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Abstract: In recent years, there has been a significant focus on the green synthetization of metal oxide
nanoparticles due to their environmentally friendly features and cost-effectiveness. The aim of this
study is to biosynthesize zinc oxide nanoparticles (ZnO NPs) through a green method, utilizing crude
banana peel extract as reducing and capping agents, to characterize the synthesized ZnO NPs and
test their antibacterial activity. ZnO NPs were biosynthesized using the peel extract of banana with
various concentrations of zinc acetate dihydrate salt, followed by annealing at 400 ◦C for 2 h. The
synthesized ZnO NPs were characterized using UV–visible spectroscopy (UV-Vis), scanning electron
microscopy (SEM), dynamic light scattering (DLS), attenuated total reflectance–Fourier-transform
infrared (ATR-FTIR), and X-ray diffraction (XRD). Also, its antibacterial efficiency against different
bacterial strains was tested. ZnO NPs were biosynthesized successfully using the extract of Musa
Acumniata (cavendish) fruit peel with a UV-Vis wavelength range of 344 to 369 nm and an electrical
band gap ranging from 3.36 to 3.61 eV. The size varied from 27 ± 4 nm to 89 ± 22, and the negative
zeta potential (ζ) ranged from −14.72 ± 0.77 to −7.43 ± 0.35 mV. ATR-FTIR analysis showed that
the extract phytochemical functional groups were present on ZnO NPs. XRD results confirm the
formation of a highly pure wurtzite hexagonal structure of ZnO NPs. Moreover, the best obtained size
of ZnO NPs was selected for the antibacterial tests, giving the highest inhibition growth rate against
Staphylococcus epidermidis (98.6 ± 0.9%), while the lowest rate was against Pseudomonas aeruginosa
(88.4 ± 4.4%). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration
(MBC) were reported and compared to previous studies. The unique properties of greenly synthesized
ZnO NPs and their antibacterial activity have potential for reducing environmental pollution and
the use of antibiotics, which may contribute to solving the problem of bacterial resistance. Therefore,
studies that aim to design an applicable dosage form loaded with biosynthesized ZnO NPs might be
conducted in the future.

Keywords: green synthesis; eco-friendly method; green nanoparticles; zinc oxide nanoparticles;
banana peel extract

1. Introduction

Different types of nanoparticles (NPs) exhibit unique properties in comparison to bulk
particles, such as their high surface area and small size, ranging from 1 to 100 nm [1]. NPs’
interesting features make them the most common elements in the fields of nanotechnology
and nanoscience, leading to the use of NPs in various medical and pharmaceutical applica-
tions [2]. It is important to study and develop new methods of NP production without the
harmful side effects and environmental pollution that may be caused by utilizing chemical
and physical methods for the synthesis of NPs. The shift towards eco-friendly, green, and
biologically safe methods has been expanded recently by many researchers due to the
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necessity of producing NPs without damaging the natural world. Therefore, biologically
green methods are applied to NP production processes using bacteria and plant extracts [3].

Zinc oxide nanoparticles (ZnO NPs) are one of the most interesting metal oxide NPs
in the field of nanoscience because of their different properties, effects, and applications
in biomedical fields, such as bioimaging [4], drug delivery [5], antimicrobial, and anti-
cancer [6], in addition to their photocatalytic action [7] and wastewater remediation [8].

The ZnO NP is a semiconductor with a wide band gap of 3.37 eV and 60 mV excitation
energy at ambient temperature [9]. It has a hexagonal wurtzite crystal structure and is
present in solid form as a white powder [10]. ZnO NPs can be synthesized by physical and
chemical methods; however, these routes possess many disadvantages, such as the use of
costly equipment and materials, increased waste generation, large energy consumption, and
environmental and biological issues by using toxic and hazardous chemical compounds
during synthetization [11]. These drawbacks lead to the emergence of green methods to
avoid the mentioned problems by using different plant extracts to synthesize ZnO NPs, such
as an extract of the leaves of Mangifera Indica and Annona Muricata [12], an extract from
the flower of Nyctanthes arbortristis [13], an extract of the leaves of Phoenix dactylifera [14],
and an aqueous extract of the leaves of Laurus nobilis [15]. These extracts contain different
phytochemicals (phenol, alkaloids, tannins, flavonoids, terpenes, saponins, and proteins)
that can act as reducing, capping, and stabilizing agents to aid in the stabilization of
nanoparticle formation as well as controlling crystal growth during synthetization [16,17].
The use of a plant extract is the most preferable method over other eco-friendly methods in
the biosynthesis of metallic NPs due to the availability and affordability of plant sources,
as well as its simplicity and reduced time consumption [18]. ZnO NPs have a promising
antibacterial effect on various bacterial species by using different mechanisms of action
against both Gram-negative and -positive bacteria. ZnO NPs have been reported to be
non-toxic to human cells [19], necessitating their use as antibacterial agents, noxious to
microorganisms, and having good biocompatibility with human cells [20].

In this work, bananas were chosen as the plant source for the biosynthesis process
of ZnO NPs due to being an edible plant source, low cost, and having a phytochemically
rich peel that plays a crucial role in the NP biosynthesis process [21]. Bananas belong to
the Musaceae family, which includes several hybrids in the genus Musa [22]. Banana peel
extract (BPE) contains many components, including flavonoids, tannins, phlobatannins,
alkaloids, glycosides, pectin, and terpenoids, as well as enzymes such as polyphenol
oxidase. These compounds are supposed to reduce, cap, and stabilize biosynthesized
NPs [23]. According to the literature, there are few reported works on the synthesis of ZnO
NPs using BPE [24–26]. However, the obtained NPs differ in their production methods. This
highlights the gap in looking for an optimum synthesis methodology in view of producing
ZnO NPs with exceptional performance. We analyzed the production methods used in
various studies that involve the use of green sources for biosynthesis. It was found that
most studies follow either the precipitation or sol–gel method. However, the difference lies
in the annealing process and precursor concentration. Our study involves conducting an
annealing process on the final produced NP powder, in contrast to studies that synthesize
ZnO NPs and nanosheets without the annealing process. This could lead to improved
purity and uniformity of the biosynthesized ZnO NPs, thereby enhancing their antibacterial
action against different bacterial strains and providing better results.

In this study, we work on the green synthesis, characterization, and antibacterial effect
of the biosynthesized ZnO NPs using BPE. Zinc acetate was used as a zinc precursor at
different concentrations with fixed amounts of BPE. The effect of zinc acetate concentration
on particle size and charge was reported using scanning electron microscopy (SEM) and
dynamic light scattering (DLS). Other ZnO NP characterizations were studied utilizing
ultraviolet–visible spectroscopy (UV–Vis), attenuated total reflectance–Fourier transform
infrared (ATR-FTIR), and X-ray powder diffraction (XRD). The antibacterial activity of ZnO
NPs is studied against four different bacterial strains, including Escherichia coli (E. coli),
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Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), and Staphylococcus
epidermidis (S. epidermidis).

2. Results and Discussion
2.1. Banana Species Identification

The species of banana fruits in this work belongs to Musa Acumniata CV. (Cavendish).
The reported species was under herbarium number 11988, as presented in Figure 1A,B.
The banana peels were collected from the plant shown in Figure 2 below at the USM
main campus.
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2.2. Characterization and Analysis Technique for Banana Peel Extract
2.2.1. Manual Screening Tests

The presence of tested phytochemical compounds within BPE is illustrated in Table 1,
with its observations as color change or precipitate formation for each compound shown in
Figure 3.

Table 1. General phytochemical class tests and observations.

Phytochemicals Test Result Presence or Absence of Result Figure

Flavonoids Ammonia test Pale brown color + Figure 3A

Glycosides Glycosides test Formation of an oil layer on the top + Figure 3B

Saponins Emulsion test Formation of a stable emulsion + Figure 3C
Froth test Formation of stable froth + Figure 3D

Phenols
Ferric chloride test Dirty-green color + Figure 3E
Lead acetate test Bulky white precipitate + Figure 3F

Phlobatannins Phlobatannins test Red precipitate + Figure 3G

(+): present.
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All the tabulated results agree with the study of Bag and co-workers from 2020. The
presence of these phytochemicals in BPE has a crucial role in reducing and stabilizing ZnO
nanoparticles during the process of synthesis and formation [23,27,28].

2.2.2. Liquid Chromatography/Mass Spectroscopy (LC/MS) Analysis

The extract phytochemical classes within the extract were flavonoids and phenolic
compounds, which have an important role in ZnO synthesis stages [29]. In this study, we
screened and measured the main compounds belonging to the mentioned classes, such as
Quercetin, Rutin, Catechin, Ferulic Acid, Caffeic acid and Vanillic acid.

An LC-MS chromatogram is presented in Appendix A (Figures A1–A6), indicating
the separated compounds from aqueous BPE and compared with the standard for each
compound.

The compounds identified and their concentrations in the extract were calculated
according to the utilized standards, as detailed below in Table 2.
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Table 2. Identified compounds in aqueous BPE and measured concentrations by LC/MS.

Compound Chemical
Formula Phytochemical Class Molecular

Wt. g/mol
Mass to

Charge (m/z)
Retention

Time (min)
Concentration

(ppm) Figure

Quercetin
(3,3′ ,4′ ,5,7-pentahydroxyflavone) C15H10O7

Flavonol from the
flavonoid group of

polyphenols
302.0342 301.0342 5.97 1.279 ± 0.086 Figure A1

Rutin (3′ ,4′ ,5,7-Tetrahydroxy-3-[α-L-
rhamnopyranosyl-(1→6)-β-D-
glucopyranosyloxy]flavone)

C27H30O16

glycoside Flavonol from
the flavonoid group of

polyphenols
610.1519 609.1447 4.77 5.877 ± 0.197 Figure A2

Catechin ((2R,3S)-2-(3,4-
Dihydroxyphenyl)-3,4-dihydro-2H-

chromene-3,5,7-triol)
C15H14O6

flavonols from the
flavonoid group of

polyphenols
290.0786 289.0713 4.11 0.476 ± 0.087 Figure A3

Ferulic acid ((2E)-3-(4-hydroxy-3-
methoxyphenyl) prop-2-enoic acid) C10H10O4

flavonols from the
flavonoid group of

polyphenols
194.0574 193.0501 4.61 1.068 ± 0.086 Figure A4

Caffeic acid
(3,4-Dihydroxybenzeneacrylicacid) C9H8O4

Intermediate in the
production of lignin 180.0419 179.0346 4.19 5.446 ± 0.508 Figure A5

Vanillic acid
(4-hydroxy-3-methoxybenzoic acid) C8H8O4

Intermediate in the
production of vanillin

from ferulic acid
168.0419 167.0347 5.97 1.496 ± 0.263 Figure A6

2.3. Synthesis of ZnO NPs and Yield

The biosynthesized ZnO NPs were collected after the annealing process as white
powder and weighed to measure the yield percentage of each sample according to the
previously mentioned Equation (1). Figure 4 shows the percentage of ZnO NPs.
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The yield of ZnO NPs ranged from 31.89 ± 0.72% to 38.72 ± 1.56% in direct proportion
with the concentration of Zn acetate, as presented in Table 3. These results agree with the
reported findings of Wang and co-workers [30].

Table 3. ZnO NP size range by SEM, band gap, and yield percentage.

ZnO NPs Samples Zn Acetate
Conc. (M)

SEM Size Range
(nm) Band Gap (eV) ZnO NPs Yield %

A 0.1 89 ± 22 3.36 38.72 ± 1.56

B 0.07 83 ± 16 3.41 35.8 ± 0.87

C 0.04 45 ± 7 3.44 34.73 ± 0.66

D 0.01 27 ± 4 3.61 31.89 ± 0.72
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2.4. Characterization of ZnO NPs
2.4.1. UV–Visible Spectroscopy

In terms of the UV–visible absorption spectrum of biosynthesized ZnO nanoparticles
using BPE with Zn precursor concentrations ranging from 0.01 M to 0.1 M, as shown in
Figure 5A, a strong absorption band between 300 and 550 nm is known to be presented by
ZnO NPs [31]. Due to the ZnO nanoparticles’ surface plasmon resonance (SPR) property,
they exhibit a characteristic peak in the range of 300 to 370 nm, indicating nanoparticle
electron vibration with the light wave [31]. The position of ZnO nanoparticles’ SPR is
influenced by both their shape and size. In particular, the size of the synthesized nanopar-
ticles is directly proportional to the absorbed wavelength by ZnO nanoparticles. Larger
nanoparticles exhibit a high absorption wavelength, while smaller nanoparticles exhibit
a lower wavelength [32]. The spectra reveal that the absorbance wavelength decreases
with decreased Zn precursor concentration at a fixed quantity of BPE, as observed for the
peak of the lowest Zn precursor concentration (0.01 M). There are distinct peaks around
370–340 nm for ZnO NP samples. The peak at 344 nm shows a blue shift in the 0.01 M
sample in Figure 5D compared to other samples (0.1 M, 0.07 M, and 0.04 M), which have
peaks at 369, 364, and 361 nm, respectively, in Figure 5A–C. The peak of the 0.01 M sample
becomes narrower and sharper than others, suggesting more particle production and the
promotion of the formation of smaller nanoparticles. As illustrated, the SPR band ranging
around 340–370 nm confirms ZnO nanoparticle formation, in agreement with previously
reported results [33,34]. The ZnO NP band gaps are calculated from the wavelength of the
maximum peak absorbance according to Equation (2), as illustrated in Table 3.
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2.4.2. Scanning Electron Microscopy (SEM)

The influence of different concentrations of Zn acetate solution (0.01 M, 0.04 M, 0.07 M,
and 0.1 M) and BPE on the shape and size of ZnO NPs during the biosynthesis process
is studied. The results indicate that when the Zn acetate concentration increased from
0.01 M to 0.1 M, the particle size decreased from 89 ± 22 nm to 27 ± 4 nm, as tabulated
in Table 3. SEM images in Figure 6 show that the largest nanoparticles are formed with
the highest concentration of Zn acetate. The biosynthesized ZnO NPs have a rod-like
structure, as seen in Figure 6A, and a hexagonal structure, as seen in Figure 6B–D. NP
size frequency percentages for each sample were counted by using image J software 1.53t.
from SEM images, as shown in Figure 7. In the presence of fixed amounts of BPE, the
size increased as the Zn acetate concentration increased due to the competition between
Zn ions and functional groups of BPE phytochemicals. Higher percussor concentrations
form large anisotropic particles, and these findings agree with the findings of Mohammadi
and Ghasemi in 2018 [31]. Large particle sizes are produced upon increasing the Zn
acetate concentration because of metal ion availability, resulting in the aggregation and
agglomeration of NPs with higher precursor concentrations [35]. Thus, 0.01 M of Zn acetate
is the optimum concentration for the green synthesis of ZnO nanoparticles using BPE.
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2.4.3. Dynamic Light Scattering (DLS) Analysis

The size and charge of biosynthesized ZnO nanoparticle samples (0.1 M, 0.07 M,
0.04 M, and 0.01 M) were compared to report the effect of changing zinc acetate precursor
concentrations at fixed BPE amounts. It was found that there is a significant difference in
both size and charge between each sample, as presented in Table 4.

Table 4. Nanoparticle size range by DLS, zeta potential and PDI.

ZnO NPs Samples Size Range (nm) by DLS Zeta Potential (mV) PDI

A (0.1 M) 609.5 ± 60.40 −7.43 ± 0.35 0.694 ± 0.173

B (0.07 M) 554.7 ± 33.95 −10.69 ± 20 0.618 ± 0.082

C (0.04 M) 435 ± 23.43 −14.72 ± 0.77 0.253 ± 0.09

D (0.01 M) 278 ± 5.60 −13.18 ± 1.15 0.28 ± 0.036

According to the findings, there is an inverse relationship between size and precursor
concentrations in the presence of fixed BPE quantities due to the extract effect acting as a
reducing, stabilizing, and capping agent during the biosynthesis process [36]. Concerning
nanoparticle charge, it was found that size and charge are inversely proportional. This is
because a decrease in particle repulsion force causes nanoparticles to aggregate into larger
particles [37]. At higher charge and low PDI, as seen with samples (c) 0.04 M and (d) 0.01 M,
the zeta potential was −14.72 ± 0.77 mV and −13.18 ± 1.15 mV and PDI 0.253 ± 0.09 and
0.28 ± 0.036, respectively, improving the stability of NPs and hindering their agglomeration
due to good particle size distributions. High negative charge refers to a significant amount
of negative charge present on the particle’s surface, resulting in strong repulsion between
particles and greater stability of the colloidal suspension [38]. Furthermore, the negative
zeta potential value can be attributed to the presence of negatively charged capping agents
that are bound to the surface of the nanoparticles. In this study, the stability of the synthe-
sized ZnO NP colloidal suspension is confirmed by the zeta potential values being within a
range of +25 to −25 mV, which is considered stable [39].

The large difference between SEM and DLS measurements for the same synthesized
nanoparticle sample is due to the presence of a solvent layer adhering to the particle surface
as it moves under the influence of Brownian motion and, thus, its measured hydrodynamic
radius. It is anticipated that the diameter of actual nanoparticles will be smaller than the
value obtained by DLS [40–42]. The shape of NPs can influence how light scatters off the
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particles. Spherical nanoparticles typically produce simpler scattering patterns compared
to non-spherical or irregularly shaped particles. The shape of the synthesized NPs was
hexagonal, not spherical, which introduced complexities in the interpretation of DLS data.
In such cases, complementary techniques like electron microscopy are used to confirm the
shape and provide additional insights into the particle morphology [43,44]. The size and
charge distribution are illustrated in Figures 8 and 9.
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2.4.4. Attenuated Total Reflectance–Fourier-Transform Infrared (ATR-FTIR)

In addition to carbohydrates, many phytochemicals, like alkaloids, flavonoids, glyco-
sides, phenols, and tannins, are present within banana peels [42]. In this study, only the
substances that are water-soluble are expected to be present (Figure 10A) due to the use
of water as a solvent for extraction. A broad and intense peak at 3310 cm−1 represents
(O-H) hydroxyl groups for phenolic compounds, alkaloids, and water [45]. This peak also
belongs to the (N-H) bond [46]. The vibration of methyl bonds (C-H) in aliphatic hydro-
carbons presented at 2939 cm−1 was similarly observed by Rojas Flores and co-workers in
2022 [47]. The sharp peak at 1635 cm−1 belongs to the vibration of (C=C) bonds in aromatic
rings, as previously reported by Sangeetha and co-workers in 2012 [48]. This band is also
attributed to (C=O) of amides, the N-H of amines, and carboxylic groups, which are related
to amino acids and flavonoids based on previous plant extract studies by Oliveira and
co-workers in 2016 [46]. The peak at 1396 cm−1 arises from (C-O-C) stretching modes of
vibration and (C-H) bending [49]. Furthermore, the peak for vibrations of (C-O) bonds
was presented at 1257 cm−1 (lignin band) and may be attributed to ester and amide [49],
while the peak at 1061 cm−1 relates to the stretching of (C-OR) bonds, which are related
to phenolic compounds [50]. The band at 630 cm−1 is attributed to the bond vibration of
the (C-H) group in carbohydrates [51]. These results confirm the presence of necessary
phytochemical compounds and functional groups that could be responsible for the process
of reduction and stabilization of ZnO NPs, as explained in the results of ATR-FTIR for the
prepared ZnO NPs.
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ZnO NPs.

After the annealing process, the prepared powder of ZnO NPs was analyzed using
ATR-FTIR. Figure 10A,B display the spectra of ZnO NPs, BPE, and Zn acetate. The syn-
thesized ZnO NP functional group bands are located at 3671, 2980, 2901, 1396, 1241, 1061,
882, and 410 cm−1, as shown in Figure 10A, in comparison with the BPE spectrum. The
peak at 3671 cm−1 could be related to (O-H) and its stretching vibration, which indicates
the involvement of hydroxyl groups from the polyphenolic compounds of BPE, in addition
to the peaks at 2980 and 2901 cm−1, which are probably assigned to (C-H) stretching
and responsible for capping of ZnO NPs. These results correlate with the results of the
green synthesis of ZnO NPs by Acalypha indica leaf extract [52]. The peaks at 1396 and
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1061 cm−1, which are present in BPE and ZnO NP spectra, indicate (C-O-C) stretching
modes of vibration and (C-H) bending, which are related to phenolic compounds in BPE,
suggesting the capping effect of BPE biochemicals on ZnO NPs. Furthermore, the shift
from 1257 to 1241 cm−1 also highlighted the presence of an amide bond from BPE proteins
on ZnO NPs [53].

In comparison with the Zn acetate spectra in Figure 10B, the formation of new peaks
at 1396, 1061, and 1241 cm−1 in the ZnO NPs spectrum confirms a capping effect of phyto-
chemicals from BPE on the synthesized ZnO NPs. In addition to the sharp characteristic and
intense peak that can be seen at 410 cm−1 for the bond vibration of (Zn-O), this confirms
the formation of ZnO NPs using BPE [53,54]. Synthesized ZnO NPs show the same peaks
at 1061 cm−1 and 1396 cm−1 in addition to shifted peaks from 1257 cm−1 to 1241 cm−1 and
1939 cm−1 to 2091 cm−1, which are related to the BPE. This suggests occurrences of capping
and bounding on the ZnO NP surface as BPE gives electrons for the reduction process of Zn
ions to ZnO NPs with stabilizing effects. These findings agree with a previously conducted
study of ZnO-NP synthesis using the leaf extract of Sambucus ebulus [45].

2.4.5. X-ray Powder Diffraction (XRD)

Biosynthesized nanoparticle powder was characterized by XRD to confirm the forma-
tion of ZnO nanoparticles using banana peel extract. Based on the JCPDS card number
00036-1451 (ZnO wurtzite) of the standard ZnO nanoparticle diffractogram (JCPDS, 1977),
ZnO nanoparticles were synthesized successfully by BPE, which obtained values of 2θ
angles at (100) 31.78◦, (002) 34.42◦, (101) 36.25◦, (102) 47.53◦, (110) 56.57◦, (103) 62.87◦,
(200) 66.42◦, (112) 67.93◦, (201) 69.09◦, (004) 72.5◦, and (202) 76.9◦. These peaks, which are
presented in Figure 11, indicate the presence of a hexagonal wurtzite crystalline structure,
corresponding to JCPDS No. 36-1451. No peaks corresponding to impurities were noted.
These results agree with a previous study by Ghamsari and co-workers in 2019 [55].
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2.5. Antibacterial Activity of ZnO NPs

Based on the optimized characteristics of ZnO nanoparticles, sample (D) (0.01 M ZnO
NPs) was selected to test the rate of growth inhibition against E. coli ATCC no. 25922,
P. aeruginosa ATCC no. 27853, S. aureus ATCC no. 25913, and S. epidermidis ATCC no.
12228. MIC and MBC were determined. Figure 12 shows the growth inhibition rate
of bacterial growth in the presence of ZnO NPs compared with the growth rate in the
absence of ZnO NPs. According to Equation (3), the results of growth inhibition show
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that the highest antibacterial effect of ZnO-NPs was against S. epidermidis (98.6 ± 0.9%),
while the lowest effect was against P. aeruginosa 88.4 ± 4.4%. The MIC of ZnO NPs was
at 500 µg.mL−1, with a growth inhibition of 90.5 ± 1.4% and 89.5 ± 1.32% against S.
aureus and S. epidermidis, respectively. Furthermore, the MIC was at 500 µg.mL−1 with
79.11 ± 1.69% growth inhibition against E. coli and 600 µg.mL−1 against P. aeruginosa with
a growth inhibition of 88.4 ± 4.4%. The synthesized ZnO NPs were effective against all
tested bacterial strains with different MIC levels, depending on the type of bacteria. Table 5
presents the MIC and MBC of ZnO NPs against tested bacterial strains, indicating that the
bactericidal action of ZnO NPs against S. aureus and S. epidermidis was at 500 µg.mL−1.
There is no bactericidal action of ZnO NPs against both E. coli and P. aeruginosa.
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Table 5. MIC and MBC of ZnO NPs and BPE against tested bacterial strains.

Bacterial Strain
ZnO NPs BPE

MIC
µg.mL−1

MBC
µg.mL−1

MIC and MBC
µg.mL−1

S. aureus ATCC no. 25913 500 500 N.D.

S. epidermidis ATCC no. 12228 500 500 N.D.

E. coli ATCC no. 25922 500 N.D. * N.D.

P. aeruginosa ATCC no. 27853 600 N.D. N.D.
* N.D.; Not detected.

Based on the results presented in Table 5, it can be concluded that ZnO NPs inhibit the
growth of both G-positive and G-negative bacteria strains, while no anti-bacterial effect
is observed against bacteria strains using BPE. The susceptibility of bacteria to ZnO NPs
might vary based on several parameters, such as the bacterial species, the characteristics
of the nanoparticles, and experimental environments. This is in agreement with previous
results by Ibrahem and co-workers in an investigation of the antibacterial activity of ZnO
NPs against S. aureus and P. aeruginosa [56].

The action of ZnO NPs was previously cited to be against bacteria cells via surface
proteins, subsequently penetrating the cell [57]. This interaction alters the cell’s metabolism,
ultimately resulting in bacterial cell destruction, loss of cell integrity, and death [57]. The
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liberation of hydrogen peroxide and reactive oxygen species (ROS) by ZnO NPs on bacterial
cells, in addition to the reactions with DNA, lipids, and proteins, were ZnO mechanisms
for damaging bacterial cells, leading to cell death [58].

An overview of the current results is presented alongside studies reported in the
literature in Table 6. In particular, the synthesis method, particle size, and the effect of
ZnO NPs on different bacteria strains are considered. According to Table 6, synthesized
ZnO NPs using chemical methods exhibit antibacterial effects against different bacterial
strains, with MICs ranging from 3100 to 800 µg.mL−1 and MBCs ranging from 16,000 to
800 µg.mL−1. Green synthesis using BPE was conducted in a few studies without applying
the annealing process [24–26]. Other studies synthesizing ZnO NPs using green methods
gave lower MICs by testing ZnO NPs against lower bacterial concentrations than our study.
In comparison with the above-mentioned studies, the biosynthesized ZnO NPs in our study
exhibit better antibacterial activity against both Gram-positive and Gram-negative bacterial
strains when compared to ZnO NPs made using other methods. This improvement in
antibacterial activity may be due to the high purity of greenly synthesized ZnO NPs using
bioactive phytocompounds, which include flavonoids and polyphenols from BPE [59],
followed by an annealing process to improve crystallinity and enhance the removal of
impurities and defects to ensure the highest purity and effect [60,61].
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Table 6. Recent studies of ZnO NPs compared their synthesis method, characterizations, and potential antibacterial effects.

Plant Used Extract Type Method Particle Size Potential
Therapeutic Effect MIC MBC Microorganism

Strains
Bacterial Conc.

(CFU/mL) Annealing Reference

Eriobotrya
japonica leaves Aqueous Green 13.4 nm by XRD Antibacterial 364–194 µg/mL Not stated

E. coli, P. multocida,
B. subtilis and S.

aureus
5.0 × 106 calcined at 300 ◦C

for 2 h [62]

Prosopis farcta
fruit Aqueous Green 40–50 nm Antifungal 64 µg/mL 512 µg/mL C. parapsilosis and

C. albicans 1.0 × 105 calcined at 500 ◦C,
600 ◦C, and 700 ◦C [63]

Flower of
Nyctanthes
arbor-tristis

Aqueous Green 12–32 nm Antifungal 128–16 µg/mL Not stated

A. alternata, A.
niger, B. cinerea, F.

oxysporum, P.
expansum

1.0 × 105 Not conducted [13]

Banana peel Aqueous Green 27 ± 4 nm by SEM Antibacterial 500–600 µg/mL 500 µg/mL

S. aureus
S. epidermidis

E. coli
P. aeruginosa

6.0 × 106 400 ◦C for 2 h Current
study

Banana peel Aqueous Green 20–40 nm Antibacterial
one concentration

used only 250
µg/mL

Not stated
P. aeruginosa, S.
aureus, Candida

albicans
1.5 × 106 Not conducted [24]

Date seed and
Banana peel Aqueous Green 72.6–54.4 nm Antibacterial

activity 750 µg/mL 3000–1500
µg/mL

E.coli, Salmonella
enteritidis, B.

subtilis, S. aureus
5.0 × 105 Not conducted [64]

Banana peel Aqueous Green
Nanosheet length
345.61 nm, width

81.22 nm

Antibacterial
activity and
anti-cancer

activity

IC50 of 0.1 M =
11,810 µg/mL,
IC50 of 0.2 M =
11,920 µg/mL

Not stated

B. subtilis, S.
epidermidis, E.coli,

Enterobacter
aerogenes

1.0 × 106 Not conducted [26]

Artabotrys
hexapetalu,
Bambusa
vulgaris

Aqueous Green 33–24 nm by XRD
antibacterial
activity-Zone

inhibition
Not stated Not stated Streptococcus

Serratia Not stated calcination at 500
◦C for 3 h [65]

Mango and
Soursop Leaf Aqueous Green 23–17 nm Not stated Not stated Not stated Not stated Not stated 400 ◦C-3 h [12]

Cherry fruit Aqueous Green 20.18 nm Not stated Not stated Not stated Not stated Not stated Not conducted [31]
Phoenix

Dactylifera L.
leaves

Aqueous Green 19.77–26.28 nm Not stated Not stated Not stated Not stated Not stated 450 ◦C-3 h [14]

Laurus nobilis L.
leaves Aqueous Green 21.49, 25.26 nm Not stated Not stated Not stated Not stated Not stated Not conducted [15]
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Table 6. Cont.

Plant Used Extract Type Method Particle Size Potential
Therapeutic Effect MIC MBC Microorganism

Strains
Bacterial Conc.

(CFU/mL) Annealing Reference

Nephelium
lappaceum L.

peels
Aqueous Green 20 nm by XRD Not stated Not stated Not stated Not stated Not stated 450 ◦C [66]

Hibiscus
rosa-sinensis Aqueous Green 30–35 nm Not stated Not stated Not stated Not stated Not stated Not conducted [67]

Plant not used Extract not
used

Chemical
method 47–33 nm

Antibacterial
activity of ZnO
and Nd doped

ZnO NPs

800 µg/mL 800 µg/mL E. coli, K.
pneumoniae Not stated 700 ◦C for 5 h. [68]

Plant not used Extract not
used

Commercial
ZnO-NPs Not stated Antibacterial

Activity 1000–8000 µg/mL 4000, 8000,
16,000 µg/mL

E. coli, K.
pneumoniae, P.

aeruginosa
2.5 × 105 Not conducted [69]

Plant not used Extract not
used

Chemical
method 50 nm Antibacterial

activity
1250, 625, 1250,

156 µg/mL
1250, 2500, 5000,

312.5 µg/mL

E. coli, S.
epidermidis, S.

aureus, P.
aurugenosa

1.0 × 108 Not conducted [70]

Plant not used Extract not
used

Commercial
ZnO-NPs 50−70 nm Antibacterial

activity 1200–80 µg/mL Not stated

S. aureus, S.
epidermidis,

Streptococcus
pyogenes, E. coli

Not stated Not conducted [71]



Inorganics 2024, 12, 121 16 of 25

Several methods can be used to synthesize nanoparticles. Green synthesis offers a
simpler and more affordable synthesis procedure than chemical or physical methods, which
are expensive and produce dangerous by-products. It reduces the amount of chemicals
released into the environment and eliminates needless processing stages [72]. A concise
overview is provided in Table 7, comparing between traditional methods and green syn-
thesis in NP production, highlighting key aspects, such as environmental impact, energy
consumption, cost-effectiveness, product quality, and regulatory compliance.

Table 7. General comparison between traditional and green synthesis methods for NP production.

Comparison Aspect Traditional Methods Green Synthesis

Environmental Impact
Frequently entail the utilization of hazardous
chemicals, solvents, and reducing agents. Produce
substantial quantities of dangerous waste [73].

Utilize natural, renewable, and non-toxic materials
as reducing agents. Minimize the production of
potentially dangerous waste [73].

Energy Consumption

High temperatures, pressures, and extended reaction
times are necessary, resulting in elevated energy
consumption and the release of greenhouse gas
emissions [74].

Operate under milder reaction conditions, often at
ambient temperatures and atmospheric pressure,
resulting in lower energy requirements [75].

Cost-Effectiveness
The high costs are attributed to the use of costly
reagents, energy-intensive procedures, and
restrictive waste management regulations [76].

Utilize inexpensive and readily available biological
materials as reducing and capping agents. Eliminate
costly purification steps and reduce energy
consumption [77].

Product Quality and Purity

The production of nanoparticles results in the
formation of particles that have a high level of purity
and a consistent size distribution. However, it is
possible for these particles to contain trace amounts
of hazardous compounds or by-products, which can
have an impact on their characteristics [3].

The nanoparticles could show differences in both
particle size and morphology, nevertheless, they
demonstrate excellent biocompatibility and less
toxicity [3].

Regulatory Compliance

Concerns related to regulations governing
occupational safety, waste disposal, and
environmental protection arise from the use of
hazardous chemicals. Compliance necessitates costly
measures [78].

Align well with emerging regulatory frameworks
promoting sustainable manufacturing practices.
Facilitate easier compliance with regulatory
requirements [78].

In brief, green synthesis provides a more environmentally friendly, energy-efficient,
cost-effective, and compliant alternative to conventional techniques of synthesizing nanopar-
ticles. This makes it a potential approach for sustainable applications in nanotechnology.

3. Materials and Methods
3.1. Materials and Reagents

The banana fruit was taken from a local plant at the University of Since Malaysia (USM),
Penang, Malaysia (5.356318◦ N, 100.297760◦ E). Zinc acetate dihydrate (Zn (CH3COO)2·
2H2O) was chosen as the precursor, while absolute ethanol 99.8% v/v and sodium hy-
droxide, ammonia solution 32% w/v, hydrochloric acid solution 37% w/v, glacial acetic
acid 99.5% v/v, sulfuric acid 95.0–98.0% w/w, ferric chloride solution 45% w/v, olive oil,
quercetin, rutin, catechin, ferulic acid, caffeic acid, and vanillic acid were purchased from
Sigma Aldrich®, Inc., St. Louis, MO, USA. All the obtained materials and chemicals were of
analytical grade. Acetonitrile, methanol, and formic acid were LC/MS grade from Sigma
Aldrich®, Inc., St. Louis, MO, USA.

3.2. Banana Species Identification and Banana Peel Extract Preparation

Banana fruit, leaf, and flower were collected and washed for microscopic identification
after the air-drying process at Herbarium center, USM, Penang, Malaysia, to identify and
report their species and herbarium number. The banana fruits were washed multiple
times with distilled water (D.W.) to eliminate any dust particles and contaminants that
may have been present on their peels. The peels were air-dried, cut into smaller pieces,
and then extracted using the method of decoction with D.W. For the extraction process,
10 g of banana peel was used in 100 mL of D.W. at 80 ◦C for 1 h with continuous stirring.
The extracted solution was filtered first using muslin cloth, followed by filtration using
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Whatman No. 1 filter paper thrice. The final BPE solution was stored at 4 ◦C for further
analysis and use.

3.3. Characterization and Analysis Technique for Banana Peel Extract
3.3.1. Manual Screening Tests

A qualitative analysis of BPE within the same concentration as the extract concen-
tration that will be used in the synthesis process (10 g/100 mL) was conducted to detect
phytochemicals responsible for ZnO nanoparticle production, such as flavonoids, tannins,
saponins, and glycosides.

Ammonia solution (3 drops) was added to 5 mL of the aqueous BPE, followed by
0.5 mL of concentrated HCL, and the resulting color was recorded to detect the presence
of flavonoids.

Acetic acid was added (2 mL) to 5 mL of the aqueous BPE, then cooled at 4 ◦C in an
ice bath to add 1 mL of concentrated H2SO4 dropwise until an oily layer formed, indicating
the presence of glycosides.

Emulsion tests were used to detect the presence of saponins by mixing 5 mL of the
aqueous BPE with D.W. and shaking vigorously until froth formed. Then, 3–5 drops of
olive oil were added to the froth and shaken vigorously until a stable emulsion formed.
Saponin presence was confirmed by conducting a shaking test as well. The formation of
stable froth at the top of the extract confirms the presence of saponins.

The presence of tannins was tested by adding 2–3 drops of 5% FeCl3 to 5 mL of the
aqueous BPE and observing the precipitate formation, and a change in color indicated
tannin in the aqueous BPE.

The presence of phlobatannins was tested by boiling 3 mL of the aqueous BPE with
2 mL of 1% HCL. The presence of red color at the bottom of the test tube and the deposition
of red precipitate confirms the presence of phlobatannins.

A lead acetate test was used for phenolic compound detection with the addition of
a 10% lead acetate solution to 5 mL of the aqueous BPE. The formation of bulky white
precipitates confirms the presence of phenolic compounds.

Methods for qualitative analysis of the extract were used according to standard litera-
ture procedures [27,79].

3.3.2. Liquid Chromatography/Mass Spectroscopy (LC/MS) Analysis

Sample preparation: The aqueous BPE solvent was evaporated using a rotary evapo-
rator to obtain the extract in solvent-free form. The dried extract (64.4 mg) was dissolved in
10 mL D.W. and 40 mL methanol, then centrifuged at 4000 rpm for 2 min, and 1 mL was
transferred to an auto sampler to inject 3 µL.

Instrumentation and LC/MS parameters: In-house method was used for the BPE
sample analysis using Bruker Daltonik (Bremen, Germany) Impact II ESI-Q-TOF System
equipped with Bruker Dalotonik Elute UPLC system (Bremen, Germany) for screening
compounds of interest. This instrument was operated using the Ion Source Apollo II ion
Funnel electrospray source. The capillary voltage was 2500 V, the nebulizer gas was 2.0 bar,
the dry gas (nitrogen) flow was 8 L/min, and the dry temperature was 200 ◦C. The mass
accuracy was <1 ppm; the mass resolution was 50,000 FSR (Full Sensitivity Resolution);
and the TOF repetition rate was up to 20 kHz.

Chromatographic separation was performed using a Bruker Solo 2.0_C-18 UHPLC
column (100 mm × 2.1 mm × 2.0 µm) at a flow rate of 0.51 mL/min and a column
temperature of 40 ◦C. The solvents were (A) D.W. with 0.1% methanol and (B) methanol.

Phytochemical Standards (Quercetin, Rutin, Catechin, Ferulic Acid, Caffeic acid and
Vanillic acid) stock solutions were prepared in different concentrations, ranging from 10
to 0.5 ppm, dissolved in dimethyl sulfoxide-DMSO (analytical grade), then diluted with
acetonitrile and used for identification of the exact MS and retention time.
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3.4. Synthesis of ZnO Nanoparticles

ZnO nanoparticles were synthesized using a green (eco-friendly) route by the precipi-
tation method [52]. BPE was used as a reducing, caping, and stabilizing agent to produce
nanoparticles without the use of harmful substances to the environment. Four different
concentrations of Zn acetate solution (0.1 M, 0.07 M, 0.04 M, and 0.01 M) were prepared,
followed by the dropwise addition of BPE (10 mL for each 100 mL of Zn acetate solution).
The reaction mixture was stirred at 600 rpm and 70 ◦C for 2 h. The pH of the reaction was
controlled by gradually adding 2 M NaOH at a constant rate until the pH reached 12. The
solution changed, and then a white precipitate formed. After the reaction was completed,
the mixture was centrifuged for 20 min at 5000 rpm, and the supernatant was removed,
while the precipitate was collected, dried, and annealed in a furnace oven at 400 ◦C for 2 h.
The calculation of the yield of ZnO NPs was according to Equation (1) [30] as follows:

Yield(%) =
Weight of ZnO NPs after annealing

Weight of Zinc aceate
× 100 (1)

3.5. Characterization of Zinc Oxide NPs
3.5.1. UV–Visible Spectroscopy

The biosynthesized ZnO NP powder was dispersed in deionized water with a concen-
tration of 0.1 wt.% to be used for UV–visible spectroscopy measurements. The band gap
equation used for ZnO NP band gap estimation is obtained by applying Equation (2) [80].
The absorption spectra were measured using a UV–Vis spectrophotometer (UV-1601, Shi-
madzu, Kyoto, Japan) within a wavelength range of 200–800 nm.

E(eV) =
1242

λ max(nm)
(2)

where band gap is represented by E and the wavelength is represented by λ at the sharp peak.

3.5.2. Scanning Electron Microscopy (SEM)

The size and surface morphology of the green synthesized ZnO nanoparticle samples
(0.1 M, 0.07 M, 0.04 M, and 0.01 M) were studied using FEI Quanta FEG 450 instruments
(FEI, Eindhoven, The Netherlands). The tested samples were prepared by mounting the
powder of ZnO NPs on aluminum stubs, followed by a coating using gold films (5 nm
thickness). The estimation of ZnO NPs’ sample size was reported utilizing the Image J
program [81].

3.5.3. Dynamic Light Scattering (DLS) Analysis

DLS was used to determine the size, size distribution diagram, the charge, and charge
distribution diagram of biosynthesized ZnO nanoparticles. The test was conducted using
DLS (Malvern, Zetasizer Ver. 7.11). The estimation of DLS primarily relies on the phe-
nomenon of Rayleigh scattering, exhibited by the suspended nanoparticles present in the
solution [82].

3.5.4. Attenuated Total Reflectance–Fourier-Transform Infrared (ATR-FTIR)

The ATR-FTIR spectra for the powder of biosynthesized ZnO NPs and Zn acetate were
recorded to confirm the formation of ZnO NPs and compare it with Zn acetate precursor.
The spectra were analyzed under atmospheric pressure at room temperature using ATR-
FTIR PerkinElmer at a resolution of 4 cm−1 from 400 to 4000 cm−1 with a scan average of
32 scans in ATR mode.

3.5.5. X-ray Powder Diffraction (XRD)

XRD was used to study the crystalline nature of biosynthesized ZnO nanoparticles.
XRD analysis was conducted in a scan range of 0–80◦ of Bragg angle using (Cu Kα) wave-
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length radiation λ = 0.1541 Å by a 7000 Shimadzu 2 kW model X-ray spectrophotometer
instrument (Shimadzu, Kyoto, Japan) at a 40 kV operating voltage and current of 40 mA.

3.6. Antibacterial Activity of ZnO NPs

Strains of bacteria (E. coli ATCC no. 25922, P. aeruginosa ATCC no. 27853, S. aureus
ATCC no. 25913, and S. epidermidis ATCC no. 12228) were cultured and incubated to be
used in this study. The liquid medium method was conducted to study the antimicrobial
activity of the biosynthesized ZnO NPs using optical density measurements for growth in-
hibition rate and to determine the minimum inhibitory concentration (MIC) and minimum
bactericidal concentration (MBC) against the mentioned bacterial strains [83].

The suspension of each bacterial strain was prepared with 2 McFarland turbidity
standard 6.0 × 108 colony-forming units per milliliter (CFU/mL) and diluted by the broth
medium to 6.0 × 107 (CFU/mL). ZnO NPs were suspended in broth medium and stirred
until a uniform colloidal suspension formed using different concentrations of ZnO NPs
ranging between 400, 450, 500, 550, and 600 µg.mL−1. These concentrations were prepared
by weighing (4.0, 4.5, 5.0, 5.5 and 6.0 mg) and suspended in 9 mL of broth medium, followed
by adding 1 mL of previously prepared bacterial suspension to each sample, which should
result in a final concentration of 6.0 × 106 (CFU/mL) of tested bacteria. NP-free medium
was used as a positive control, while bacteria-free medium was used as a negative control.
In addition, broth tubes served as a check for media sterility. The tested samples were
incubated with shaking for 24 h at 37 ◦C. Bacterial growth was estimated and compared
using optical density measurements of the culture at 600 nm by a UV-Vis microplate
reader. The readings were compared with negative and positive controls according to
Equation (3) [84,85] to estimate the bacterial growth inhibition rate.

The aqueous BPE activity was tested by using 100 µL of plant extract and serially
diluted by 1:1 to ten dilutions in a 96-well plate. Then, 100 µL of previously prepared
bacterial suspension was added to the samples. Then, the plates were incubated in plate
shaker for incubation at 37.0 ◦C for 24.0 h.

Growth inhibition(%) =
Positve control OD600 − (Tested OD600 − Negative control OD600)

Positve Control OD600
× 100 (3)

MIC was reported by visually observing tube turbidity after and before incubation and
by calculating bacterial growth rate, since 80% growth reduction or more would indicate
MIC in comparison with the control samples. For MBC determination, 50 µL was taken
from each tube of MIC test solution that showed no growth or turbidity and spread over
Miller–Hinton agar, then incubated at 37 ◦C for 24 h [83,86,87]. All measurements were
taken in triplicate.

3.7. Statical Data Analysis

The experiments were conducted in triplicate, and the results were reported as the
mean value with the standard deviation. A one-way analysis of variance (ANOVA) was
used for data testing (p < 0.05) to assess significant differences between samples. IBM
SPSS Statistics 17.0 (SPSS Inc., South Wacker Dr, Chicago, IL, USA) was utilized for the
statistical analysis.

4. Conclusions

The shift toward using NPs as antibacterial agents instead of conventional antibiotics
might be the best solution for limiting the use of antibiotics and preventing bacterial resis-
tance against most antibiotics, in addition to reducing the side effects and contraindications
of antibiotics. The current study showed ZnO NPs were successfully biosynthesized using
an aqueous BPE of Musa Acumniata CV. by a green method, resulting in highly pure and
effective NPs. Phytochemical compounds in the extract acted as reducing and stabilizing
agents, like flavonoids, polyphenols, glycosides, and saponins. The effect of different
precursor concentrations on bandgap, size, charge, and PDI of the synthesized NPs in the
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presence of fixed extract amounts of BPE was studied, and the best concentration was cho-
sen for further characterization and testing the antibacterial activity. The selected sample
was D (0.01 M) ZnO-NPs with a diameter of less than 30 nm, which was characterized and
tested against bacteria. ATR-FTIR analysis of the selected sample confirmed the presence of
extract biochemicals on the synthesized NPs. Also, XRD results indicate the production of
pure NPs with a wurtzite hexagonal structure. Moreover, the biosynthesized NPs demon-
strate strong antibacterial effects against G-positive bacteria (S. aureus and S. epidermidis), as
well as G-negative bacteria (E. coli and P. aeruginosa). The MIC and MBC were determined,
and we found that ZnO-NPs had a bacteriostatic effect on all tested strains while having a
bactericidal effect against S. aureus and S. epidermidis.

The green synthesis of NPs using environmentally friendly materials creates the
potential for reducing environmental pollution, especially when conducting the method
for large-scale production with an emphasis on annealing. The novel properties of green
NPs and their antimicrobial activity can reduce the use of antibiotics and may contribute
to solving the problem of bacterial resistance. Extensive research should be conducted to
study the effect of biosynthesized ZnO NPs in vivo and their cytotoxicity on human cells.
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Appendix A

The LC-MS chromatogram for the separated compounds from aqueous BPE compared
with standards for each compound presented in Figures A1–A6 below.
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Figure A1. Quercetin standard and separated quercetin from BPE sample.
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Inorganics 2024, 12, x FOR PEER REVIEW 22 of 27 
 

 

 
Figure A1. Quercetin standard and separated quercetin from BPE sample. 

 
Figure A2. Rutin standard and separated rutin from BPE sample. 

 

Figure A3. Catechin standard and separated catchin from BPE sample. 

Plant Standards\1 ppm, Quercetin 2: EIC C15H10O7 [M-H]- 301.0354±0.02 All MS

Banana extract_water and MeOH_108_1_27585.d: Quercetin
0.0

0.5

1.0

1.5

2.0

4x10
Intens.

0

1

2

3

4x10
Intens.

5.0 5.5 6.0 6.5 7.0 7.5 Time [min]

Plant Standards\1 ppm_ Rutin 1: EIC C27H30O16 [M-H]- 609.1461±0.02 All MS

Banana extract_water and MeOH_108_1_27585.d: EIC C27H30O16 [M-H]- 609.1461±0.02 All MS_Rutin

Banana extract_water and MeOH_108_1_27585.d: EIC C27H30O16 [M-H]- 609.1461±0.02 bbCID MS_Rutin

0
1000

2000

3000

4000

Intens.

0.0
0.5
1.0
1.5
2.0

4x10
Intens.

0

1

2

3
4x10

Intens.

3 4 5 6 7 8 Time [min]

Figure A3. Catechin standard and separated catchin from BPE sample.
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Figure A5. Caffeic acid standard and separated Caffeic acid from BPE sample.
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