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Abstract: Sm2Fe17N3 powder exhibits excellent magnetic properties but is unstable and decomposes
into α-Fe and SmN phases at high temperatures. Therefore, the key to producing Sm2Fe17N3 bulk
magnets is to reduce the deterioration of Sm2Fe17N3 powder during sintering. Herein, Sm2Fe17N3

bulk magnets were made using the spark plasma sintering (SPS) method with the addition of zinc
stearate powder and zinc powder. Adding small amounts of zinc stearate powder and zinc powder
improved the magnetic anisotropy and the coercivity of the magnets, respectively. The magnets
produced by the SPS method using zinc stearate powder and zinc powder exhibited enhanced
magnetic properties almost comparable to those of Sm2Fe17N3 powder.
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1. Introduction

High-performance neodymium-iron-boron (Nd-Fe-B) magnets have been applied to
various advanced electromagnetic devices, including hard disk drives, electric vehicles,
and medical equipment [1–3]. In particular, the production of electric cars equipped with
Nd-Fe-B magnet motors has considerably increased owing to the global trend of enacting
regulations to reduce the production of internal combustion engines, which emit large
volumes of greenhouse gases [4]. The growing demand for high-performance Nd-Fe-B mag-
nets has raised concerns over the prices of rare-earth materials and their availability [5–10].
Therefore, the development of permanent magnets using the relatively abundant rare-earth
element Sm has recently attracted interest.

Samarium-iron-nitride (Sm2Fe17N3) powder consists of the Sm2Fe17N3 compound.
The Sm2Fe17N3 compound has been produced by the nitrogenation of Sm2Fe17 alloy pow-
der, and thus, the Sm2Fe17N3 compound has been made in powder form. The Sm2Fe17N3
compound possesses not only high saturation magnetization comparable to the Nd2Fe14B
compound but also a higher Curie temperature and a higher uniaxial anisotropy [11–13].
However, the phase decomposition of the Sm2Fe17N3 compound at high temperatures
above 873 K makes it difficult to produce Sm2Fe17N3 bulk magnets in practice [14]. Sev-
eral attempts have been made to integrate Sm2Fe17N3 powder into bulk magnets [15–18].
Sm2Fe17N3 bulk magnets have been produced by nonconventional consolidation tech-
niques such as dynamic compaction using explosion or gun methods [15,16]. The dynamic
compaction has realized high-density Sm2Fe17N3 bulk magnets. Another nonconventional
consolidation technique, the so-called compression shearing method, has been successfully
applied to produce the Sm2Fe17N3 bulk magnets [17]. The compression shearing method
has also realized high-density Sm2Fe17N3 bulk magnets. However, there has yet to be a
practical application of these techniques due to the difficulty in production.

The SPS method has recently been effectively applied to produce Sm2Fe17N3 bulk
magnets [18,19]. The addition of zinc powder has been suggested to improve the coercivity
of Sm2Fe17N3 bulk magnets [20,21]. However, these magnets were magnetically isotropic,
and their remanence magnetization was not comparable to that of Sm2Fe17N3 powder. The
key to producing high-performance Sm2Fe17N3 bulk magnets using the SPS method is
to increase their remanence. As Sm2Fe17N3 powder possesses high magnetization, one
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solution is to align Sm2Fe17N3 powder before sintering. Herein, anisotropic Sm2Fe17N3
bulk magnets were successfully produced using the SPS method with the addition of
zinc stearate powder and zinc powder, and the effects of their addition on the magnetic
properties of the magnets were examined.

2. Results and Discussion

The images of the Sm2Fe17 alloy powder and Sm2Fe17N3 powder are shown in Figure 1.
The Sm2Fe17 alloy powder was made using the diffusion reduction process [22]. The
Sm2Fe17 alloy powder was a coarse powder with an average particle size of about 30 µm.
The Sm2Fe17N3 powder was first made by nitrogenation of the Sm2Fe17 alloy powder and
then pulverized into fine powder. The average particle size of the Sm2Fe17N3 powder was
about 3 µm. The fine Sm2Fe17N3 powder was used in this study.
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Figure 1. SEM images of (a) Sm2Fe17 alloy powder and (b) Sm2Fe17N3 powder.

Before the consolidation of the Sm2Fe17N3 powder using the SPS method, the powder
was characterized by X-ray diffraction and thermomagnetic studies. Figure 2 shows the
X-ray diffraction pattern of the Sm2Fe17N3 powder, together with that of the Sm2Fe17
alloy powder. The X-ray diffraction pattern of the Sm2Fe17 alloy powder shows a typical
Th2Zn17-type phase. The diffraction peaks of the Sm2Fe17 alloy powder were indexed to
be the Th2Zn17-type phase, and no clear diffraction peaks of Sm-oxides and α-Fe phase
were detected in the X-ray diffraction pattern. This indicates that the Sm2Fe17 alloy powder
made using the diffusion reduction process consisted of the Th2Zn17-type Sm2Fe17 phase.
The X-ray diffraction pattern of the Sm2Fe17N3 powder also exhibits a typical Th2Zn17-type
phase. Although it is known that the Sm2Fe17N3 phase decomposes into the α-Fe and
SmN phases at high temperatures [14], no diffraction peaks of these phases were noticed in
the X-ray diffraction pattern. It is confirmed that the Sm2Fe17N3 powder consisted of the
Sm2Fe17N3 phase.

Figure 3 shows the thermomagnetic curve of the Sm2Fe17N3 powder, together with that
of the Sm2Fe17 alloy powder. It was found that the thermomagnetic curves of the Sm2Fe17
alloy powder and the Sm2Fe17N3 powder are pretty different. The thermomagnetic curve
of the Sm2Fe17 alloy powder shows a magnetic transition at around 490 K. According to the
results of the X-ray diffraction studies, the Sm2Fe17 alloy powder consisted of the Th2Zn17-
type Sm2Fe17 phase. Thus, the magnetic transition is believed to be the Curie temperature
of the Sm2Fe17 phase. On the other hand, a large magnetic transition at around 740 K is
observed in the thermomagnetic curve of the Sm2Fe17N3 powder. Since the Sm2Fe17N3
powder consisted of the Sm2Fe17N3 phase, the magnetic transition is believed to be the
Curie temperature of the Sm2Fe17N3 phase. The Sm2Fe17N3 phase has a significantly high
Curie temperature of 740 K, compared with the Nd2Fe14B phase in the Nd-Fe-B magnets
(585 K) [23]. The observed Curie temperature of the Sm2Fe17N3 phase is consistent with
the reported value [11]. No magnetic transition of the Sm2Fe17 phase was noted in the
thermomagnetic curve, indicating that the Sm2Fe17N3 powder solely consisted of the
Sm2Fe17N3 phase.
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Figure 3. Thermomagnetic curves of (a) Sm2Fe17 alloy powder and (b) Sm2Fe17N3 powder. The
arrows indicate the magnetic transition temperature.

However, a slight increase in magnetization at temperatures over the Curie temper-
ature is observed in the thermomagnetic curve of the Sm2Fe17N3 powder. This suggests
that a new magnetic phase formed during the thermomagnetic measurement. The new
magnetic phase is believed to be the α-Fe phase since the new magnetic phase shows the
Curie temperature near 1050 K. The thermomagnetic study indicates that the Sm2Fe17N3
phase decomposes into the α-Fe and SmN phases at high temperatures over 800 K. The ob-
served decomposition temperature is slightly lower than the reported value (873 K) [14]. In
any case, it is essential to sinter the Sm2Fe17N3 powder at the lowest possible temperature
because the Sm2Fe17N3 phase in Sm2Fe17N3 powder decomposes into the α-Fe and SmN
phases at high temperatures.

In order to confirm the decomposition of the Sm2Fe17N3 powder, the specimen after
the thermomagnetic measurement was examined using X-ray diffraction. The result is
shown in Figure 4. No diffraction peaks of the Sm2Fe17N3 phase were seen in the X-ray
diffraction pattern. Instead, diffraction peaks of the α-Fe and SmN phases were noticed in
the X-ray diffraction pattern. This confirms that the Sm2Fe17N3 phase decomposes into the
α-Fe and SmN phases during thermomagnetic measurement.
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magnetic measurement.

Figure 5 shows the hysteresis loops of the Sm2Fe17 alloy powder and the Sm2Fe17N3
powder. The Sm2Fe17 alloy powder showed a narrow hysteresis loop, but the Sm2Fe17N3
powder exhibited a wide one. This indicates that the Sm2Fe17 alloy powder without nitro-
genation did not display large coercivity. On the other hand, Sm2Fe17N3 powder, prepared
by nitriding the Sm2Fe17 alloy powder, exhibited a large coercivity. The Sm2Fe17N3 powder
exhibits a large coercivity of 12.4 kOe with a remanence of 75.3 emu/g.
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In order to confirm the magnetic anisotropy of the Sm2Fe17N3 powder, the magnetic
properties of the Sm2Fe17N3 powder were measured parallel to the magnetic alignment
after the Sm2Fe17N3 powder had been magnetically aligned. Figure 6 shows the hysteresis
loops of the Sm2Fe17N3 powder measured parallel and perpendicular to the direction of
the magnetic alignment. The respective hysteresis loops are quite different. This confirms
that the Sm2Fe17N3 powder is magnetically anisotropic. The powder exhibited a high
remanence of 107 emu/g and a large coercivity of 10.3 kOe when measured parallel to the
direction of the magnetic alignment.
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Figure 6. Hysteresis loops of the Sm2Fe17N3 powder, measured parallel (//) and perpendicular (⊥)
to the direction of the magnetic alignment.

In this study, the Sm2Fe17N3 powder was sintered into bulk magnets carried out at
673 K, far below its decomposition temperature of 800 K. Since the Sm2Fe17N3 powder is
magnetically anisotropic, the Sm2Fe17N3 powder was magnetically aligned before sintering
(see Figure 7). Despite the low sintering temperature, Sm2Fe17N3 bulk magnets were
produced from the magnetically aligned Sm2Fe17N3 powder using the SPS method.

Carbon contamination from carbon dies might occur in the SPS method [24]. To
avoid this, the SPS experiment was done with a BN-coated carbon die, and the surface
of the Sm2Fe17N3 bulk magnets was ground to remove carbon contamination before the
property measurements.
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Figure 7. Schematic diagram showing the setup for the magnetic alignment. Sm2Fe17N3 powder was
poured into a carbon die and then aligned under an applied magnetic field.

A photograph of the Sm2Fe17N3 bulk magnet is shown in Figure 8. No significant
cracks were found in the Sm2Fe17N3 bulk magnet. The relative density of the Sm2Fe17N3
bulk magnet was as high as 91.7% (compared with the density of the Sm2Fe17N3 powder).
A higher consolidation temperature is known to promote the densification of bulk materials
produced using the SPS method [25]. A further increase in the consolidation temperature
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may result in an increase in density, but the consolidation temperature was kept below
673 K in this study because the Sm2Fe17N3 phase in Sm2Fe17N3 powder easily decomposes
into the α-Fe and SmN phases at high temperatures.
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Figure 8. A photograph of the Sm2Fe17N3 bulk magnet obtained from the Sm2Fe17N3 powder using
the SPS method. The magnet was prepared at 673 K under an applied pressure of 100 MPa for 300 s
using the SPS method. The magnet had a density of 7.03 g/cm3 (approximately 91.7% of the powder).

Figure 9 shows the magnetic hysteresis loops of the Sm2Fe17N3 powder and the magnet
produced. The powder exhibited a high remanence of 107 emu/g and a large coercivity of
10.3 kOe. However, the magnets showed a remanence of 68.6 emu/g and a coercivity of
3.05 kOe. This indicates that the magnetic properties of the powder deteriorated during
sintering. Thus, it is essential to reduce the deterioration of the magnetic properties of
Sm2Fe17N3 powder during sintering.
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Figure 9. Hysteresis loops of the magnetically aligned Sm2Fe17N3 powder and Sm2Fe17N3 bulk
magnet, prepared at 673 K under an applied pressure of 100 MPa for 300 s using the SPS method.

As remanence is related to the magnetic alignment of the powder in the magnet, small
amounts of sintering aid powder were added to the Sm2Fe17N3 powder before magnetic
alignment, and its effects on the magnetic properties of the magnets were examined. In this
study, various sintering aid powders, such as graphite and silica powders, were applied for
this purpose. It was found that the zinc stearate powder could improve the density and
magnetic alignment of the Sm2Fe17N3 powder. The effects of zinc stearate powder addition
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on the relative density of the Sm2Fe17N3 bulk magnets are shown in Figure 10. The relative
density of the Sm2Fe17N3 bulk magnet increased from 91.7% to 95.8% as the zinc stearate
content increased. Although the density of the zinc stearate powder was 1.095 g/cm3,
much smaller than that of the Sm2Fe17N3 powder (7.66 g/cm3), the zinc stearate powder
drastically improved the density of the Sm2Fe17N3 bulk magnet. The resultant Sm2Fe17N3
bulk magnet with small amounts of zinc stearate powder had a high density of over 95%.
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Figure 10. Dependence of the relative density of the Sm2Fe17N3 bulk magnets on the zinc stearate content.

Figure 11 shows the effects of zinc stearate powder addition on the remanence and
coercivity of the magnets. The remanence significantly increased but then decreased as
the amount of zinc stearate powder was increased. In contrast, the coercivity gradually
decreased as the amount of zinc stearate increased. This confirms that the addition of
zinc stearate powder before magnetic alignment improved the magnetic alignment of the
Sm2Fe17N3 powder.
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Figure 11. Dependence of the remanence and coercivity of the Sm2Fe17N3 bulk magnets on the zinc
stearate content.

Figure 12 shows the hysteresis loops of the Sm2Fe17N3 bulk magnet with 1 wt%
zinc stearate powder measured parallel and perpendicular to the magnetic alignment in
order to examine the magnetic anisotropy. The Sm2Fe17N3 bulk magnet is anisotropic and
shows a higher remanence, 90.6 emu/g, in the parallel direction than the perpendicular
direction. The magnet exhibits magnetic anisotropy due to the magnetic alignment of the
Sm2Fe17N3 powder.
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Figure 12. Hysteresis loops of the Sm2Fe17N3 bulk magnets with 1 wt% zinc stearate powder mea-
sured parallel (//) and perpendicular (⊥) to the direction of the magnetic alignment. In the hysteresis
measurements, rod-like specimens (1 × 1 × 10 mm) were cut from the magnets to avoid demagnetiza-
tion correction.

As the magnetic alignment of the Sm2Fe17N3 powder is determined via the crys-
tallographic alignment in the Sm2Fe17N3 phase, the crystallographic alignment of the
Sm2Fe17N3 phase in the magnets was examined using X-ray diffraction patterns. Figure 13
shows the X-ray diffraction patterns of the magnet with 1% zinc stearate powder. As shown
in the figure, X-ray diffraction patterns were measured perpendicularly and parallel to
the direction of magnetic alignment. The X-ray diffraction pattern of the magnet shows
a typical powder pattern of the Sm2Fe17N3 phase when measured perpendicular (⊥) to
the direction of magnetic alignment. However, when measured parallel (//) to the di-
rection of magnetic alignment, the X-ray diffraction pattern exhibited a prominent (006)
peak of the Sm2Fe17N3 phase owing to the crystallographic alignment of the c-axis of the
Sm2Fe17N3 phase in the magnet. This confirms that the crystallographic alignment of the
Sm2Fe17N3 phase was retained in the Sm2Fe17N3 bulk magnet even after sintering using
the SPS method.

In the Nd-Fe-B magnets, the crystallographic alignment of the tetragonal Nd2Fe14B
phase in the Nd-Fe-B magnets has been evaluated by the ratio, I(006)/I(0410), of the
intensity of the c-axis-related peak (006) to that of the strongest peak (410) [26,27]. As
the same token, the crystallographic alignment of the Sm2Fe17N3 phase can be evaluated
by the ratio I(006)/I(303). The ratio of I(006)/I(303) was 0.27 for the Sm2Fe17N3 bulk
magnet measured perpendicular to the direction of magnetic alignment, while the ratio of
I(006)/I(303) was 10.8 for the Sm2Fe17N3 bulk magnet measured parallel to the direction of
magnetic alignment. This indicates the crystallographic alignment of the Sm2Fe17N3 phase
in the magnet.

As the coercivity of the magnets was improved by adding a small amount of Zn [20,21],
zinc powder and 1% zinc stearate powder were added to the Sm2Fe17N3 powder before
magnetic alignment. Consequently, the effects of this addition on the density and magnetic
properties of the magnets were examined. Figure 14 shows the effects of zinc powder
addition on the relative density of the Sm2Fe17N3 bulk magnets with 1% zinc stearate
powder. Unlike in the case of the zinc stearate powder addition, the relative density of
the Sm2Fe17N3 bulk magnets decreased from 95.4% to 91.5% as the zinc content increased.
This indicates that the addition of zinc powder deteriorated the density of the Sm2Fe17N3
bulk magnets with 1% zinc stearate powder.
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powder on the zinc content.

Figure 15 shows the effects of zinc powder addition on the remanence and coercivity
of the Sm2Fe17N3 bulk magnets. Since the 1 wt% zinc stearate powder addition effectively
increased the magnetic alignment of the Sm2Fe17N3 powder, the Sm2Fe17N3 bulk magnets
with 1 wt% zinc stearate powder were used as the base magnet. While the remanence
slightly decreased as the amount of zinc powder increased, the coercivity considerably
increased with increasing amounts. This verifies that the addition of zinc powder before
the magnetic alignment improved the coercivity of the magnets.

Figure 16 shows the hysteresis loop of the magnet with 1 wt% zinc stearate and 5 wt%
zinc powder. The hysteresis loop of the magnet without additives is also shown. The
magnet with 1 wt% zinc stearate and 5 wt% zinc powder exhibited a wider hysteresis loop
than the magnet without additives, indicating that the use of small amounts of zinc stearate
powder and zinc powder increased the magnetic properties of the Sm2Fe17N3 bulk magnet.
The magnet with 1 wt% zinc stearate and 5 wt% zinc powder showed a high remanence of
86.8 emu/g and a large coercivity of 9.82 kOe.
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Figure 16. Hysteresis loops of the Sm2Fe17N3 bulk magnets: (a) without additives, and (b) with
1 wt% zinc stearate and 5 wt% zinc powder. The magnets were prepared at 673 K under an applied
pressure of 100 MPa for 300 s using the SPS method.

Compared with the hysteresis loop of the Sm2Fe17N3 powder (see Figure 6), the
remanence and coercivity of the Sm2Fe17N3 bulk magnets with 1 wt% zinc stearate powder
were slightly smaller than those of the Sm2Fe17N3 powder. Thus, further work is still
necessary to improve the magnetic properties of the Sm2Fe17N3 bulk magnets.

3. Materials and Methods

Sm2Fe17 alloy powder and Sm2Fe17N3 powder, prepared by the nitrogenation of
Sm2Fe17 alloy powder, were supplied by Sumitomo Metal Mining Co., Ltd. (Tokyo, Japan).
The powder was poured into a BN-coated carbon die and magnetically aligned using an
electromagnet before being subjected to spark plasma sintering. Sm2Fe17N3 bulk magnets
were produced from the Sm2Fe17N3 powder using the SPS method under the applied
pressure of 100 MPa using a spark plasma sintering apparatus (Plasman, S. S. Alloy,
Hiroshima, Japan). The SPS method made the sintering in a vacuum at temperatures
between 473 K and 673 K for 300 s. The specimens were cooled in the SPS chamber in a
vacuum to room temperature. In order to improve the magnetic properties of the magnets,
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zinc stearate powder (0–3 wt%) and zinc powder (0–5 wt%) were added to the Sm2Fe17N3
powder, and the mixed powders were magnetically aligned before sintering using the
SPS method.

The properties of the original powders and the magnets produced using the SPS
method were examined. The morphology of the original powders was investigated using
a scanning electron microscope (JSM-IT300LA, JEOL, Tokyo, Japan). The densities of the
magnets were measured using the Archimedes method using an electronic balance (GR-120,
AND, Tokyo, Japan). The specimens were characterized by X-ray diffraction using Cu Kα

radiation using an X-ray diffractometer (MiniFlex600, Rigaku, Tokyo, Japan) and mag-
netic measurements by a vibrating sample magnetometer (BHV-525RSCM, Riken Denshi,
Tokyo, Japan). Before magnetic hysteresis measurements of the Sm2Fe17N3 powder were
performed, the powder was magnetically aligned and mixed with paraffin. To measure the
magnetic properties of the Sm2Fe17N3 bulk magnets, rod-like specimens (1 × 1 × 10 mm)
were measured parallel to the length direction to avoid demagnetization correction.

4. Conclusions

Although Sm2Fe17N3 powder was magnetically anisotropic and possessed high rema-
nence and coercivity, Sm2Fe17N3 bulk magnets produced from Sm2Fe17N3 powder using
the SPS method exhibited deteriorated remanence and coercivity. Herein, Sm2Fe17N3 bulk
magnets were made using the SPS method with the addition of zinc stearate powder and
zinc powder. It was found that the magnetic anisotropy of the magnets was enhanced
upon the addition of zinc stearate powder, and the coercivity of the magnets was enhanced
upon the addition of zinc powder. The Sm2Fe17N3 bulk magnets with 1 wt% zinc stearate
powder and 5 wt% zinc powder exhibited a remanence of 86.8 emu/g and coercivity of
9.82 kOe.
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