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Abstract: Novel zinc-blende (zb) group-IV binary XC and ternary XxY1−xC alloys (X, Y ≡ Si, Ge, and
Sn) have recently gained scientific and technological interest as promising alternatives to silicon for
high-temperature, high-power optoelectronics, gas sensing and photovoltaic applications. Despite
numerous efforts made to simulate the structural, electronic, and dynamical properties of binary
materials, no vibrational and/or thermodynamic studies exist for the ternary alloys. By adopting a
realistic rigid-ion-model (RIM), we have reported methodical calculations to comprehend the lattice
dynamics and thermodynamic traits of both binary and ternary compounds. With appropriate
interatomic force constants (IFCs) of XC at ambient pressure, the study of phonon dispersions
ωj(

→
q ) offered positive values of acoustic modes in the entire Brillouin zone (BZ)—implying their

structural stability. For XxY1−xC, we have used Green’s function (GF) theory in the virtual crystal
approximation to calculate composition x, dependent ωj(

→
q ) and one phonon density of states g(ω).

With no additional IFCs, the RIM GF approach has provided complete ωj(
→
q ) in the crystallographic

directions for both optical and acoustical phonon branches. In quasi-harmonic approximation, the
theory predicted thermodynamic characteristics (e.g., Debye temperature ΘD(T) and specific heat
Cv(T)) for XxY1−xC alloys. Unlike SiC, the GeC, SnC and GexSn1−xC materials have exhibited weak
IFCs with low [high] values of ΘD(T) [Cv(T)]. We feel that the latter materials may not be suitable as
fuel-cladding layers in nuclear reactors and high-temperature applications. However, the XC and
XxY1−xC can still be used to design multi-quantum well or superlattice-based micro-/nano devices
for different strategic and civilian application needs.

Keywords: C-based novel binary/ternary alloys; rigid-ion-model; lattice dynamics; Born’s transverse
effective charge e∗T ; Debye temperature and specific heat; Green’s function method

1. Introduction

Since the invention of Si-based transistors [1], the evolution to include them in radio
frequency (RF) devices for microelectronics has been remarkable [2–11]. With the low
processing costs, Si-technology has led to many achievements by incorporating electrodes,
dielectrics, and other elements in different integrated circuits (ICs). With truly monolithic
optoelectronic functionality, Si has offered substantial cost benefits as well as long-term
performance gains in the optoelectronic microsensor systems [12–16] and photovoltaic
cells. These achievements have given tremendous opportunities for both the scientists and
engineers to successfully incorporate different devices in energy harvesting and gas-sensing
needs. Earlier accomplishments on RF devices and ICs have quickly grown to become
valuable for wireless sensor networks (WSNs) [17,18]. These devices are now employed in
a wide range of applications including photonics, optoelectronics, environment monitoring,
medical diagnostics, forensic, spintronics, cellular base phone transceivers, amplifiers,
Gigabit wireless local as well as personal area networks [12–32].
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The progress in Si-based ICs and WSNs is the outcome of many scientific research
reports published on different topics where materials’ perspectives played increasingly
important roles. New wavelength regimes are now extended from 1.55 µm to 5.0 µm for
the operations of Si-based photonic and opto-electronic ICs [10]. While many multiple-
quantum-wells (MQWs) and superlattices (SLs) based III-V semiconductors [19–22] have
revealed extremely inspiring results, the high cost and incompatibility of III-Vs with the
Si platform has been, and still is, the main impediment that prevented the large-scale
commercial production of different opto-electronic devices [23–38].

Despite the technological achievements of group-IV materials, the IV-IV binary XC and
ternary XxY1−xC alloys with X, Y (≡Si, Ge, and Sn) have recently become quite attractive
in preparing different heterostructures for bandgap and strain engineering [29–32]. At
room temperature (RT), the C, Si, Ge, and α-Sn of diamond crystal structures are known
to exhibit indirect band gap energies Eg [≡5.47 eV, 1.12 eV, 0.66 eV and 0 eV]. Higher
mismatch between the lattice constants, ao [≡C: 3.56 Å, Si: 5.43 Å, Ge: 5.66 Å, α-Sn: 6.49 Å]
and low solubility of C has caused complications in the earlier designs of XC/Si MQWs
and SLs [33–45]. However, the differences in their electronegativity now play a vital role in
carefully optimizing parameters to achieve epitaxial growth of heterostructures apposite for
diverse device applications. Recently, the use of Si/SiGe has gained considerable attention
for designing heterojunction bipolar transistors with cut-off frequencies > 10 GHz [11].

Tremendous efforts have also been formulated in preparing novel C-based binary
XC and/or ternary XxY1−xC alloys by taking advantage of the unique and exciting prop-
erties of group-IV materials [12–37]. Good structural stability of zinc-blende (zb) binary
and/or ternary compounds with different Eg, hardness, high stiffness, melting point, and
high thermal conductivity is considered particularly favorable for applications [38–41] in
blue/ultraviolet (UV) light-emitting diodes (LEDs), laser diodes (LDs), photodetectors and
solar cells [12–16], etc. Due to large lattice mismatch and the differences in thermal expan-
sion coefficients between XxY1−xC epilayers and Si substrate, one would expect the possi-
bilities of observing structural and/or intrinsic defects near the interfaces [29]. However,
appropriate use of buffer layers acquiring load through the relaxation of mechanical stresses
has helped improve the structural qualities of MQWs and SLs. While there remain a few
intrinsic issues, which could constrain the design of opto-electronic device structures, solu-
tions to these problems are not impossible and can be resolved by exploiting suitable experi-
mental (e.g., growth, [42–93] characterization [94–107]) and theoretical [108–137] methods.

One must note that by employing the pulsed supersonic free jets techniques [42–45],
an inverse heteroepitaxial growth of Si on SiC has been demonstrated to achieve multilayer
structures [46–65]. A novel arc plasma C gun source is incorporated in the molecular beam
epitaxial (MBE) methods to grow ultrathin MQWs and SLs [66–70]. Ultrahigh chemical
vapor deposition (UH-CVD), reduced pressure RP-CVD and metalorganic (MOCVD) tech-
niques are also successfully used [71–93] to prepare different Si1−xGexC/Si, Ge1−xSnxC/Si,
GeC/SiC epilayers. For commercial applications of these materials, the RP-CVD method
has been preferred due to the balance between good epitaxial quality and relatively high
growth rates [76]. Certainly, the progress made in the growth of complex and exotic
C-based materials has set challenges for both the physicists and engineers in investigating
their fundamental properties.

Although binary compounds are used in many technological applications, consid-
erably less attention is paid to ternary alloys despite the successful growth of ultrathin
epifilms. A variety of characterization techniques are also applied for analyzing/ moni-
toring their fundamental properties [94–107]. The classification of such methods includes
reflection high-energy electron diffraction (RHEED) [94,95], Auger electron spectroscopy
(AES) [96], He+ Rutherford backscattering spectrometry (RBS) [97], atomic force microscopy
(AFM) [98,99], high-resolution X-ray diffraction (HR-XRD) [100–102], transmission electron
microscopy (XTEM) [103], photoluminescence (PL) [104], absorption, Fourier transform
infrared (FTIR) spectroscopy [100–102], Raman scattering spectroscopy (RSS) [105–107]
and spectroscopic ellipsometry (SE) techniques [107], etc. It is to be noted that not only
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have these techniques validated their crystal structures but also helped in assessing the film
thickness, strain, intrinsic electrical, and optical traits. Despite the existence of numerous
experimental studies on structural and electrical properties, there are limited IR absorption
and RSS measurements [100–107] for evaluating their phonon characteristics.

From a theoretical standpoint, several calculations are performed to understand the
structural, electronic, and optical properties of the binary compounds using full potential
linear augmented plane wave (FP-LAPW), first-principles (ab initio) and molecular dy-
namical (MD) methods [108–126]. For the ternary XxY1−xC alloys, however, no systematic
studies are known for comprehending their lattice dynamical and/or thermodynamic
characteristics. To accomplish major technological applications of the C-based heterostruc-
tures [e.g., Si/Si(Ge)C, GeSnC/GeC MQWs and (SiC)m/(Ge(Sn)C)n SLs], such calculations
are necessary to obtain the complete phonon dispersions of XC and XxY1−xC materials
from realistic lattice dynamical models. One reason for this requisite is that the dynamical
response of polar lattices affects the key electronic properties, including the exciton-binding
energies and charge-carrier mobilities. Examining the dynamical response of crystals and
its impact on the dielectric environment provides a major step in realizing their structural
characteristics. The other reason for its need is that, in MQWs and SLs, the phonon density
of states (DOS) of binary/ternary alloys has played crucial roles in evaluating thermody-
namic traits, including the thermal expansion coefficients α(T), Debye temperature ΘD(T),
heat capacity Cv(T), Grüneisen constants γ(T), entropy, lattice thermal conductivity, etc.

The purpose of this work is to use a realistic rigid-ion model (RIM) [127] and report the
methodical results of our comprehensive study to assess the structural, lattice dynamical
(cf. Section 2.1), and thermodynamic (cf. Section 2.2) characteristics of binary XC and
ternary (cf. Section 2.3) X1−xYxC alloys. For the tetrahedral (T2

d: F43m) binary materials,
we have carefully optimized the RIM interatomic force constants (IFCs) by exercising [128]
(cf. Section 2.1.1) successive least-square fitting procedures. In these processes, the phonon
frequencies at high critical points (Γ, X, and L) are used as input while exploiting their
lattice—ao, and elastic constants Cij as constraints (see Table 1). For zb-SiC, the values
of phonon frequencies are incorporated from inelastic X-ray scattering (IXS) measure-
ments [129], while in GeC, SnC, we employed critical-point phonon frequencies from
first-principles ABINIT results using a plane–wave pseudopotential method in density
functional theory (DFT) and local-density perturbation approximation [125]. With the
appropriate IFCs of binary XC materials, the dynamical matrix (cf. Section 3.1) is diago-
nalized to obtain phonon dispersions ωj(

→
q ), at each wave vector

→
q point in the Brillouin

zone (BZ), as well as one phonon density of states (DOS), g(ω). For mixed XxY1−xC alloys
0 ≤ x ≤ 1, the composition-dependent phonon frequencies (cf. Section 3.2) are simulated
by using a Green’s function (GF) theory [130] in the virtual crystal approximation (VCA).
Without considering additional IFCs, the RIM GF approach for the mixed alloys has offered
a complete

→
q dependent ωj(

→
q ), in arbitrary crystallographic directions for both the optical

and acoustical phonon branches. In XxY1−xC materials, and using a quasi-harmonic ap-
proximation (QHA), we have systematically simulated the x-dependent ωj(

→
q ), and g(ω)

(cf. Section 3.2) to predict their thermodynamic characteristics (e.g., Debye temperature
ΘD(T) and specific heat Cv(T)). Born’s transverse effective charges e∗T , and Fröhlich coupling
parameters αF are also (cf. Sections 3.2.3 and 3.2.4) calculated. Theoretical results of ωj(

→
q ),

g(ω), and the thermo-dynamical traits for both binary XC and ternary XxY1−xC alloys are
carefully analyzed/contrasted (cf. Section 3.1) against the existing experimental [129] and
theoretical [120–126] data (cf. Section 3) with concluding remarks presented in Section 4.
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Table 1. Different parameters for XC (X ≡ Si, Ge and Sn) materials, viz., lattice constants a0 (in );

elastic constants cij

(
in 1011 dyn

cm2

)
and phonon frequencies (cm−1) at Γ, X, and L critical points. These

are required for evaluating the necessary interatomic force constants of the rigid-ion model (see: text).

Parameters 3C-SiC zb-GeC zb-SnC

a0 (Å) 4.360 (a), 4.40 (b), 4.374 (c) 4.610 (d), 4.590 (e) 5.130 (f ), 5.170 (h)

c11 38.0 (a), 38.3 (b), 38.5 (c) 29.7 (f ), 35.8 (g) 24.6 (g)

c12 14.2 (a), 12.5 (b), 12.2 (c) 12.4 (f ), 12.2 (g) 11.3 (g)

c44 25.6 (a), 24.0 (b), 24.3 (c) 14.1 (f ), 21.4 (g) 14.3 (g)

ωLO(Γ)
ωTO(Γ)

974 (b)

793 (b)
748 (h)

626 (h)
558 (h)

456 (h)

ωLO(X)
ωTO(X)
ωLA(X)
ωTA(X)

830 (b)

759 (b)

644 (b)

373 (b)

697 (h)

617 (h)

348 (h)

214 (h)

503 (h)

450 (h)

216 (h)

134 (h)

ωLO(L)
ωTO(L)
ωLA(L)
ωTA(L)

850 (b)

770 (b)

605 (b)

260 (b)

705 (h)

612 (h)

331 (h)

162 (h)

516 (h)

440 (h)

199 (h)

109 (h)

(a) Ref. [130]; (b) Ref. [129]; (c) Refs. [112,113]; (d) Ref. [115]; (e) Ref. [116]; (f ) Ref. [119]; (g) Ref. [124]; (h) Ref. [125].

2. Computational Details

The vibrational properties of XC materials have played a valuable role in assessing
their phase transitions, transport coefficients and other physical phenomena [130–137].
Understanding the electron–phonon interactions and polaron characteristics in polar com-
pounds is important for evaluating their optical and transport properties [138]. In X1−xYxC
alloys, the exploration of phonons and optical and structural characteristics is crucial for
correlating them to their different microscopic traits. To the best of our knowledge, no
experimental and/or theoretical studies of phonons exist for X1−xYxC alloys, especially
ones examining the contributions of lattice dynamical properties to phonon-free energy,
entropy, specific heat, and Debye temperatures, etc. Accurate RIM simulations of ωj(

→
q ),

and g(ω) for the binary XC materials are employed (cf. Section 2.1) to comprehend the
lattice dynamics and thermodynamic properties of X1−xYxC alloys using a GF methodology
(cf. Section 2.2).

2.1. Phonons in XC Materials

Earlier, the IXS [129] and RSS results [105] of phonon dispersions ωj(
→
q ), for the zb

3C-SiC were analyzed by exploiting the ab initio methods [120–126]. Recent calculations
of lattice dynamics for GeC and SnC using plane–wave pseudopotential DFT approaches
in the local density approximation [124,125] have provided different results. By using a
realistic RIM [127], we have probed the experimental and theoretical data [105,120–126,129]
of phonon dispersions for binary XC (3C-SiC, GeC and SnC) materials. Our choice of
RIM, briefly described in Section 2.1.1, is based on the following facts: (a) a truncated
RIM [139–144], where the number of IFCs is limited, a priori, failed to give accurate ωj(

→
q ),

and it is not even less complicated than the more realistic scheme [127] adopted here;
and (b) with regard to ωj(

→
q ), our simulated results in the high-symmetry direction are

comparable (cf. Section 3) with experimental (3C-SiC) [105,129] and ab initio methods (GeC,
SnC) [120–126].

2.1.1. Rigid-Ion Model

Here, we have briefly outlined the RIM [127] to comprehend the vibrational and
thermodynamic properties of perfect binary XC materials. In this approach, the atomic
displacements uα(lκ|

→
q , j) of the jth vibrational modes ωj(

→
q ), are expressed as plane waves

with the wave vector
→
q as [127]:
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uα(lκ|
→
q , j) =

1√
Mκ

eα(κ|
→
q , j)ei[

→
q
→
x (lκ)−ωj(

→
q )t] (1)

where t is the time; the
→
x (lκ) and Mκ are, respectively, the position and mass of the (lκ)

atom. The term l represents the position and κ denotes the types of atoms with κ = 1, 2 to
specify the C and X, respectively, in the XC materials (see: the crystal structure, in Figure 1a,
and its BZ in Figure 1b).

In the harmonic approximation, the equations of motion can be expressed either in
terms of the force constant ΦsC

αβ(κκ′|→q ) matrix elements [127]:

Mkω2
j (

→
q )eα(κ|

→
q j) = ∑

κ′β

ΦsC
αβ(κκ′|→q )eβ(κ′|

→
q j) (2a)

or in terms of the dynamical DsC
αβ(κκ′|→q ) matrix elements:

ω 2
j (

→
q )eα(κ|

→
q , j) = ∑

κ′β

DsC
αβ

(
κκ′

∣∣∣→q )eβ

(
κ′
∣∣∣→q , j

)
; with κ, κ′ = 1, 2 (2b)

where,

DsC
αβ(κκ′|→q ) = Ds

αβ(κκ′|→q )− ZκZκ′ e2

(Mκ Mκ′)1/2 DC
αβ(κκ′|→q ) (2c)

The term ΦsC
αβ(κκ′|→q ) [DsC

αβ(κκ′|→q )] in Equations (2a)–(2c) represents the force constant
[dynamical] matrix elements involving components of both the short-range
Φs

αβ(κκ′|→q )[Ds
αβ(κκ′|→q )] and long-range ΦC

αβ(κκ′|→q ) [DC
αβ(κκ′|→q )] Coulomb interactions [127,

139–142,145–147]. For simulating the ωj (
→
q ) of binary materials, the short- (A, B, Cκ , Dκ , Eκ

and Fκ) and long-range (Zeff) interactions involved in Ds
αβ(κκ′|→q ) and DC

αβ(κκ′|→q ) matrices
are optimized (Table 2) following successive non-linear least-square fitting procedures.
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Figure 1. (a) The lattice structure of novel zinc-blende (zb) XC binary materials. The yellow color 
circles are represented for X (≡Si, Ge and Sn) atoms, while the grey color circles symbolize C atoms 
arranged in the tetrahedral (T : F43m) point group symmetry. (b) The Brillouin zone of face-cen-
tered cubic material is labeled with high symmetry points (see: text). 
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Figure 1. (a) The lattice structure of novel zinc-blende (zb) XC binary materials. The yellow color
circles are represented for X (≡Si, Ge and Sn) atoms, while the grey color circles symbolize C atoms
arranged in the tetrahedral (T2

d : F43m
)

point group symmetry. (b) The Brillouin zone of face-centered
cubic material is labeled with high symmetry points (see: text).
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Table 2. In the notations of Ref. [127], we have reported the optimized sets of rigid-ion model (RIM)
parameters [A, B, C1, C2, D1, D2, E1, E2, F1, F2 (105 dyn/cm)] at ambient pressure for novel zb XC
(X = Si, Ge and Sn) materials. The term Zeff is the effective charge (see text).

Parameters (a) 3C-SiC GeC SnC

A −0.91723 −0.68066 −0.39000
B −0.44500 −0.66000 −0.37000

C1 −0.04050 −0.02300 −0.00400
C2 −0.15900 −0.13200 −0.09300
D1 0.06440 −0.02097 −0.00135
D2 −0.33088 −0.38000 −0.07200
E1 0.06200 −0.01000 −0.01000
E2 0.10850 0.02000 0.02000
F1 −0.04100 0.03550 0.01050
F2 0.28800 0.02780 0.01480
Zeff 1.05300 0.92200 0.88030

(a) Ref. [127].

In the primitive unit cell of the zb lattice having two atoms per unit cell, the solutions
of Equations (2a) and (2b) lead to an eigenvalue problem of size (6 × 6) with the values of
wave vectors

→
q restricted to the fcc lattice:

|→q | = π

ao
(q1, q2, q3) ;−1 ≤ q1, q2, q3 ≤1; (q1 +q2+q3) ≤

3
2

(3)

with the triplets (q1, q2, q3) distributed uniformly throughout the volume of the BZ. In our
calculations of phonon dispersions ωj (

→
q ), for the XC materials, we have used a mesh of

64,000 |
→
q | points in the reduced BZ. At each

→
q , there are six [127] vibrational modes—three

of them are acoustic (i.e., a longitudinal ωLA and a doubly degenerate transverse ωTA) and
the remaining modes are optical, comprising a doubly degenerate transverse—ωTO and a
longitudinal ωLO optical phonons (cf. Section 3.1).

2.2. Lattice Dynamics of Ternary XxY1−xC Alloys

Composition-dependent phonon dispersions ωj(
→
q ) for mixed zb XxY1−xC crystals

are simulated as a function of x (0 ≤ x ≤ 1) (cf. Section 3.2) by adopting a generalized
GF theory in the VCA. For one dimensional mixed XxY1−xC alloy with two interpene-
trating sublattices, Kutty [131] has developed a GF approach and derived the dynamical
matrix equation:

|(ω2Mµ
α − Φ

µµ
αα )δαβδµν − Cµ

α Φ
µν
αβ(

→
q )| = 0 (4)

by postulating that the sublattice 1 occupies C atoms while the sublattice 2 is randomly
acquired by atoms of type X and Y having concentrations (x) and (1 − x), respectively. In
Equation (4), CC

1 = 1, CY
2 = (1 − x), CX

2 = x, MC
1 = mC, MY

2 = mY, MX
2 = mX and the term

Φ
µν
αβ represents the IFCs. By substituting these parameters in Equation (4), we obtain the

following [131]: ∣∣∣∣∣∣∣
ω2mC − Φ11

11 −Φ12
12(

→
q ) −Φ12

12(
→
q )

−(1 − x)Φ21
21(

→
q ) ω2mY − Φ22

22 −(1 − x)Φ23
22(

→
q )

−xΦ31
21(

→
q ) −xΦ32

22(
→
q ) ω2mX − Φ33

22

∣∣∣∣∣∣∣ = 0 (5)

with the solution of Equation (5) leading to the vibrational mode frequencies.
Extension of the above one-dimensional approach to simulate the lattice dynamics

of three-dimensional ideal zb random XxY1−xC ternary alloys using GF theory [131] in
the framework of a RIM [127] is trivial. Here, we have assumed that the mixed XxY1−xC
crystal lattice achieves the following: (a) forms the ideal pseudo-binary alloys in the
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entire composition range x, (probably in contrast to reality), (b) the cation sublattice 2
is structurally close to the virtual crystal lattice where the X and Y atoms are randomly
distributed having the concentration of Y (1 − x) and of X as x, (c) the anion sublattice 1 with
C atoms remains undistorted, and (d) the characteristic NN atomic distances follow Vegard’s
law. It is to be noted that in the RIM GF methodology, no additional IFCs are required for the
descriptions of wave-vector dependent phonon dispersions ωj(

→
q ) of the XxY1−xC alloys

in arbitrary crystallographic directions. To simulate the dynamical characteristics of the
pseudo-binary alloys using RIM, we have deliberated the IFCs of binary XC materials (cf.
Table 2) in a three-body framework. While this approach has allowed for the calculations
of phonon spectra for the optical, acoustical as well as disorder-induced modes, we have
neglected here the disorder-related broadening of the spectral lines.

2.3. Thermodynamic Properties

To comprehend the effects of temperature on the structural stability of XC materials,
we have calculated the thermodynamic properties (up to 1500 K) in the QHA by adopting a
RIM and including appropriate values of their g(ω) and ωj (

→
q ) [132–138]. In the numerical

computation of T-dependent lattice heat capacity (CV(T)), we have used the following:

E(T) = Etot+Ezp +
∫

èω

exp
(

èω
kBT

)
− 1

g(ω)dω (6)

where Etot is the total static energy at 0 K which can be calculated by first-principles
methods, Ezp is the zero-point vibrational energy, kB is Boltzmann’s constant, è is Planck’s
constant. The term Ezp can be expressed as follows:

Ezp =
1
2

∫
g(ω)èωdω (7)

The lattice contribution to CV(T) is obtained by using [138] the following:

CV(T) = kB

∫ (
èω
kBT

)2
exp

(
èω
kBT

)
[
exp

(
èω
kBT

)
− 1

]2 g(ω)dω (8)

From Debye’s equation,

CV(T) = 9rkB

(
T

ΘD(T)

)3∫ ΘD(T)

0

(
èω
kBT

)4
e(

èω
kBT )[

exp
(

èω
kBT

)
− 1

]2 dω (9)

it is possible to calculate ΘD(T). In Equation (9), the term r signifies the number of atoms
per unit cell.

2.4. Interaction of Photons with Solids

In polar materials, the electrical polarization induced by the displacement of atoms
offers the key quantities to understand how the deformations and electric fields are coupled,
insulating them. The interaction of photons with solids comprises both ionic and electronic
oscillations where the dielectric polarization is linked to their atomic polarizability [130].
The dynamic response of dielectric function on electromagnetic radiation is expressed in
terms of elementary oscillators, where the strong interaction of photons with ωTO phonons
cause a large Reststrahlen absorption in the IR region. In polar crystals, the ωLO modes
produce a macroscopic electric field that interacts with electrons, resulting in a quasi-particle
known as ‘polaron’ [130]. This long-range coupling instigates the Fröhlich interaction αF (cf.
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Section 2.4.2). Born’s transverse effective charge e∗T (cf. Section 2.4.1) is an equally important
quantity for studying the lattice dynamics of polar XC materials.

2.4.1. Born’s Effective Charge e*
T

In binary crystals, Born’s transverse effective charge e∗T is linked to the splitting of
their optical phonon frequencies ∆ω [≡ ωLO(Γ) − ωTO(Γ)]. The screening of the Coulomb
interaction depends on the electronic part of the dielectric function and volume of the
unit cell [130]. In many compound semiconductors, the phonon splitting ∆ω is assessed
by measuring the pressure (P)-dependent optical modes [148] by Raman scattering. This
optical phonon splitting is then related to the bonding characteristics by being scaled to the
lattice constants ao. The P-dependent Raman studies are difficult, and, in some cases, the
results have been contentious [149]. Except for 3C-SiC [107], no P-dependent measurements
are available for GeC and SnC. In Section 3.2, we have reported our RIM calculations of
x-dependent phonon splitting for XxY1−xC alloys and predicted the qualitative behavior of
e∗T by using [149] the following:

e*2
T =

ε∞µa3
0

16π

(
ω2

LO(Γ) − ω2
TO(Γ)

)
(10)

where ε∞ is the high-frequency dielectric constant and µ is the reduced mass of the
anion–cation pair.

2.4.2. Fröhlich Coefficients αF

The theory of the Fröhlich interaction in ternary alloys is very complex. In binary
materials, the strength of electron–phonon interaction is expressed by a dimensionless
Fröhlich coupling constant αF [130]:

αF =
1
2

e2/
√

è/2m*
eωLO

èωLO

(
1

ε∞
− 1

εo

)
(11)

where e is the electron charge, m∗
e the effective electron mass and εo is the static dielectric

constant. Except for 3C-SiC, no systematic calculations of band structures or the effective
electron masses m∗

e are known for GeC and SnC.

3. Numerical Computations and Results

Following standard practices, we have computed the lattice dynamical, as well as the
thermodynamic properties of both zb binary XC and ideal ternary XxY1−xC alloys. For the
alloys, we have adopted (cf. Section 2.2) a generalized GF method in the framework of a
RIM by incorporating the necessary IFCs (see Table 2) of the binary materials. The RIM re-
sults are analyzed by comparing/contrasting them with the existing experimental [105,129]
and theoretical data [120–126].

3.1. Lattice Dynamics of Binary XC Materials
3.1.1. Phonon Characteristics

For binary XC materials, the simulated RIM phonon dispersions ωj(
→
q ), and one

phonon DOS g(ω), are displayed in Figures 2a and 2b, respectively. At ambient pressure,
the acoustic phonon branches of the three (3C-SiC, GeC and SnC) compounds exhibited
positive values—demonstrating their stability in the zb phases. From the DOS g(ω), one
can clearly see two features, each with noticeable intensities in the low- (acoustic) as well
as the high- (optical) frequency regions. Obviously, these characteristics are linked to the
average ωTA, ωLA and ωTO, ωLO modes caused by the vibrations of heavier X and lighter
C atomic masses, respectively.

For 3C-SiC, GeC and SnC materials, the simulated results of phonon frequencies
at high critical points Γ, X, L reported in Table 3A–C are compared against the existing
experimental [105,129] and/or theoretical [120–126] data. Our lattice dynamical results
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for 3C-SiC contrasted reasonably well with the available phonon data from both the
experimental (RSS [105], IXS [129]) and first-principles calculations [120–126]. For GeC and
SnC, the results are also seen in very good accord with the phonon simulations reported by
Zhang et al. [125] who used a plane–wave pseudopotential method in the density functional
perturbation theory within the local density approximation.
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Figure 2. (a) Simulated phonon dispersions of novel zinc-blende XC binary materials using a rigid-
ion-model (RIM). The red color lines represent SiC, blue lines GeC and green lines SnC. Results
are compared well with the experimental [105,129] and first-principles [120–126] data. (b) The RIM
results of one phonon density of states for SiC (red color lines), GeC (blue lines) and SnC (green lines).

Table 3. Comparison of the RIM calculated phonon frequencies (cm−1) at Γ, X, L critical points with
the experimental and theoretical calculations (A) 3C-SiC, (B) GeC and (C) SnC, respectively (see text).

(A)

3C-SiC ωLO(Γ) ωTO(Γ) ωLO(X) ωTO(X) ωLA(X) ωTA(X) ωLO(L) ωTO(L) ωLA(L) ωTA(L) ∆ω

Our (a) 974 797 828 760 639 373 857 787 591 250 177
Expt. (b) 974 793 830 759 644 373 850 770 605 260 181
Expt. (c) 972 796 829 761 640 373 838 766 610 266 176
Calc. (d) 953 783 811 749 623 364 832 755 608 260 170
Calc. (e) 956 783 829 755 629 366 838 766 610 261 173
Calc. (f ) 945 774 807 741 622 361 817 747 601 257 171

(a) Our; (b) Ref. [105]; (c) Ref. [129]; (d) Ref. [125]; (e) Ref. [122]; (f ) Ref. [123].

(B)

GeC ωLO(Γ) ωTO(Γ) ωLO(X) ωTO(X) ωLA(X) ωTA(X) ωLO(L) ωTO(L) ωLA(L) ωTA(L) ∆ω

Our (a) 749 626 697 617 348 211 705 621 326 166 123
Calc. (b) 812 682 785 695 378 222 789 683 366 161 130
Calc. (c) 748 626 697 617 348 214 705 612 331 162 122

(a) Our; (b) Ref. [124], (c) Ref. [125].

(C)

SnC ωLO(Γ) ωTO(Γ) ωLO(X) ωTO(X) ωLA(X) ωTA(X) ωLO(L) ωTO(L) ωLA(L) ωTA(L) ∆ω

Our (a) 558 456 512 454 216 141 524 454 214 102 102
Calc. (b) 711 590 689 621 268 150 694 600 262 106 121
Calc. (c) 558 456 503 450 216 134 516 440 199 109 102

(a) Our; (b) Ref. [124], (c) Ref. [125].
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3.1.2. Thermodynamic Characteristics

To test the accuracy of our RIM ωj(
→
q ), and g(ω), we have followed the methodology

outlined in Section 2.3 and simulated the T-dependent Debye temperature and specific heat
for the binary XC materials. The results of our calculations for ΘD(T) and CV(T) displayed
in Figure 3a,b are compared with the experimental (3C-SiC) [149–151] and/or theoretical
data [152,153]. While the shapes of these thermodynamic quantities for the XC materials are
typical to those of the group IV elemental and III–V, II–VI, I–VII compound semiconductors,
the values of C-based materials, however, differ significantly [120,124,125,152].
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Figure 3. (a) Rigid-ion model simulations of temperature-dependent Debye temperature ΘD(T) for
the zinc-blende SiC (red color lines), GeC (blue lines) and SnC (green lines). For SiC, the results are
compared with the experimental data (magenta color triangles). (b) Rigid-ion model calculations of
CV(T) (in J/mol-K) as a function of T for SiC (red color lines), GeC (blue lines) and SnC (green lines).
The calculations of 3C-SiC are compared with the experimental (magenta color triangles and black
colored inverted triangles) (see text).

At a single temperature T, the outcomes of our results (cf. Figure 3a,b) for ΘD(T)
[CV(T)] have shown considerable decrease [increase] in the simulated values with the
increase of cation X atomic masses (i.e., from Si → Ge → Sn). Again, at low T, our re-
sults of Cv(T) for the binary materials have not only confirmed the correct trends with
appropriate shapes replicating the T3 law but also provided a reasonably good match
with the existing experimental/theoretical data [149–153]. For 3C-SiC, the experimental
values of specific heat at constant volume (CV) [149] and constant pressure (CP) [150] are
included in Figure 3b using different colored symbols. As expected, the results of Cv(T) for
XC binary materials at highest temperatures approached ~50 (J/mol-K) [see (Figure 3b)],
in excellent agreement with the Dulong–Petit rule. Clearly, these results are justified be-
cause at higher T, one would anticipate all the excited phonon modes contributing to the
thermodynamic characteristics.

3.2. Phonon and Thermodynamic Properties of XxY1−xC Ternary Alloys

Recent developments in the crystal growth of ultrathin XxY1−xC films on different
substrates have given excellent opportunities to many researchers to prepare novel C-based
semiconducting alloys with the expected crystal structures and compositions [42–46]. For
future device designs and their applications using zb XxY1−xC alloys, we have reported



Inorganics 2024, 12, 100 11 of 23

our comprehensive calculations and predicted their x-dependent phonon ωj(
→
q ), g(ω), and

thermodynamic ΘD(T), CV(T) traits by using a RIM GF methodology in the VCA (see
Table 4 and employing the results of binary XC materials).

Table 4. (A) Comparison of the temperature-dependent RIM calculations for the Debye temperature
ΘD(T), and (B) the specific heat Cv(T) in (J/mol-K) for the zb SiC, GeC and SnC materials with the
existing experimental Refs. [149,150] and/or theoretical Refs. [118–120,123,125,152] data. Please note
that the reported results in Ref. [150] are for CP(T).

(A)

Debye TemperatureΘD(T)

T 3C-SiC RIM (a) Others GeC RIM (a) Others SnC RIM (a) Others

0 1090 (a) 673 (a) 419 (a)

100 923 (a) 635 (a) 490 (a)

300 1134 (a) 960.61 (b), 1130 (c),
611.6 (d), 1151 (e), 1080 (f ) 857 (a) 759.6 (g), 616 (e), 831 (f ) 619 (a) 506.7 (g),

472 (e)

600 1180 (a) 951.54 (b) 899 (a) 651 (a)

900 1188 (a) 942.52 (b) 906 (a) 657 (a)

1200 1192 (a) 934.94 (b) 908 (a) 659 (a)

1500 1194 (a) 930.02 (b) 910 (a) 660 (a)

(a) Our; (b) Refs. [149,150]; (c) Ref. [152]; (d) Ref. [120]; (e) Ref. [118]; (f ) Ref. [119]; (g) Ref. [123].

(B)

Specific heat Cv(T)

T 3C-SiC RIM (a) Others GeC RIM (a) Others SnC RIM (a) Others

300 26.24 27.09 (b), 31.39 (c), 26.8 (d) 34.31 32.35 (e) 40.01 35.70 (e)

600 41.49 42.09 (b), 44.14 (c), 41.3 (d) 44.58 44.6 (e*) 46.96 46.10 (e*)

900 45.77 47.60 (b), 47.26 (c), 46.7 (d) 47.41 47.1 (e*) 48.56 48.32 (e*)

1200 47.51 50.19 (b), 48.41 (c), 49.6 (d) 48.46 48.2 (e*) - -
1500 48.34 51,77 (b), 48.94 (c), 51.2 (d) - - - -

(a) Our; (b) Refs. [149,150]; (c) Ref. [152]; (d) Ref. [120]; (e) Ref. [125] (e*) estimated from the graph.

3.2.1. Phonon Characteristics of X1−xYxC Alloys

In the framework of a generalized RIM GF formalism (cf. Section 2.2), systematic
simulations are performed for predicting the results of x-dependent phonon dispersions
ωj(

→
q ), and DOS, g(ω) for the ideal mixed X1−xYxC ternary alloys. For instance, the

calculated results of Si1−xGexC alloys displayed in Figure 4a,b have clearly validated that
the values of ωj(

→
q ), and g(ω) steadily shifting towards the lower frequency regions as

x increases (i.e., from ≡0.0, 0.2, 0.4, 0.6, 0.8 and 1.0). Moreover, in the extreme situations
x → 0.0, and x → 1.0, the results are seen transforming to those of the binary SiC and
GeC materials.

From the phonon characteristics of Si1−xGexC alloys (cf. Figure 4a,b), we have also
noticed a few interesting features: (a) the x-dependent curves of ωj(

→
q ), and g(ω), exhibit

very similar traits, (b) the ωTO modes show nearly flat dispersions in the X → Γ → L
directions which are responsible for triggering appropriate strong peaks in the g(ω), (c)
the ωLO modes have demonstrated almost flat dispersions in the L → X → W directions
which initiated the correct weak peaks in the g(ω), and (d) the splitting of optical phonon
modes ∆ω (≡ ωLO(Γ) − ωTO(Γ)) decreased from 177 cm−1 → 161 cm−1 → 149 cm−1 → 139
cm−1 → 130 cm−1 → 123 cm−1 with the increase of composition, x (≡0.0 → 0.2 → 0.4 →
0.6 → 0.8 → 1.0). Very similar phonon characteristics are also noticed in the Si1−xSnxC (cf.
Figure 5a,b) and Ge1−xSnxC (cf. Figure 6a,b) ternary alloys.
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Figure 4. (a) Composition-dependent rigid-ion model (RIM) calculations of phonon dispersions ωj(
→
q )

for Si1−xGexC with x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. (b) Composition-dependent RIM calculations of
one phonon density of states g(ω) for Si1−xGexC with x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0.
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Figure 5. (a) Composition-dependent rigid-ion model (RIM) calculations of phonon dispersions ωj(
→
q )

for Si1−xSnxC with x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. (b) Composition-dependent RIM calculations of
one phonon density of states g(ω) for Si1−xSnxC with x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0.
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Figure 6. (a) Composition-dependent rigid-ion model (RIM) calculations of phonon dispersions ωj(
→
q )

for Ge1−xSnxC with x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. (b) Composition-dependent RIM calculations of
one phonon density of states g(ω) for Ge1−xSnxC with x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0.

3.2.2. Thermodynamic Characteristics of X1−xYxC Alloys

By using appropriate phonon dispersions and DOS, the x-dependent thermodynamic
characteristics are simulated in the QHA for X1−xYxC ternary alloys between 0 < T < 1500 K.
As an example, we have reported our results of ΘD(T) and Cv(T) for the Si1−xGexC alloys
in Figures 7a and 7b, respectively. Similar calculations have also been performed for other
Si1−xSnxC (cf. Figure 8a,b) and Ge1−xSnxC (cf. Figure 9a,b) ternary alloys. From Figure 7a,b,
some important noticeable facts can be justified. As x increases (from ≡0, 0.2, 0.4, 0.6, 0.8
and 1.0), the values of ΘD(T) [Cv(T)] decrease [increase] and in the limiting situations
x → 0.0, and x →1.0, the results transform to those of SiC and GeC materials. Based on
our simulations, the binary 3C-SiC has exhibited the highest ΘD(T) and lowest Cv(T),α(T)
values. These results, related to its shorter bond-length and larger bond strength (see
Table 2), can exhibit strong radiation tolerance with excellent resistance. Obviously, these
characteristics have led to 3C-SiC being quite robust at higher T with less likelihood of
breakdown in extreme conditions. We, therefore, feel that 3C-SiC is an ideal compound
to be employed as a fuel-cladding material in nuclear reactors and high-temperature
environments.

On the other hand, both GeC and SnC revealed significantly weaker bonding [149–153]
(see Table 2) which instigated lower ΘD(T) and higher Cv(T), α(T) values. Thus, we antici-
pate that these materials may not be suitable for fuel-cladding layers in nuclear reactors
and/or in higher temperature environments. However, with a very small composition (x),
the ternary Si1−xGexC alloys can still be deliberated. Both XC and X1−xYxC alloys have
already been used to grow multilayer (viz., SiC/SiGe(Sn)C, GeC/Si(Ge)SnC) heterostruc-
tures. Thus, we feel that these structures may help engineers to design MQW/SL-based
micro-/nanodevices for different strategic and civilian application needs.
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Figure 7. (a) Composition-dependent rigid-ion model calculations of Debye temperatures ΘD(T) for
Si1−xGexC with x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. (b) Composition-dependent RIM calculations of one
specific heat Cv(T) for Si1−xGexC with x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0.
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Figure 8. (a) Composition-dependent rigid-ion model calculations of Debye temperatures ΘD(T) for
Si1−xSnxC with x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. (b) Composition-dependent RIM calculations of one
specific heat Cv(T) for Si1−xSnxC with x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0.
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Figure 9. (a) Composition-dependent rigid-ion model calculations of Debye temperatures ΘD(T) for
Ge1−xSnxC with x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. (b) Composition-dependent RIM calculations of one
specific heat Cv(T) for Ge1−xSnxC with x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0.

3.2.3. Born Effective Charge for X1−xYxC Alloys

In polar materials, Born’s effective charge e∗T (also known as transverse or dynamic
effective charge) manifests the coupling between lattice displacements and electrostatic
fields. It is found that e∗T remains insensitive to the isotropic volume change but strongly
affected by changes in the atomic positions associated with phase transitions (Pt). From a
theoretical standpoint, e∗T in binary XC and ternary X1−xYxC alloys is important as Pt takes
place due to the competition between long-range coulomb interactions and short-range
forces. The long-range coulomb interactions are responsible for the observed splitting
∆ω [≡ ωLO(Γ) − ωTO(Γ)] between ωLO(Γ) and ωTO(Γ) phonon frequencies. In Table 5, we
have reported our simulated results of x-dependent ∆ω and e∗T for X1−xYxC alloys. In the
absence of e∗T data for ternary alloys, our theoretical results for the binary materials agree
reasonably well with the experimental (for 3C-SiC) [107] and theoretical [123] results (for
GeC and SnC) [122,124].

Table 5. Simulated composition-dependent Born’s effective charges for zinc-blende ternary alloys:
(A) Si1−xGexC, (B) Si1−xSnxC, and (C) Ge1−xSnxC.

(A)

Si1−xGexC
x ωLO(Γ) ωLO(Γ) ∆ω e*

T
(a) e*

T others

0.0 974 797 177 2.683 2.697 (b), 2.72 (c)

0.2 911 750 161 2.675
0.4 862 713 149 2.659
0.6 821 682 139 2.629
0.8 783 653 130 2.611
1.0 749 626 123 2.581 2.62 (d)

(a) Our; (b) Ref. [107]; (c) Refs. [122,123]; (d) Ref. [124].
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Table 5. Cont.

(B)

Si1−xSnxC
x ωLO(Γ) ωLO(Γ) ∆ω e*

T
(a) e*

T others

0.0 974 797 177 2.683 2.697 (b), 2.72 (c)

0.2 856 707 149 2.697
0.4 773 642 131 2.695
0.6 700 582 118 2.684
0.8 630 522 108 2.658
1.0 558 456 102 2.629 2.95 (d)

(a) Our; (b) Ref. [107]; (c) Refs. [122,123]; (d) Ref. [124].

(C)

Ge1−xSnxC
x ωLO(Γ) ωLO(Γ) ∆ω e*

T
(a) e*

T others

0.0 749 626 177 2.581 2.62 (d)

0.2 710 594 116 2.595
0.4 673 562 111 2.600
0.6 635 528 107 2.615
0.8 597 493 104 2.623
1.0 558 456 102 2.629 2.95 (d)

(a) Our; (d) Ref. [124].

3.2.4. Fröhlich Coefficients

In semiconductors, the strength of the Fröhlich interaction is directly linked to the
polar nature of its crystal lattice. In a highly polar material, the Coulomb field of a carrier (or
exciton) couples more easily to the polar vibrations (i.e., ωLO phonons) of the crystal lattice,
resulting in a strong Fröhlich coupling coefficient, αF . By using αF (cf. Equation (11)), the
polaron effective mass m∗

p can be calculated [154] in terms of the bare electron mass me
using the following expression:

m∗
p = me·

1 − 0.0008 αF
2

1 −
( αF

6
)
+ 0.003 αF 2 (12)

where, the static εo and high-frequency ε∞ values of the dielectric functions provide the
means of quantifying the polar nature of materials, so that further insight into the Fröhlich
interaction (see Equation (11)) can be gained via the dielectric characterizations.

It is to be noted that, except for 3C-SiC, no systematic calculations of the band struc-
tures and effective electron masses m∗

e are known for the GeC and SnC materials. With
Equation (11), and using the existing parameters (εo, ε∞, ωLO, m∗

e ) for 3C-SiC from the
literature [105–107], our calculation of αF (=0.576) has provided a value much higher than
that reported by Adachi [130]. Interestingly, however, the calculation of polaron mass
( m∗

p/me ≡ 0.243) using Equation (12) agrees very well with the theoretical result reported
by Persson and Lindefelt [154]. Obviously, more experimental and theoretical efforts are
needed for assessing the accurate values of the Fröhlich interaction coefficients for both the
binary XC and ternary X1−xYxC alloys.

4. Discussions and Conclusions

In summary, we have used a realistic RIM and reported the results of our methodical
simulations for comprehending the lattice dynamical and thermodynamic characteristics
of zb (SiC, GeC, SnC) binary and (S1−xGexC, S1−xSnxC, Ge−xSnxC) ternary alloys. From a
basic chemistry standpoint, one expects a gradual increase in the bond lengths (i.e., from
Si-C → Ge-C → Sn-C) due to the differences in the sizes of the cations (Si, Ge, Sn) and (C)
anion atoms. Accordingly, the increase in bond lengths will cause a decrease in their bond
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strengths. These facts are clearly revealed in our calculated IFCs of the RIM for XC materials
(see Table 2), where the nearest-neighbor force constants [127] have shown steady decrease
in their strength as one proceeds from SiC → GeC → SnC. Obviously, the atomic- and
composition (x)-dependent variations in the bond strengths of mixed X1−xYxC alloys have
instigated dramatic variations in the simulated RIM phonon dispersions ωj(

→
q ), DOSg(ω),

and thermodynamic [e.g., ΘD(T), Cv(T), α(T)] traits.
In recent years, consistent efforts have been made using group-IV carbides and

III-nitrides to develop devices for achieving efficient operations in challenging environ-
ments (viz., radiation, high-power, extreme temperature) where the electronic systems
based on Si material have indicated weaknesses of survival. In this quest, it is necessary to
assess the electronic and thermodynamic characteristics of XC materials to see if they satisfy
the necessary requirements for their use in the high temperature/high power settings. One
must note that the devices based on wide bandgap GaN and SiC have recently emerged in
the commercial market for slowly replacing the traditional Si-built electronic parts. Both
GaN and SiC materials with wide bandgaps, high critical electric fields, and low dielectric
constants have reflected on the lower on-state resistance for a given blocking voltage. In
addition, these materials have exhibited high Debye temperatures ΘD(T), low specific heats
Cv(T) and low thermal expansion α(T) coefficients. As compared to SiC, there are a few
disadvantages for the selection of GaN material. The main problems have been identified
as follows: (a) the manufacturing complexity, cost, intrinsic defects, and reliability concerns
about the integration of GaN into the existing processes with limited availability of sub-
strates, and (b) the relatively lower [higher] values of ΘD(T) [Cv(T), α(T)] [108,136]. Again,
with respect to Si (Eg ≡ 1.12 eV), the reported theoretical bandgap energies of GeC and SnC
materials are 1.51 eV [118], and 0.75 eV [117], respectively. Obviously, compared to SiC,
the binary GeC, SnC and/or ternary Ge1−xSnxC alloys with lower Eg and weaker bonding
have exhibited different lattice dynamical and thermodynamic properties. Therefore, we
strongly feel that devices based on binary GeC, SnC and/or Ge1−xSnxC materials may not
be suitable for radiation detection in nuclear reactors or high-temperature, high-power
settings. However, from recent successful efforts in the growth of ultrathin zb XC binary
and X1−xYxC ternary alloys, along with their predicted results of phonon, structural, and
thermodynamic traits, the materials can still be credible for the preparations of heterostruc-
tures in designing MQW and SL-based micro-/nanodevices for different strategic and
civilian application needs.
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