coefficient and electrical con-
ductivity. Enhancement of the thermoelectric figure of merit demands an increase in power
factor and a reduction in lattice thermal conductivity. The single parabolic band framework
captures the power-factor-tuning mechanism of most magnesium-based thermoelectric ma-
terials [8]. The energy conversion efficiency of magnesium-based thermoelectric materials
is influenced by band convergence, point defects and scattering potentials [15]. However,
thermal conductivity due to lattice is relatively high in magnesium-based thermoelectric
materials as compared to other thermoelectric materials. Reduction in lattice thermal
conductivity through dopant incorporation translates to enhance thermoelectric figure of
merit (TFM). Challenges of independently tuning the thermal and electrical conductivity
of magnesium-based thermoelectric materials for improved energy conversion efficiency
coupled with laborious experimental procedures is of serious concern which calls for the
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need for theoretical and computational modeling approaches. This work employs empirical
(extreme learning machine algorithm) and structural support vector regression algorithm)
risk minimization principle based intelligent algorithms to model the energy conversion
efficiency of magnesium-based thermoelectric materials using temperature, elemental ionic
radii and elemental concentration descriptors.

Support vector regression (SVR) is a powerful intelligent learning algorithm employed
in addressing regression tasks [19,20]. It is an extension of support vector machines
and operates by finding a hyper-plane in a high-dimensional space that best represents
the relationship between input variables and the corresponding output [21]. SVR excels
in capturing complex patterns and non-linear relationships in data samples, making it
particularly suitable for tasks where traditional linear regression models may fall short.
Since limited samples characterize magnesium-based thermoelectric materials, the choice
of SVR algorithm for modeling is perfect since the algorithm has been reported to perform
excellently well when developed using few data samples [22–24]. For effective modeling of
TFM of magnesium-based thermoelectric materials using the SVR intelligent algorithm,
optimization of SVR parameters was conducted using a genetic meta-heuristic algorithm.
Genetic algorithm (GA) is an optimization technique inspired by the principles of natural
selection and genetics [25]. It belongs to the family of evolutionary algorithms and is
employed to find optimal solutions to complex problems. Mimicking the process of natural
selection, GA iteratively evolves a population of potential solutions through the application
of genetic operators such as mutation, crossover, and selection [26]. Widely used in various
fields, GA proves especially effective in solving problems with multiple variables and
intricate solution spaces [27–29]. The unique features of genetically optimized support
vector regression (GSVR) are harnessed in this present work to model energy conversion
efficiency of magnesium-based thermoelectric materials.

Extreme learning machine (ELM) intelligent algorithm slightly departs from the con-
ventional neural network training methods in terms of its weight initialization scheme [30,31].
Model training in ELM involves random weight assignment in the input-hidden layer con-
nections. This approach expedites training speed and enhances generalization capabilities,
thus allowing it effectively adapt to diverse and high-dimensional data samples [32,33].
The energy conversion efficiency of magnesium-based thermoelectric materials is also
modeled using a single hidden layer extreme learning machine intelligence algorithm with
sine and sigmoid activation functions.

The outcomes of the modeling and simulation show that the developed TFM-S-ELM
model (with sine activation function) performs better than TFM-G-GSVR (with Gaussian
mapping function), TFM-P-GSVR (with polynomial mapping function) and TFM-G-ELM
(with sigmoid activation function) models with improvements of 1.70%, 27.96% and 64.52%
using correlation coefficient (CC) on training magnesium thermoelectric samples. Addi-
tionally, the TFM-G-GSVR model outperforms the TFM-S-ELM model during the testing
phase with improvements of 17.06%, 72% and 73.03% using CC, root mean square error
(RMSE) and mean absolute error (MAE) assessment metrics, respectively. The developed
TFM-P-GSVR also outperforms TFM-S-ELM with improvements of 14.59%, 55.31% and
62.86% using CC, RMSE and MAE assessment metrics, respectively. Also, the developed
TFM-G-ELM model shows superiority over the TFM-S-ELM model with improvements of
14.69%, 79.52%and 83.82%, for CC, RMSE and MAE assessment yardsticks, respectively.

The organization and outline of the rest of the manuscript are as follows: Section 2
mathematically formulates the employed intelligent and optimization algorithms which in-
clude support vector regression, extreme learning machine and genetic algorithm. Section 3
describes the modified chemical formula of magnesium-based thermoelectric materials
with four different elemental inclusions. The detailed computational description of the
intelligent algorithms is also contained in Section 3. Section 4 presents the modeling re-
sults, convergence patterns of the optimization algorithm and performance comparison
using different assessment parameters. The influences of temperature and dopants on
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magnesium-based thermoelectric materials are also presented in Section 4. The conclusions
drawn from the research work are presented in Section 5 of the manuscript.

2. Mathematical Formulation and Background of the Implemented Algorithms

Formulations of the implemented algorithms are described mathematically in this
section. The described mathematical formulations include support vector regression,
extreme learning machine and genetic meta-heuristic optimization evolutionary algorithm.

2.1. Support Vector Regression Description

Support vector regression (SVR) effectively addresses and characterizes non-linear
systems as a result of the robust underlying structural risk minimization principle inherent
to the algorithm [34–36]. Given thermoelectric magnesium-based materials

(
βk, τ∗

k
)n

k , βk
represents the input descriptive vectors, which include the operating temperature, ionic
radii of the elemental compositions as well as the elemental concentrations, while τ denotes
the corresponding measured thermoelectric figure of merit. The algorithm employs the
regression function outlined in Equation (1) to model the system [37].

τ(β) = ⟨w, β⟩+ ϕ (1)

Here, τ signifies the predicted thermoelectric figure of merit obtained through the SVR
algorithm. The undetermined coefficients w and ϕ representing the weight vector and bias
are deduced by minimizing the risk function presented in Equation (2) [38].

r(τ) =
v
m

n

∑
k=1

I(τ(β)− τ∗
k ) +

∥ χ ∥2

2
(2)

Here, ∥ χ ∥2 denotes the Euclidean norm, I stands for epsilon insensitive loss function
illustrated in Equation (3), and v represents the penalty factor. The penalty factor imposes
a penalty on samples deviating beyond the error epsilon threshold. It is a user-defined
constant and non-zero value that can be adjusted through manual tuning or evolutionary
algorithms.

I(τ(β)− τ∗ ) =

{
∥ τ(β)− τ∗ ∥ −ε |τ(β)− τ∗|≥ ε

0 τ(β)− τ∗ < ε
(3)

It is imperative to incorporate slack variables and ∗, particularly in situations where
there is a potential risk of surpassing the error threshold. These slack variables govern the
separation distance between the measured values and the boundary values. The resultant
dual problem is addressed through an optimization approach depicted in Equation (4) [39].

Minimize :
1
2

n

∑
k

n

∑
i
(ηk − η∗

k )(ηi − η∗
i )λ(βk, βi) +

n

∑
k=1

τ∗
k (ηk − η∗

k )− ε
n

∑
k=1

(ηk + η∗
k ) (4)

The minimization problem that Equation (4) expresses is subjected to constraints
outlined in Equation (5).

n

∑
k=1

(ηk + η∗
k ) = 0, ηk, η∗

k ϵ[0, ν] (5)

Here, ηk and η∗
k represent the Lagrange multipliers utilized in the solution of the

optimization problem. The input vectors corresponding to non-zero coefficients in the
optimization solutions are termed support vectors. Employing the aforementioned opti-
mization function, the expression shown in Equation (6) depicts the predictions generated
by the SVR algorithm.

τ(β) =
n

∑
k=1

(ηk − η∗
k )⟨βk, β⟩+ ϕ (6)
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The kernel function facilitates the transformation of the original problem into a linear
problem in a high-dimensional space. This mapping function is denoted in Equation (7),
and the ultimate regression estimation equation of the SVR algorithm is expressed in
Equation (8).

λ(βk, βi) = φ(βk)φ(βi) (7)

τ(β) =
n

∑
k=1

(ηk − η∗
k )λ(βk, βi) + ϕ (8)

In the context of this task, the employed kernel functions incorporate the Gaussian
and polynomial functions which are shown in Equation (9) and Equation (10), respectively.

λ(βk, β) = exp

(
|βk − β|2

d

)
(9)

λ(βk, β) = (βk·β + 1)z (10)

where d and z are the Gaussian and polynomial kernel parameters, respectively.

2.2. Extreme Learning Machine Formulation

The extreme learning machine (ELM) is a unique learning algorithm that was de-
veloped by Huang [40]. It is designed specifically for single-hidden layer feed-forward
neural networks (SLFNs). Unlike the backpropagation (BP) technique in conventional
neural networks, with its attendant shortfalls, the ELM has the ability to avoid the need for
numerous iterations and local minima problems [41]. It has, therefore, gained widespread
usage in classification and regression tasks owing to its superior generalization capabilities,
fast learning speed and unresponsiveness to parameters pre-defined by the user [31,42–46].
The ELM algorithm works by randomly generating the input weights and biases of the
hidden layer. Subsequently, it determines the weights of the output layer through analytical
methods. Through these techniques, the ELM algorithm achieves better performance in re-
gression tasks. Given a dataset containing K samples (ni, mi), where n ∈ Rd and m ∈ Φ, the
ELM algorithm conveniently models and approximates the linking patterns and functions
using the expression shown in Equation (11).

J

∑
i

ψi·ω(wi·n + bi) = m (11)

where ω(x) is the activation function, wi is the input weight of the ith node in the hidden
layer, bi is the corresponding bias, ψi is the output weights, and n, m are the input features
and thermoelectric figure of merit, respectively. The model equation above can be expressed
more succinctly in matrix form as shown in Equation (12).

Hψ = P (12)

where H is the output layer matrix given by

H =

h(ni)
...

h(nK)

 =

ω(w1·n1 + b1) · · · ω
(
wJ ·n1 + bJ

)
...

. . .
...

ω(w1·nK + b1) · · · ω
(
wJ ·nK + bJ

)


ψ =

ψT
1
...

ψT
K


J×d

and P =

pT
1
...

pT
K


K×d



Inorganics 2024, 12, 85 6 of 20

Output weights ψ is computed using the smallest norm least square presented in
Equation (13) instead of the common optimization method.

ψ = H+P (13)

where H+ is the Moore–Penrose pseudo-inverse of matrix H. Consequently, this analytical
departure from the iterative derivation of the output weights, amongst other things, gave
ELM its superior performance over other neuron-based networks.

2.3. Genetic Meta-Heuristic Algorithm Principles

Genetic algorithms (GAs) constitute a category of heuristic methods designed for
searching optimal solutions and employ the operational principles inspired by biological
natural selection [37,47,48]. The algorithm’s simplicity, combined with its well-established
and robust search mechanisms, has significantly enhanced its applicability in various
domains [28,49–52]. The iterative cycles of the genetic algorithm begin with population
initialization, wherein a set of potential candidates is introduced into the solution search
space. Each of the potential solutions is referred to as an individual within the operational
framework of the genetic algorithm [53]. The iteration stages progressively refine the
initially created population, adhering to the principle of survival of the fittest, whereby
weaker individuals are replaced by more efficient and superior ones. Individuals exhibiting
higher fitness are potentially chosen as parents, giving rise to improved offspring for the
ensuing iteration. The iterative process continues until the genetic algorithm identifies an
individual possessing the optimum solution. Selection, crossover, and mutation constitute
the genetic operations; each is assigned a probability value carefully tuned to control the
strength and significance of the respective operation.

3. Details of the Computation and Model Description

The description of the modified thermoelectric magnesium-based materials is presented
in this section with statistical analysis of the employed set of thermoelectric magnesium-based
samples. The computational details of both extreme learning machine and hybrid genetic
algorithm based support vector regression are described and presented in this section.

3.1. Description and Acquisition of Modeling Magnesium-Based Thermoelectric Data Samples

The thermoelectric figure of merit (TFM) for magnesium-based compounds is mod-
eled using intelligent algorithms with ionic radii of elemental constituents, operating
temperature and elemental concentration descriptors. The experimental values of thirty
different thermoelectric figures of merit for magnesium-based thermoelectric compounds
employed for modeling are extracted from the literature [4,6,8,9,13,15,17,54–61]. The
modified chemical formula for thermoelectric magnesium-based material is shown in
Equation (14).

MgxAaBbCcDd (14)

where x represents the concentration of magnesium, and where A, B, C and D stand for
incorporated elements while a, b, c and d are their respective concentrations. Ten descrip-
tors were employed for each of the developed models. For example, the descriptors for
Mg1.86Sn0.837Si0.093Na0.14S0.07 magnesium-based compound include the operating temper-
ature of 673, 1.86 (concentration of Mg), ionic radii of Sn, Si, Na and S and their respective
concentrations of 0.837, 0.093, 0.14 and 0.07. For a compound with elemental constituents
less than four aside, the magnesium, ionic radius and the concentration of the missing
element are assigned zero. The choice of the ionic radii descriptors is due to the influence
of elemental ionic radii and concentrations in influencing carrier mobility. For instance, low
thermal conductivity strengthens the thermoelectric figure of merit while electrons and
lattice are partly involved in thermal conductivity. A reduction in thermal conductivity
from a phonon contribution perspective can be achieved through phonon scattering cen-
ter incorporation [62–65]. These centers include nano-inclusions, vacancies, particle size
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reduction and elemental substitutions. All these are influenced by the ionic radii and the
concentrations of elemental constituents. The statistical analysis results for the dataset are
shown in Table 1.

Table 1. Analysis of the thermoelectric data samples employed for simulation.

Compound
Parameter Mean Standard

Deviation Maximum Minimum Correlation
Coefficient

TFM 1.0397 0.4433 1.8000 0.3600 1.0000
Temperature 679.7333 115.1856 873.0000 423.0000 −0.2122

x 2.2176 0.8213 3.5000 0.9700 0.2235
A 95.2833 24.3047 143.0000 54.0000 0.2522
a 0.4059 0.4531 1.5000 0.0050 −0.0010
B 90.8333 16.7540 117.0000 54.0000 0.3530
b 0.8640 0.6599 2.0000 0.0050 0.2803
C 76.6000 41.0362 117.0000 0.0000 0.4448
c 0.5036 0.7025 2.0000 0.0000 −0.0425
D 14.6000 40.6241 170.0000 0.0000 −0.0624
d 0.0037 0.0133 0.0700 0.0000 −0.1517

Table 1 presents the mean values for all the employed descriptors as well as the
measured thermoelectric figure of merit. The standard deviations which measure the
consistency in the data samples are also presented in the table. The data sample range
can be determined using the presented maximum and minimum values. The coefficient
of correlations between each of the predictors and the thermoelectric figure of merit are
also contained in Table 1. The operating temperature, the concentration of element A, the
concentration of element C, element D and its concentration are negatively correlated with
the TFM. The coefficients of correlation for all the predictors are less than 0.5 which indicates
a potential weakness in linear function in addressing the relationship. The observed non-
linear relationship between the TFM and the presented predictors is well captured in
this contribution using non-linear intelligent modeling algorithms which include extreme
learning machines and hybrid genetically optimized support vector regression.

3.2. Computational Description of Hybrid Intelligent Models

Utilizing the computational environment of MATLAB, the genetic algorithm was
integrated with support vector regression for parameter selection, thereby reinforcing the
precision domain of the hybridized model. The optimized parameters, including the error
epsilon, penalty/regularization factor, and kernel parameter, are determined through the
genetic algorithm. Below, the computational details are outlined:

Step 1: In this initial step, the data sample was randomly partitioned into training
and testing sets at 8:2 ratio. Prior to partitioning, data randomization was employed to
minimize the risk of pattern acquisition from a limited range of samples, thereby reducing
the likelihood of under/over-fitting during subsequent model validation.

Step 2: The genetic algorithm begins by defining the search space and initializing
the population. Each gene in the genetic algorithm description corresponds to a hyper-
parameter targeted for optimization. The specific search space for parameters, including the
penalty factor, epsilon, and kernel parameter, was defined as [2000 1, 0.0009 0.0001, 30 15],
utilizing the Gaussian mapping function. The upper bounds for the penalty factor, epsilon,
and kernel parameter in the search space are set at 2000, 0.0009, and 30, respectively, while
the corresponding lower bounds are 1, 0.0001, and 15. This space, however, is specified as
[2000 1, 0.0009, 0.0001, 0.008 0.001] for a polynomial mapping function.

Step 3: Here, the fitness was determined by employing the root mean square error
(RMSE) of testing thermoelectric magnesium-based samples. The fitness computation
involves the following sub-steps: (i) select a kernel function from the array of potential
functions iteratively until all is implemented; (ii) integrate the chosen kernel function with
a chromosome from the initial population. This produces support vectors that serve as
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reproducible models for validation and future use. Chromosome fitness was defined by
the RMSE between the experimental and predicted TFM and was calculated for all chro-
mosomes while combining saved support vectors with testing data samples (iii) repeating
the initial two steps (i and ii) for other chromosomes and ranking their fitness based on
the lowest RMSE values (iv), replicating the entire process for each of all the functions in
the kernel function pool. Chromosomes exhibiting superior fitness values are chosen for
genetic operations and subsequently passed on to the next generation.

Step 4: The selection operation was implemented at this modeling stage. It involves
choosing the best chromosomes based on their fitness function ranking for reproduc-
tion and offspring generation. A selection probability of 0.8 was employed, resulting
in the production of improved offspring in this modeling stage, which then forms the
succeeding population.

Step 5: This step entails the crossover operation which facilitates the transfer of sub-
sequences and portions from parent chromosomes to the new offspring. A crossover
probability of 0.9 was implemented to ensure the potential replacement of less fit chromo-
somes with superior ones in the subsequent iteration.

Step 6: Mutation is carried out in this step. This operation introduces changes by
altering random positions within the string. The operation was executed with a probability
value of 0.005.

Step 7: A final model is generated if any of the following stopping conditions are met:
(i) RMSE value of zero for testing thermoelectric magnesium-based samples; (ii) iteration
reaching the maximum number of runs specified at the commencement of simulation;
(iii) having the same value of testing RMSE over 50 consecutive iterations. The algorithm
flow chart is shown in Figure 1.

3.3. Methodology of the Proposed TFM-ELM-Based Models

The computational implementation of the extreme learning machine (ELM) entails the
random generation of biases and weights that connect input with a hidden layer within the
MATLAB computing environment. Subsequently, the model is trained using 80% of the
available thermoelectric magnesium-based data samples, which were randomized to ensure
an even distribution. The remaining 20% of the sample was reserved for testing the model’s
performance. The activation function for the model is chosen from options that include
the sine function, the triangular basis, and the sigmoid function. Afterward, the activation
function was applied to the hidden layer neurons, and the resulting output matrix was
computed. In addition, the weights that connect the hidden layer with the output layer
were determined. The schematic description of the ELM implementation procedure is
shown in Figure 2 and the source codes for the developed models are contained in the
Supplementary Materials.
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4. Results and Discussion

The outcomes of the thermoelectric figure of merit models developed are discussed in
this section together with their performance comparisons. The influence of temperature and
dopant concentrations on the thermoelectric figure of merit of selected magnesium-based
thermoelectrics is discussed.

4.1. Dependence of Parameter Optimization on Population Size and Iteration Using
Genetic Algorithm

Variations in the convergence pattern of the TFM-G-GSVR model at different iterations
are presented in Figure 3 for regularization factor (Figure 3a), fitness function (Figure 3b),
epsilon error threshold (Figure 3c) and Gaussian mapping parameter (Figure 3d).

Each of the presented parameters converges to global values after ten iterations. The
dependence of the number of chromosomes on the exploration and exploitation capacity of
the TFM-G-GSVR model is not significantly influenced especially after ten iterations. This is
a strong indication that the developed TFM-G-GSVR model is robust and not influenced by
population size. For the dependence of the TFM-P-GSVR model on chromosome population
size, convergence patterns are depicted in Figure 4. The regularization factor was sought
between 2000 and 1 while the genetic optimization algorithm shows the global solution of
1 after 100 iterations as presented in Figure 4a. The fitness function (which is measured
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by the root mean square error between the measured thermoelectric figure of merit and
the predicted values) is presented in Figure 4b for different chromosome population sizes.
One hundred chromosomes could not effectively explore the search space and lead to local
convergence as can be observed in Figure 4b.
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A decrease in the number of exploring chromosomes to fifty strengthens the model
exploration capacity and with attainment of global convergence. A further increase in
participating chromosomes to 200 returns the model convergence to global convergence
due to the attainment of balanced exploitation and exploitation strength of the model within
search space by a large number of chromosomes. Epsilon error threshold convergence
is shown in Figure 4c at three different chromosome sizes (50,100 and 200). The epsilon
varied between 0.0009 and 0.0001 during model optimization, and 50 and 200 chromosomes
demonstrate similar global convergence patterns. The parameter that controls the ability of
polynomial function in data mapping and transformation between feature spaces is shown
in Figure 4d for different chromosome population sizes. The population space was sought
between 0.008 and 0.001 for optimum convergence. A convergence pattern similar to that
of the error threshold was observed. Table 2 shows the optimum values associated with
TFM-G-GSVR and TFM-P-GSVR models.
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Table 2. Global solutions for TFM-G-GSVR and TFM-P-GSVR models from genetic algorithm
implementation.

Parameter TFM-G-GSVR TFM-P-GSVR

Regularization factor 1 1
Population size 50 200

Epsilon 0.0001 0.0001
Mapping function Gaussian Polynomial

Mapping kernel parameter 30 0.0035

4.2. Performance Assessment Comparison for TFM-G-GSVR and TFM-P-GSVR Models

Assessment parameters were computed on the developed models during the training
and testing stages and presented in Figure 5. The assessment parameters employed include
the correlation coefficient (CC), mean absolute error (MAE) and root mean square error
(RMSE) for both training and testing magnesium-based thermoelectric materials. During
the pattern acquisition stage, the computed CCs as presented in Figure 5a for TFM-S-ELM,
TFM-G-GSVR, TFM-P-GSVR and TFM-G-ELM models are 1.00, 0.9825, 0.7204 and 0.3548,
respectively, with corresponding RMSEs of 0, 0.0845, 0.2987 and 0.4336 as depicted in
Figure 5b. Similarly, the obtained MAEs on training thermoelectric samples shown in
Figure 5c, for the mentioned TFM-S-ELM, TFM-G-GSVR, TFM-P-GSVR and TFM-G-ELM
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models are 0, 0.0341, 0.1888 and 0.3632, respectively. During the implementation of the
trained models for validation purposes, the computed CCs presented in Figure 5d for
TFM-S-ELM, TFM-G-GSVR, TFM-P-GSVR and TFM-G-ELM models are 0.8198, 0.9597,
0.9598 and 0.9610, respectively while the associated respective values for RMSE are 0.6165,
0.1726,0.2755 and 0.1262 as depicted in Figure 5e.
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For the MAE assessment parameter during the testing phase presented in Figure 5f, val-
ues of 0.5889, 0.1588, 0.2187 and 0.0953, respectively, were obtained for TFM-S-ELM, TFM-
G-GSVR, TFM-P-GSVR and TFM-G-ELM models. The developed TFM-S-ELM performs
better than TFM-G-GSVR, TFM-P-GSVR and TFM-G-ELM models with improvements
of 1.70%, 27.96% and 64.52% using CC on training magnesium thermoelectric samples.
Additionally, the TFM-G-GSVR model outperforms the TFM-S-ELM model during the
testing phase with improvements of 17.06%, 72% and 73.03% using CC, RMSE and MAE
assessment metrics, respectively. The developed TFM-P-GSVR also outperforms TFM-S-
ELM during the testing stage with improvements of 14.59%, 55.31% and 62.86% using CC,
RMSE and MAE assessment metrics, respectively. Also, the developed TFM-G-ELM model
shows superiority over the TFM-S-ELM model during the testing stage with improvements
of 14.69%, 79.52%and 83.82%, for CC, RMSE and MAE assessment yardsticks, respectively.
The developed TFM-G-GSVR model outperforms the TFM-P-GSVR and TFM-G-ELM mod-
els during the training stage with respective improvements of 26.68% and 63.89% using the
CC metric, 71.71% and 80.51% using the RMSE parameter, 81.94 and 90.61% using MAE
assessment factor. However, during the testing phase, TFM-G-GSVR outperforms TFM-P-
GSVR with an improvement of 0.01%, while the developed TFM-P-GSVR performs better
than the TFM-G-GSVR model with an improvement of 37.35% and 27.39% using RMSE
and MAE performance metrics, respectively. The developed TFM-G-ELM outperforms
the TFM-G-GSVR model during the testing stage with improvements of 0.13%, 26.85%
and 40.01%, using CC, RMSE and MAE parameters, respectively. During the training and
pattern acquisition stage, the developed TFM-P-GSVR outperforms the TFM-G-ELM model
with improvements of 50.75%, 31.12% and 48.02% using CC, RMSE and MAE assessment
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parameters, respectively while the developed TFM-G-ELM model outperforms TFM-P-
GSVR model during testing phase with improvements of 0.12%, 54.17% and 56.44%, using
respective CC, RMSE and MAE parameters. The assessment parameters for each of the
thermoelectric figures of merit models at different modeling stages are shown in Table 3.

Table 3. Assessment parameters for the developed thermoelectric figure of merit models.

Training Testing

CC RMSE MAE CC RMSE MAE

TFM-S-ELM 1.0000 0.0000 0.0000 0.8198 0.6165 0.5889
TFM-G-GSVR 0.9825 0.0845 0.0341 0.9597 0.1726 0.1588
TFM-P-GSVR 0.7204 0.2987 0.1888 0.9598 0.2755 0.2187
TFM-G-ELM 0.3548 0.4336 0.3632 0.9610 0.1262 0.0953

Table 4 shows the estimates of each of the developed thermoelectric figures of merit mod-
els and the associated absolute errors. The estimates of TFM-G-GSVR model agreed excellently
well and exactly with the measured values in the case of Mg1.86Sn0.837Si0.093Na0.14S0.07 [61],
Mg2Si0.53Sn0.4Ge0.05Bi0.02 [58], MgAg0.97Sb0.99In0.01 [8], Mg2Si0.6945Sn0.3Sb0.0055 [58],
Mg0.97Zn0.03Ag0.9Sb0.95 [58] and Mg2Sn0.8Sb0.2 [58] thermoelectric magnesium-based materials
with zero deviation. The developed TFM-G-GSVR model predicts another thermoelectric figure of
merit correctly for all the investigated magnesium-based materials with zero deviation from mea-
sured values except MgAg0.97Sb0.99 [58], Mg2.15Si0.28Sn0.71Sb0.006 [17], Mg0.995Ca0.005Ag0.97Sb0.99 [58],
Mg2Si0.6Ge0.4Ga0.008 [58],Mg2.9875Na0.0125Sb2 [58], Mg2.39Zn0.6Ag0.01Sb2 [60], Mg3.2Sb1.5Bi0.49Te0.01 [58],
MgAg0.965Ni0.005Sb0.99 [58], Mg2.1Si0.38Sn0.6Sb0.02 [58], Mg1.95Na0.01ZnSb2 [14] and
Mg3.5Tm0.03Sb1.97Te0.03 [4] that have slight deviations from the measured values.

The developed TFM-P-GSVR model gives the thermoelectric figure of merit of some
thermoelectric magnesium materials exactly when compared with the measured val-
ues while estimates of other compounds have characteristics insignificant deviations.
Magnesium-based compounds with exact predictions using TFM-P-GSVR include
Mg1.86Sn0.837Si0.093Na0.14S0.07 [61], Mg1.86Li0.14Si0.3Sn0.7 [59] and Mg1.95Li0.05Ge [9] among
others. The estimates of the majority of magnesium-based thermoelectric materials pre-
dicted by the TFM-S-ELM model agree exactly with the measured values while the predic-
tions of the developed TFM-G-ELM model have associated deviations from the measured
values. The developed TFM-G-GSVR has the lowest mean absolute percentage error
(MAPE) of 0.06 as shown in Table 4 followed by the TFM-S-ELM model with a value of
0.12, TFM-P-GSVR with a value of 0, and TFM-G-ELM model, which has a 0.31 MAPE.

Table 4. Estimates of the developed thermoelectric figure of merit models and the associated absolute
error.

Compound Temp
(K)

Measured
TFM

TFM-G-
GSVR Error TFM-P-

GSVR Error TFM-S-
ELM Error TFM-G-

ELM Error

Mg1.86Sn0.837Si0.093Na0.14S0.07 673 0.52 [61] 0.52 0.00 0.52 0.00 0.52 0.00 1.27 0.75
Mg2Si0.53Sn0.4Ge0.05Bi0.02 800 1.40 [58] 1.40 0.00 1.39 0.01 1.40 0.00 1.25 0.15

MgAg0.97Sb0.99In0.01 525 1.10 [8] 1.10 0.00 1.29 0.19 1.10 0.00 1.23 0.13
Mg2Si0.6945Sn0.3Sb0.0055 620 0.55 [58] 0.55 0.00 0.92 0.37 0.55 0.00 0.90 0.35
Mg0.97Zn0.03Ag0.9Sb0.95 423 1.40 [58] 1.40 0.00 1.12 0.28 1.40 0.00 1.25 0.15

Mg2Sn0.8Sb0.2 750 0.90 [58] 0.90 0.00 0.35 0.55 0.12 0.78 0.89 0.01
MgAg0.97Sb0.99 450 1.20 [58] 1.03 0.17 0.83 0.37 1.20 0.00 1.15 0.05

Mg2.15Si0.28Sn0.71Sb0.006 700 1.30 [17] 1.14 0.16 0.87 0.43 1.30 0.00 0.89 0.41
Mg0.995Ca0.005Ag0.97Sb0.99 525 1.30 [58] 1.06 0.24 1.35 0.05 1.72 0.42 1.23 0.07

Mg1.86Li0.14Si0.3Sn0.7 750 0.50 [59] 0.50 0.00 0.50 0.00 0.50 0.00 0.89 0.39
Mg2.4875Zn0.5Na0.0125Sb2 773 0.80 [54] 0.80 0.00 0.97 0.17 0.10 0.70 0.89 0.09

Mg2Si0.6Ge0.4Ga0.008 625 0.36 [58] 0.60 0.24 0.88 0.52 0.36 0.00 0.89 0.53
Mg2.9875Na0.0125Sb2 773 0.60 [58] 0.69 0.09 0.80 0.20 0.60 0.00 0.89 0.29

Mg1.95Li0.05Ge 700 0.50 [9] 0.50 0.00 0.50 0.00 0.50 0.00 0.89 0.39
Mg0.99Li0.01Ag0.97Sb0.99 525 1.25 [58] 1.25 0.00 1.25 0.00 1.25 0.00 1.23 0.02
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Table 4. Cont.

Compound Temp
(K)

Measured
TFM

TFM-G-
GSVR Error TFM-P-

GSVR Error TFM-S-
ELM Error TFM-G-

ELM Error

Mg1.95Ag0.05Si0.4Sn0.6 690 0.45 [55] 0.45 0.00 0.70 0.25 0.45 0.00 0.89 0.44
Mg2.39Zn0.6Ag0.01Sb2 773 0.84 [60] 0.78 0.06 0.89 0.05 0.09 0.75 0.89 0.05
Mg3.2Sb1.5Bi0.49Te0.01 700 1.50 [58] 1.42 0.08 1.58 0.08 1.50 0.00 0.92 0.58

MgAg0.965Ni0.005Sb0.99 450 1.40 [58] 1.17 0.23 0.44 0.96 1.12 0.28 1.32 0.08
Mg3.07Sb1.5Bi0.48Se0.02 725 1.23 [15] 1.23 0.00 1.23 0.00 1.23 0.00 0.89 0.34

Mg2.85Cd0.5Sb2 773 0.75 [13] 0.75 0.00 0.75 0.00 0.75 0.00 0.89 0.14
Mg2.1Si0.38Sn0.6Sb0.02 700 0.85 [58] 1.06 0.21 0.85 0.00 0.85 0.00 0.89 0.04

Mg3.5Nd0.04Sb1.97Te0.03 775 1.65 [4] 1.65 0.00 1.65 0.00 1.65 0.00 0.89 0.76
Mg3.15Mn0.05Sb1.5Bi0.49Se0.01 623 1.70 [56] 1.70 0.00 1.47 0.23 1.70 0.00 1.25 0.45

Mg3.5Sc0.04Sb1.97Te0.03 725 1.50 [58] 1.50 0.00 1.50 0.00 0.90 0.60 1.23 0.27
Mg3.032Y0.018SbBi 700 1.80 [58] 1.80 0.00 1.49 0.31 1.80 0.00 1.23 0.57
Mg2.985Ag0.015Sb2 725 0.51 [6] 0.51 0.00 0.84 0.33 0.51 0.00 0.89 0.38

Mg2.15Sm0.5Ca0.5Bi1.99Ge0.01 873 0.71 [57] 0.71 0.00 1.01 0.30 0.71 0.00 1.23 0.52
Mg1.95Na0.01ZnSb2 773 0.87 [14] 0.90 0.03 0.87 0.00 0.87 0.00 0.89 0.02

Mg3.5Tm0.03Sb1.97Te0.03 775 1.75 [4] 1.50 0.25 1.54 0.21 1.75 0.00 0.89 0.86
Mean absolute percentage error (MAPE) 0.06 0.19 0.12 0.31

4.3. Influence of Temperature and Dopant Concentration on Magnesium-Based Thermoelectric
Materials Using Developed TFM-P-SVR Model

The dependence of the thermoelectric figure of merit of Mg2.1Si0.38Sn0.6−xSbx material
is investigated using the TFM-P-GSVR model and shown in Figure 6. The significance of
antimony (Sb) dopant in adjusting the figure of merit of Mg2.1Si0.38Sn0.6−xSbx magnesium-
based thermoelectric compound is also deduced from Figure 6.
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Figure 6a,b, respectively, present how the antimony (Sb) substitution for tin (Sn) par-
ticles in crystallography of Mg2.1Si0.38Sn0.6−xSbx material influences the thermoelectric
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figure of merit for 300 K and 500 K operating temperature. Figure 6c,d show the alter-
ation of the thermoelectric figure of merit for 700 K and 900 K operating temperatures,
respectively. An increase in the concentration of antimony in Mg2.1Si0.38Sn0.6−xSbx material
lowers the thermoelectric figure of merit. The temperature has a similar thermoelectric
figure-of-merit-lowering influence on Mg2.1Si0.38Sn0.6−xSbx magnesium-based materials.
A similar value of the thermoelectric figure of merit has been reported experimentally for
the Mg2.1Si0.38Sn0.6Sb0.02 compound at a temperature of 700 K [58]. It should be noted that
the presented trend and prediction employ the support vector saved during the model
training, allowing the deployment of the models to adjust the thermoelectric figure of
merit of magnesium-based compounds to the desired value. Another uniqueness of the
developed model is the possibility of incorporating four different elements into the com-
pound at different concentrations. This widens the possibility of exploring varieties of
elements in the periodic table for attaining improved thermoelectric figures of merit. A
similar influence is obtained for the Mg2−xAgxSi0.4Sn0.6 material presented in Figure 7.
The significance of silver (Ag) incorporation at 300 K (as shown in Figure 7a), 500 K (as
presented in Figure 7b), 700 K (as depicted by Figure 7c) and 900 K (as shown in Figure 7d)
is investigated using the developed TFM-P-GSVR model.
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An increase in both temperature and silver concentration lowers the thermoelectric
figure of merit for the Mg2−xAgxSi0.4Sn0.6 material. However, the doped silver-doped ther-
moelectric material has a lower thermoelectric figure of merit at different temperatures as
compared with the antimony-doped magnesium thermometric material. Similar behavior
has been reported experimentally for the Mg1.95Ag0.05Si0.4Sn0.6 compound at 690 K [55].

5. Conclusions

Thermoelectric figure of merit (TFM) for magnesium-based thermoelectric materials is
modeled through extreme learning machine (ELM) and hybrid genetic-based algorithm-
based support vector regression (GSVR) algorithms using operating temperature, ionic
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radii of elemental compositions and elemental concentrations. The mapping functions em-
ployed in the GSVR-based model include the Gaussian (G) and polynomial (P), while sine
(S) and sigmoid function (G) activation functions were utilized for ELM-based models. The
developed TFM-G-GSVR model outperforms the TFM-P-GSVR and TFM-G-ELM models
during the training stage with respective improvements of 26.68% and 63.89% using the
CC metric, 71.71% and 80.51% using the RMSE parameter, and 81.94 and 90.61% using
the MAE assessment factor. However, during the testing phase, TFM-G-GSVR outper-
forms TFM-P-GSVR with an improvement of 0.01%, while the developed TFM-P-GSVR
performs better than the TFM-G-GSVR model with an improvement of 37.35% and 27.39%
using RMSE and MAE performance metrics, respectively. The developed TFM-G-ELM
outperforms the TFM-G-GSVR model with improvements of 0.13%, 26.85% and 40.01%,
using CC, RMSE and MAE parameters, respectively. The predictions of the developed
models align excellently with the measured values. Thermoelectric figures of merit for some
magnesium-based thermoelectric materials were investigated using the developed model
and the obtained trend aligns with the reported experimental patterns. The uniqueness of
the developed intelligent models in incorporating four different elements into the chemical
structure of magnesium-based thermoelectric materials coupled with impressive perfor-
mance would strengthen the wider exploration of magnesium thermoelectric materials
for desired industrial and technological applications for bringing the global energy crisis
under control.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics12030085/s1, The MATLAB source codes for the de-
veloped GSVR-based models are included as supplementary material. Extracted weights in Excel
format for reproducing ELM-based models are also attached.
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