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Abstract: Cobalt-free manganese-based lithium-rich layered oxides (LLOs) have garnered research
attention as prospective lithium-ion cathode materials owing to their large specific capacity and low
price. However, their large-scale application is hindered by their low Coulombic efficiency, poor
cycling performance, voltage attenuation, and structural phase transition. To address these issues, the
LLO structure is modified via Ti doping at the manganese site herein. Ti-doped Li1.2Mn0.6−xTixNi0.2O2

(x = 0, 0.03, 0.05, 0.10, and 0.15) is prepared using the high-temperature solid-state method. The
Ti-doped Li1.2Mn0.6Ni0.2O2 is calculated via first principles. The results show that Ti4+ doping im-
proves the cycle stability and rate performance of Li1.2Mn0.6Ni0.2O2. Electrochemical test results
show that the sample exhibits enhanced electrochemical performance when the Ti doping amount is
0.05. The discharge specific capacity at 0.1C is 210.4 mAh·g−1, which reaches 191.1 mAh·g−1 after
100 cycles, with a capacity retention rate of 90.7%. This study proves the feasibility of using cheap
cobalt-free LLOs as cathode materials for LIBs and provides a novel system for exploiting low-cost
and high-performance cathode materials.

Keywords: lithium-rich layered oxide; Li1.2Mn0.6Ni0.2O2 cathode; Ti doping; Co-free; DFT

1. Introduction

The increasing energy demands and need for environmental protection and green,
sustainable development have necessitated the use of energy-saving, efficient, and eco-
friendly lithium-ion batteries (LIBs) as energy-storage materials. In particular, electric
vehicles and portable electronic devices require LIBs [1–3]. At present, the low capacity
of electrodes hinders their ability to meet the needs of modern life [4–7]; therefore, high-
performance cathode materials must be explored to promote the development of LIBs.
Lithium-rich layered oxides (LLOs) have recently been characterized by their remarkably
high reversible specific capacity resulting from their material properties. Moreover, LLOs
have good thermal stability, high working voltage, high-temperature performance, are
low-cost, and are resistant to environmental conditions [8–14].

LLOs have garnered considerable research attention since their discovery; however,
their commercialization continues to be a challenge [15–21]. This is because (1) they have
low Coulombic efficiency due to initial activation; (2) their capacity degrades as the lamellar
structure transforms into a spinel-phase structure during cycling; and (3) Li2MnO3 has
low electrochemical activity, which yields lower rate performance. Studies conducted
to mitigate these issues and optimize the performance of LLOs have revealed that ion
doping can directly affect the LLO structure and suppress Li and Ni mixing. Ion doping
can provide charge compensation during Li deintercalation and increase ionic conductivity,
which is beneficial for initiating electrochemical reactions [22–25].
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In bulk doping, metal cations or nonmetallic anions with physical and chemical prop-
erties similar to those of substituted elements—such as K [26,27], Na [28–30], Mg [31–33],
Al [34,35], Mo [36,37], or Cr [38,39]—are used. Ion doping is a relatively simple process and
can reduce the material synthesis cost; thus, it is a high-energy, high-efficiency modification
method. The Ti–O bond energy is considerably higher than Mn–O and Ni–O bond energies,
which can effectively inhibit oxygen loss. An appropriate Ti4+ doping amount can reduce
the interlayer spacing of LLOs and enhance their structural stability, thereby improving
their overall performance. Kou [40] successfully doped Ti4+ into the cathode material
Li1.167Ni0.4Mn0.383Co0.05O2 via co-precipitation. The sample with a doping amount of
0.04 had a discharge specific capacity of 186.6 mAh·g−1 at 0.1C. Yamamoto [41] successfully
prepared Ti-doped Li1.2Mn0.6Ni0.2O2 and found that Ti and Mn had similar coordination
environments; moreover, the modified material retained its high discharge capacity after
100 cycles.

Herein, the Mn sites in Li1.2Mn0.6Ni0.2O2 were doped with appropriate amounts of
Ti4+ in the bulk phase. A series of Li1.2Mn0.6−xTixNi0.2O2 (x = 0, 0.03, 0.05, 0.10, and 0.15)
doped with Ti4+ at the Mn sites were synthesized using the high-temperature solid-state
method. The samples before and after modification were compared and analyzed via
X-ray diffraction (XRD), SEM, and other characterization methods and electrochemical
performance tests. The influence of various synthesis conditions on the crystal structure,
microstructure, and electrochemical performance of Li1.2Mn0.6Ni0.2O2 was investigated
along with the Ti4+ doping amount.

2. Results and Discussion

Models of the optimized architecture are shown in Figure 1a. The DFT calculation
results are shown in Figure 1b. Before the ion doping (Figure 1b), the peaks of Mn, Ni,
and O can be observed on the left side of the Fermi level, indicating that Mn, Ni, and
O are hybridized, and all three are involved in the redox reaction. However, after Ti
doping (Figure 1c), only Ni and O peaks can be observed on the left side of the Fermi level,
indicating that Ni and O hybridized at this time. At the same time, the peaks of Ni and O
were enhanced compared with undoped, meaning that the contribution of Ni and O in the
redox reaction is increased. Ti does not participate in the redox reaction. Before doping,
Mn plays a major role because of the dz2 electrons on the eg orbital. After the introduction
of Ti, the dz2 electrons on the eg orbital are transferred from the valence band on the left to
the conduction band on the right, and Mn3+ is converted to Mn4+. It can also be found that
the band gap changes from 0.28 eV before doping to 0.65 eV after doping Ti. The possible
reason is that the Ti–O bond strength is large, which is not conducive to the Li migration of
the Mn layer, so the band gap increases. However, also benefiting from the higher Ti–O
bond energy, the Jahn–Teller effect is slightly suppressed after replacing some Mn sites
in the lattice, forming a more stable layered structure. From the DFT calculation results,
the stability of lattice O in the Ti-doped material is improved during the cycle, showing
excellent cycle performance.

The XRD patterns (Figure 2a) show that the diffraction peak positions of materials
before and after doping are similar, conforming to the structural characteristic peaks of
the layered α-NaFeO2 phase belonging to the R-3m space group. The diffraction peaks
of (006)/(012) and (018)/(110) are split, indicating that all samples have layered crystal
structures and high crystallinity. The faint diffraction peaks between 20◦ and 25◦ represent
the existence of monoclinic Li2MnO3, belonging to the C2/mm space group. The peak
is thought to be due to the short-range superlattice ordering of Li and Ni atoms in the
transition metal layer [42]. No other impurity phases were observed before and after
doping, indicating that the doped sample had pure phases. Moreover, the I(003)–I(104) ratio
reflects the order of the cation in the material. An I(003)–I(104) ratio of <1.2 indicates a serious
ion-mixing phenomenon in the crystal structure of the material [43,44]. The samples doped
with 0.05 Ti have an I(003)–I(104) ratio of 1.42, which is considerably higher than that of the
undoped material (1.13). This indicates that Ti doping suppresses ion mixing. Figure 2b is
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an enlarged diagram of the (003) diffraction peak. The (003) diffraction peaks are offset in
the direction of a large angle as the Ti4+ amount increases, indicating that Ti4+ enters the
Li1.2Mn0.6Ni0.2O2 lattice without affecting the lamellar structure.
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Figure 1. (a) Optimized crystal structure of Li1.2Mn0.6Ni0.2O2 and Li1.2Mn0.55Ti0.05Ni0.2O2 with
Ti4+ occupying the Mn4+ site; (b) The density of states: Li1.2Mn0.6Ni0.2O2; (c) The density of states:
Li1.2Mn0.55Ti0.05Ni0.2O2 with Ti4+ occupying.
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Figure 2. (a) XRD patterns of Li1.2Mn0.6−xTixNi0.2O2 (x = 0, 0.03, 0.05, 0.10, 0.15); (b) Amplification
diagram of the diffraction peak of (003).
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O vacancies cause Mn migration in Li2MnO3, transforming the crystal structure from
layered to spinel and causing voltage attenuation [45–47]. To avoid O vacancy generation
and Mn migration, the bonding between oxygen and transition metal atoms in Li2MnO3
must be enhanced. Figure 3 and Table 1 show the XRD refinement results of the undoped
sample and that doped with 0.05 Ti, obtained using the FullProf software (23-November-
2023). It can be seen from Table 1 that the incorporation of Ti changes the a and c values
and cell volume of the material. This may be because Ti has a larger ionic radius than Mn
and Ni, so the incorporation of Ti will increase the lattice length and make the cell volume
and lattice spacing increase, which also shows that Ti ions enter the lattice. The doping
of Ti increases the cell volume and increases the diffusion ability of lithium ions in the
octahedral 3a and 3b channels, thereby further improving its electrochemical performance.
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Figure 3. Rietveld refinements for (a) x = 0 and (b) x = 0.05 Li1.2Mn0.6−xTixNi0.2O2.

Table 1. Lattice parameters for samples with x = 0 and x = 0.05.

Crystal Data Li1.2Mn0.6Ni0.2O2 Li1.2Mn0.55Ti0.05Ni0.2O2

a (Å) 2.85161 2.86661
c (Å) 14.27338 14.32345

V (Å3) 100.5166 101.9332
c/a 5.0054 4.9967

Rwp (%) 2.48 1.32
Rp (%) 1.54 0.77
R-3m 76.72 79.35
C2/m 23.28 20.65
χ2(%) 1.86 1.82

Figure 4 shows the SEM images and particle size distribution of cathode materials
doped with different Ti amounts. The particles in the four groups of samples showed
irregular block structures and smooth surfaces. The samples with x = 0.05 have uniform
particle distribution and good morphology, whereas those with x = 0.03 and x = 0.15 show
slight agglomeration. The particle size distribution curve shows that with the increase in
Ti4+ doping amount, the average particle size of the sample increases first, then decreases,
and then increases. When x = 0, 0.03, 0.05, 0.1, and 0.15, the particle sizes are ~2.93, 7.63,
2.79, 3.46, and 4.21 µm, respectively. When a small amount of Ti (x = 0.03) is introduced,
the doping at this time is partially doped, and the doping is not uniform, which may
introduce the agglomeration of the material and increase the particle size. With the gradual
introduction of Ti4+ (x = 0.05), the particle size of the sample decreased and dispersed. This
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shows that the doping of an appropriate amount of Ti may have a certain degree of dis-
persion effect on the microscopic particles of the sample, thus reducing the agglomeration
between the particles to a certain extent. However, when the doping amount of Ti4+ is too
large, it may lead to uneven or even abnormal grain growth. Excessive doping ions will
accumulate at the grain boundary, affect the migration of the grain boundary, and increase
the particle size. Generally speaking, during electrochemical reactions, the uniform particle
distribution facilitates Li+ diffusion, which improves the material properties.
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Figure 4. SEM images and particle size distribution of Li1.2Mn0.6−xTixNi0.2O2: (a) x = 0;
(b) x = 0.03; (c) x = 0.05; (d) x = 0.10; (e) x = 0.15 (The blue column represents the percentage of
the content corresponding to each particle size; the red line is a normal distribution curve based on
Gaussian function fitting).

EDS surface scanning analysis was performed to determine the elemental distribution
of Ti-doped cathode materials (x = 0.05). Figure 5 shows that Ti, Mn, and Ni are uniformly
dispersed across the grain surfaces of samples.
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XPS was performed on Li1.2Mn0.6Ni0.2O2 and Li1.2Mn0.55Ti0.05Ni0.2O2 to determine the
impact of transition metal valence states on the particle surface after Ti doping. Figure 6a
shows the XPS spectra of samples with x = 0 and x = 0.05, which reveal the existence of Li,
Ni, Mn, Ti, and O. Figure 6b shows that the Mn2p3/2 and Mn2p1/2 peaks appear at ~642.1
and ~653.9 eV, respectively, which proves that Mn has a valence state of +4. The binding
energies of Ni2p1/2 and Ni2p3/2 are located at around ~872.5 and ~854.9 eV, respectively,
as shown in Figure 6c; the difference in their binding energies is ~17.6 eV, demonstrating
that Ni has the oxidation valence state of +2.

Figure 6d shows the XPS spectra of Li1.2Mn0.6Ni0.2O2 and Li1.2Mn0.55Ti0.05Ni0.2O2,
with O1s peaks at ~529.3 and ~531.3 eV. They are regarded as lattice oxygen and oxygen
vacancies present on the sample surface. Compared with that of the undoped samples,
the peak intensity at ~531.3 eV of the doped sample considerably increases. This indicates
the presence of a large number of oxygen vacancies on its surface, which suppress O2
production and restrains the crystal structure transformation during long-term cycling,
thereby positively influencing the cycling and kinetic performances of the material [48–50].
Figure 6e shows the XPS spectrum of the dopant, Ti. Ti has binding energies of ~464
and ~458 eV, confirming its positively tetravalent oxidation state. XRD and XPS results
confirmed the successful doping of Ti4+ into Li1.2Mn0.6Ni0.2O2, which did not change the
oxidation states of Mn and Ni.
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Figure 7 shows the CV test results for five sample groups. Three oxidation peaks
appeared in all samples, and the peak at ~3.1 V corresponded to Mn4+ reduction. Mn4+

reduction balances the decrease in oxygen during the initial charging process. The appear-
ance of the Mn reduction peak in the subsequent cycle indicates that it is involved in the
electrochemical reaction. The oxidation peak around 4.0 V corresponds to the oxidation of
Ni2+ to Ni4+, accompanied by the detachment of Li+ from the Li layer. The reduction peak
around 4.5 V corresponds to O2−, which diminishes as the Ti doping amount increases,
indicating that the addition of Ti reduces the loss of oxygen. The coincidence degree of
the CV curves of the original sample and the sample with x = 0.03 gradually decreases,
indicating the poor cyclic reversibility of the cathode material. The CV curves of the sam-
ples with x = 0.05, 0.10, and 0.15 have a high coincidence degree, indicating that Ti doping
enhances the cycling stability. Moreover, the potential discrepancy in the oxidation and
reduction peaks can reflect the reversibility of the electrode reaction and polarization level.
The sample containing x = 0.05 exhibited a minimum difference and less capacity loss,
indicating that an appropriate Ti doping amount reduces electrochemical polarization and
facilitates the de-embedding of Li+.
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Charge–discharge tests were performed on the five cathode materials, as illustrated
in Figure 8. The original and Ti-doped modified samples show the charge–discharge
properties of LLO. The first charge curve of all cathode materials is divided into two
parts. When the charging voltage is <4.5 V, the oblique line region corresponds to the
continuous release of Li+ from the Li layer and the oxidation of Ni2+ to Ni4+. When the
charging voltage is >4.5 V, the other region corresponds to the activation of Li2MnO3.
Li+ detachment was accompanied by oxygen release and irreversibly detached as Li2O.
Samples with x = 0.03, 0.05, 0.10, and 0.15 had discharge specific capacities of 128.2, 193.9,
163.6, and 159.6 mAh·g−1, respectively. Furthermore, the discharge curves of samples with
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x = 0.10 and 0.15 show a small platform at ~2.6 V, resulting from a spinel phase generated
by Li+ on the material surface [41]. Results indicate that the sample with x = 0.05 has
the largest first charge–discharge specific capacity, which decreases with increasing Ti
doping amount.
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Figure 8. The first cycle charge/discharge profiles of Li1.2Mn0.6−xTixNi0.2O2 (x = 0, 0.03, 0.05,
0.10, 0.15).

Figure 9 shows the rate performance test results of all samples. Table 2 shows the
discharge specific capacity of all samples. The discharge specific capacities of the samples
with x = 0.05 were 204.3, 174.2, 141.4, and 110.7 mAh·g−1 at 0.1C, 0.2C, 0.5C, and 1C,
respectively. The corresponding discharge capacities of the undoped samples under the
same conditions were 151.7, 120.6, 89.2, and 64.3 mAh·g−1, respectively. When going
back to 0.1C again, the samples with x = 0.05 and 0.10 had discharge specific capacities of
198.9 and 176.7 mAh·g−1, with high capacity retentions of 97.3% and 88.8%, respectively.
Moreover, the discharge specific capacity first increases and then decreases with increasing
Ti doping amount. The discharge specific capacities of the sample with x = 0.15 are only
92.7 and 67.5 mAh·g−1 at 0.5C and 1C, respectively, with severe capacity loss; it also shows
considerable capacity decay in subsequent cycles.

Table 2. The discharge capacity of the Li1.2Mn0.6−xTixNi0.2O2 at different current densities.

Current Density
Sample Specific Capacity/mAh·g−1 0.1C 0.2C 0.5C 1C

Li1.2Mn0.6Ni0.2O2 151.7 120.6 89.2 64.3
Li1.2Mn0.57Ti0.03Ni0.2O2 129.2 97.2 67.7 40.9
Li1.2Mn0.55Ti0.05Ni0.2O2 204.3 174.2 141.4 110.7
Li1.2Mn0.5Ti0.10Ni0.2O2 180.6 148.4 116.3 91.4
Li1.2Mn0.45Ti0.15Ni0.2O2 166.2 125.8 92.7 67.5
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Figure 9. The rate performance of Li1.2Mn0.6−xTixNi0.2O2 (x = 0, 0.03, 0.05, 0.10, 0.15).

Figure 10a shows the charge–discharge performance test results of all samples at
0.1C for 100 cycles. The samples with x = 0.03, 0.05, and 0.10 showed enhanced cycling
performance compared to the undoped sample. However, the discharge performance
rapidly deteriorated with excessive Ti doping due to changes in the material structure. The
first discharge specific capacities of the samples with x = 0, 0.03, 0.05, 0.10, and 0.15 were
150.9, 131.6, 210.4, 177.7, and 165.1 mAh·g−1

, respectively; after 100 cycles, the discharge
specific capacities decreased to 113.6, 86.2, 191.1, 144.3, and 128.2 mAh·g−1, respectively;
the capacity retention values were 75.2%, 65.5%, 90.7%, 81.2%, and 77.6%, respectively.
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To further investigate the influence of Ti doping on the electrochemical properties
of LLOs, samples with x = 0.05 and undoped samples were subjected to a cycling test
at 1C. The initial discharge specific capacity of the doped sample was considerably high
(Figure 10b), and the capacity retention after 100 cycles was 88.5%, considerably higher
than that of the original material (70.6%). This indicates that the sample with x = 0.05 has a
good cycling performance at a high magnification.
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Figure 11 shows the changes in the discharge medium voltage of the doped samples
during the 0.1C charge–discharge cycle. The median voltage of the undoped sample
decreased from 3.521 to 3.014 V after 100 cycles, with a voltage attenuation of 0.507 V. The
discharge voltage attenuation values of samples with x = 0.03, 0.05, 0.10, and 0.15 were
0.531, 0.357, 0.365 and 0.443 V, respectively. Ti doping can effectively alleviate voltage
attenuation during the charge–discharge cycle, thereby inhibiting the structural evolution
of LLOs and improving their cycling stability. The sample with x = 0.05 has a smaller
voltage attenuation value, indicating that it has a more stable operating voltage.
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To further understand the kinetic properties of Ti-doped materials, electrochemical
impedance tests were performed on all samples (Figure 12a). All samples have the same
electrochemical impedance spectra, with arcs in the high-frequency region (charge transfer
impedance between the electrode and electrolyte) and diagonal lines in the low-frequency
region (related to the diffusion of the Li ions in the active material). For the low-frequency
test, an equivalent circuit was built based on the impedance spectrum (Figure 12a), where
Rs is the resistance of the solution, Rct is the resistance to charge transfer, and W is the
Warburg impedance. The Rs values of samples with x = 0, 0.03, 0.05, 0.10, and 0.15 are
12.6, 11, 13.5, 13.1, and 14 Ω, respectively. The Rct values of samples with x = 0, 0.03, 0.05,
0.10, and 0.15 are 351.5, 464.4, 257.2, 302.5, and 452.4 Ω, respectively (Figure 12b). The
Li+ diffusion coefficient (D) of the electrode materials can be computed according to the
following formula [51]:

DLi+ =
R2T2

2A2n4F4C2
Liσ

2

where R is the gas constant, R = 8.314 J·mol−1·K−1; T is the absolute temperature, T = 298 K;
A is the surface area of the electrode, A = 0.785 cm2; n is the number of electrons; F is the
Faraday constant, F = 96,485 C·mol−1; and C is the potassium ion concentration in the
electrode; and σ is the Warburg coefficient, which can be obtained from the slope between
Zre and ω−1/2, as shown in Table 3. The σ and Li+ diffusion coefficients of the prepared
samples are listed in this table. It can be seen that the Li+ diffusion coefficient of the sample
with x = 0.05 is slightly higher than that of other samples.
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Table 3. The σ and Li+ diffusion coefficients of the Li1.2Mn0.6−xTixNi0.2O2.

Sample x = 0 x = 0.03 x = 0.05 x = 0.10 x = 0.15

σ (Ω s−1/2) 23.00 20.22 9.08 18.09 12.01
DLi+ (cm2s−1) 2.72 × 10−10 3.52 × 10−10 1.74 × 10−10 4.39 × 10−10 9.96 × 10−10

The sample with x = 0.05 has the smallest charge transfer impedance and the largest
Li+ diffusion coefficient than the other samples. This indicates that doped LLOs have
high electronic and ionic conductivity and a high Li-ion diffusion rate, which enhance
their diffusion kinetics. This also somewhat explains the increase in the rate and cycling
performance of the cathode material after Ti doping.

3. Experimental Methods
3.1. Preparation of Ti-Doped Li1.2Mn0.6Ni0.2O2 Cathode Material

According to the stoichiometric ratio of Li1.2Mn0.6−xTixNi0.2O2 (x = 0, 0.03, 0.05, 0.10,
0.15), Li2CO3, MnO2, TiO2, and NiO were placed in a ball mill tank and mixed at a speed of
200 r/min for 3 h to fully mix. After the reaction, the uniformly milled sample was calcined
in a muffle furnace. The specific process parameters were as follows: the temperature
was increased to 900 ◦C with a rate of 15 ◦C increase per minute, followed by a constant
sintering at the same temperature for 12 h, and then slowly cooled. It was sieved and
milled to obtain samples with different Ti doping amounts.

3.2. Materials Characterization

The composition and structure of the samples were analyzed using XRD (Rigaku,
Toshima, Tokyo, Japan). The diffraction target is Cu Kα (λ = 1.5406 Å) and the data were
acquired at an operating voltage of 40 kV, tube current of 300 mA, and 2θ = 10◦–80◦. Samples
were analyzed for overall morphology by field-emission scanning electron microscopy
(FE-SEM, ZEISS SUPRA55, Oberkochen, Germany). X-ray photoelectron spectroscopy
(XPS) was tested on an ESCALAB 250 XI spectrometer to obtain valence information of the
surface element compounds.

3.3. Electrochemical Measurements

A total of 80% active substance, 10% acetylene black, and 10% binder were weighed
and ground. N-methyl pyrrolidone was added dropwise and ground until well-mixed. It
was coated on clean aluminum foil and dried. The dried electrode sheets were cut into tiny
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discs of about 5 mm radius and continued drying. The 1 mol L−1 LiPF6 solution (EC–EMC–
DMC volume ratio of 1:1:1) was selected as the electrolyte to complete the assembly of the
half-cell in a glove box.

Charge and discharge performance and rate performance of the samples were ana-
lyzed by Land CT2001A Battery Test System (Wuhan Shenglan Electronic Technology Co.,
Ltd., Wuhan, China). Solartron 1260 + 1287 electrochemical impedance analyzers (British
Powerstrong Precision Measurement Co., Ltd., Shanghai, China) were adopted for cyclic
voltammetry (CV) testing and electrochemical impedance spectroscopy (EIS) testing. The
voltage window range was 2~4.8 V, the scanning rate was 0.1 mV·s−1, and the cycle test
occurred 3 times.

3.4. Computational Method

Computation is based on density function theory (DFT) and implemented using
the VASP6.3.2 software package. A pseudopotential derived from the projected affixed
wave (PAW)-based method is used, and a switched association function is PBE54 in the
generalized gradient approximation (GGA). A 3 × 3 × 1 supercell is used in the calculation,
and the Monkhorst-pack K-space grid point is 3 × 3 × 2. The plane wave was chosen
to have a truncation energy of 450 eV and a Gaussian spread of 0.05 eV, and the force
convergence criterion is set to −0.02, indicating that the force of each atom is less than
0.02 eV. Considering the strong Coulomb interactions of d electrons in transition metals,
the GGA + U method is used to deal with the Ueff of exchange-correlation energy for Mn,
Ni, and Ti, which are set to 3.9, 5.4, and 4.2 eV, respectively.

4. Conclusions

Herein, a series of LLOs doped with Ti4+ was prepared using the high-temperature
solid-state method. DFT calculations show that when Ti is doped to replace a part of Mn,
the Jahn–Teller effect is weakened and a stable layered structure is formed. Moreover,
the cycling performance of the material is improved. Li1.2Mn0.55Ti0.05Ni0.2O2 showed the
optimum electrochemical performance among all the samples. After 100 charge–discharge
cycles at 0.1C, the discharge specific capacity decreased from 210.4 to 191.1 mAh·g−1, with
a high capacity retention of 90.7%; this value was considerably higher than that of the
original sample (150.9 mAh·g−1, 75.2%). Thus, a suitable Ti doping amount restrains the
irreversible release of oxygen from LLOs and provides them with a stable structure.
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