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Abstract: The treatment of excess zinc in the presence of ammonium chloride under
ammonothermal conditions of 873 K and 97 MPa leads to diamminetriamidodizinc chloride
[Zn2(NH3)2(NH2)3]Cl with a two-dimensionally µ-amido-interconnected substructure. Similar
reaction conditions using ammonium bromide instead of the chloride (773 K, 230 MPa)
result in diamminemonoamidozinc bromide [Zn(NH3)2(NH2)]Br with one-dimensional infinite
µ-amido-bridged chains. Both compounds were obtained as colorless, very moisture sensitive
crystals. Crystal structures and hydrogen bond schemes are analyzed. Raman spectroscopic data of
the chloride are reported.
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1. Introduction

Synthesis of high-quality nitride materials presents a challenge for various applications.
In particular, semiconductor nitride materials are currently the focus of crystal growth, one example
being GaN wafers as superior substrates for high-performance blue and white LEDs [1]. A promising
synthesis and crystal growth technique for such materials is the ammonothermal method, utilizing
supercritical ammonia under either ammonoacidic or ammonobasic conditions. However, a number
of unresolved issues remain, like the fundamental understanding of the chemistry of dissolution,
materials transport and recrystallization processes. Additionally, the technique may not only provide
superior GaN crystals, but further interesting nitride materials.

Recently, we have focused on the ammonothermal zinc nitride synthesis. In this respect, we
have presented the ammonothermal synthesis and characterization of Zn(NH3)3F2 and Zn(NH3)2F2,
which show five-fold coordination at Zn [2]. In contrast, the few further examples of ammoniates
of zinc halides exclusively exhibit the tetrahedral environment of Zn, namely in [Zn(NH3)2Cl2],
[Zn(NH3)2Br2] [3], [Zn(NH3)4]Br2 and [Zn(NH3)4]I2 [4], all obtained from reaction of either aqueous
solutions or of the solid zinc halides with ammonia at ambient pressure. With [Zn2(NH3)2(NH2)3]Cl
and [Zn(NH3)2(NH2)]Br, we present two ammineamidozinc halides, synthesized from nominally
ammonoacidic conditions, which additionally show increased condensation within their cationic
substructures. The formation of these compounds from supercritical ammonia may indicate their
role as intermediates in a conceivable ammonothermal synthesis and crystal growth of the interesting

Inorganics 2016, 4, 41; doi:10.3390/inorganics4040041 www.mdpi.com/journal/inorganics

http://www.mdpi.com/journal/inorganics
http://www.mdpi.com
http://www.mdpi.com/journal/inorganics


Inorganics 2016, 4, 41 2 of 10

semiconductor material Zn3N2 analogously to the already commercially available ammonothermally
grown GaN crystals [1].

2. Results and Discussion

We present the synthesis of [Zn2(NH3)2(NH2)3]Cl and [Zn(NH3)2(NH2)]Br, two ammoniates of
zinc halide amides, both with tetrahedral coordination by ammonia and amide ligands at the Zn
central atom. Similar simultaneous coordination by amide ions and ammonia molecules was previously
reported in, for example, KNH2·2NH3 [5], or more relevant for the discussion, [Cr2(NH2)3(NH3)6]I2 [6]
and InF2(NH2)(NH3) [7], both with octahedral coordination at the metal atom and obtained from the
respective halides under ammonothermal conditions.

Both title compounds were obtained in the colder zone of the autoclave, while additional
Zn(NH2)2 was observed in the hot zone. According to literature, Zn(NH2)2 is insoluble in liquid
ammonia at ambient conditions [8]; however, we have frequently observed that Zn reacts under
various ammonoacidic as well as ammonobasic conditions to form the diamide and crystallizes in the
colder zone of the autoclave in large crystals, indicating the ammonoamphoteric character of Zn and
an enhanced solubility of the binary amide at elevated temperatures and pressures. However, it is
apparently possible to adjust the solubility, respectively its temperature dependence, by the addition
of halide ions and thus favor the formation of the supposedly less soluble title compounds in the
zone with lower temperature. The deposition at the hotter or colder zone in the reaction vessel is
usually dictated by the temperature dependence of the solubility. This temperature dependence can
fundamentally change with the type of mineralizer and therefore with the nature of the dissolved
species, as is well known, for example, for the ammonothermal synthesis of GaN [1].

The underlying thermodynamics governing these processes follow very similar principles to
those that are well established for the so-called Chemical Vapor Transport [9].

It is interesting to note that we were only able to synthesize the title compounds in the presence
of platinum used as liner material to minimize contact of the solution with the autoclave wall and
thus minimize corrosion, known to be severe in ammonoacidic solutions at elevated temperatures [10].
A catalytic action of both NH4Cl and Pt, for example, for the formation of alkali- and alkaline-earth
metal amides from liquid ammonia is well established [11].

2.1. Crystal Structure Description

[Zn2(NH3)2(NH2)3]Cl crystallizes in the chiral space group P21212 with two formula units in the
unit cell. A Flack parameter close to 1

2 indicates the presence of a racemic inversion twin. Table 1 gives
further selected information on the crystal structure and its determination. Table 2 presents positional
parameters and Table A1 anisotropic displacement parameters. In the crystal structure, the ammonia
molecules, the amide and the chloride ions together form the motif of a hexagonal closed packing with
stacking of hexagonal layers along [100]. In addition, 1/6 of the tetrahedral voids exclusively built by
ammonia molecules and amide groups are occupied by Zn. These tetrahedra are linked via amide
vertices to layers 2

∞

[
Zn(NH3)(NH2)3/2

1/2+
]

orientated within the a/b plane (Figure 1). As may be
expected, the distances Zn–N to the amide groups with 199.1(5) pm and 201.2(6) pm are significantly
shorter as compared to the distance to the NH3 ligand (213.5(7) pm). Similar distance relations were
earlier observed, e.g., in KNH2·2NH3 [5] or [Cr2(NH2)3(NH3)6]I3 [6]. Angles around Zn are in the
range of 101.8◦ to 116.4◦, thus close to the ideal tetrahedral angle. Further selected distances and angles
are summarized in Table 3.

The arrangement of tetrahedra within the layer 2
∞

[
Zn(NH3)(NH2)3/2

1/2+
]

is reminiscent of
the very similar interconnection within the structure of binary Zn(NH2)2, where six tetrahedra are
condensed to rings, however, interconnected within a three-dimensional framework. According to the
nomenclature after Liebau, developed to classify oxosilicate structures, 2

∞

[
Zn(NH3)(NH2)3/2

1/2+
]

represents an unbranched vierer single-layer with a molar ratio n(Zn):n(N) of 2:5 [12].
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Table 1. Selected crystallographic data and information for the structure determination of
[Zn2(NH3)2(NH2)3]Cl and [Zn(NH3)2(NH2)]Br.

Formula [Zn2(NH3)2(NH2)3]Cl [Zn(NH3)2(NH2)]Br (a)

Crystal system orthorhombic monoclinic
Space group P21212 P21/n

a/pm 577.15(4) 760.55(4)
b/pm 1023.59(6) 597.72(4)
c/pm 654.56(4) 1257.22(8)
β/deg. - 93.475(4)

V/106 pm3 386.69(5) 570.48(6)
X-ray density ρXRD/g/cm3 2.13 2.28

Z 2 4
T 298 K 100 K

Radiation Mo-Kα Mo-Kα
F(000) 496 376

Range h/k/l ±4/−13–14/−21–22 ±8/±11/−17–16
θmax/deg. 53.9 55.0

Absorption coefficient/mm−1 12.93 11.17
Reflect. meas./indep. 844/533 1298/751

Rint/Rσ 0.030/0.038 0.030/0.036
R1(|Fo| ≥ 4σ (Fo)) 0.038 0.034

R1/wR2/GooF(all refl.) 0.044/0.098/1.021 0.045/0.086/1.047
Parameters 58 71
Restraints 6 8

Extinction coefficient 0.017(6) 0.003(1)
Flack x 0.49(4) -

Residual e−-density/10−6·pm−3 1.19/−0.54 1.23/−1.13
(a) Refined as twin by partial merohedry.

Table 2. Positional and isotropic displacement parameters Uiso (104 pm2) for [Zn2(NH3)2(NH2)3]Cl.

Atom Site x y z Uiso

Zn 4c 0.1009(1) 0.33764(8) 0.5374(1) 0.0231(3)
Cl 2a 1/2 1/2 0.0434(5) 0.0247(5)

N(1) 4c 0.449(1) 0.3291(7) 0.553(1) 0.028(1)
H(1A) 4c 0.35(2) 0.248(8) 0.67(1) 1.2Uiso(N(1))
H(1B) 4c 0.50(2) 0.354(1) 0.67(1) 1.2Uiso(N(1))
N(2) 4c 0.007(1) 0.3377(8) 0.853(1) 0.032(1)

H(2A) 4c 0.00(2) 0.259(5) 0.91(1) 1.2Uiso(N(2))
H(2B) 4c 0.09(2) 0.36(1) 0.96(1) 1.2Uiso(N(2))
H(2C) 4c 0.41(2) 0.118(9) 0.08(1) 1.2Uiso(N(2))
N(3) 2b 0 1/2 0.395(2) 0.027(2)

H(3A) 4c 0.354(7) 0.01(1) 0.65(1) 1.2Uiso(N(3))
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Figure 1. Section of the crystal structure of [Zn2(NH3)2(NH2)3]Cl: Layers 2
∞

[
Zn(NH3)(NH2)3/2

1/2+
]

built by occupation of tetrahedral voids exclusively formed by amide and ammonia molecules by Zn
within the motif of an hcp of chloride (closed packed layers in stacking direction [100] are indicated
by letters A and B), amide ions and ammonia molecules (yellow spheres: Cl, green spheres: N, red
spheres: H, and blue spheres surrounded by grey tetrahedra: Zn). The hcp stacking motif is indicated
by an anticuboctahedron and capital letters.
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Table 3. Selected interatomic distances (pm) and angles (deg.) in the crystal structure of
[Zn2(NH3)2(NH2)3]Cl.

Bond Distance Occurence Arrangement Angle

Zn –N(1) 200.9(7) N(1)–Zn–N(1) 114.5(2)
Zn –N(1) 201.2(6) N(1)–Zn–N(2) 101.8(3)
Zn –N(2) 213.5(7) N(1)–Zn–N(2) 110.1(3)
Zn –N(3) 199.1(5) N(1)–Zn–N(3) 110.6(2)

N(1)–Zn–N(3) 116.4(3)
N(2)–Zn–N(3) 112.1(4)

N(1) –H(1A) 88(3) H(1A)–N(1)–H(1B) 107(9)
N(1) –H(1B) 89(3) Zn–N(1)–H(1A) 98(7)

Zn–N(1)–H(1B) 102(7)
Zn–N(1)–Zn 117.3(2)

N(2) –H(2A) 88(3) H(2A)–N(2)–H(2B) 87(9)
N(2) –H(2B) 88(3) H(2A)–N(2)–H(2C) 102(10)
N(2) –H(2C) 89(3) H(2B)–N(2)–H(2C) 70(8)

Zn–N(2)–H(2A) 113(7)
Zn–N(2)–H(2B) 130(7)
Zn–N(2)–H(2C) 139(7)

N(3) –H(3A) 90(3) 2x H(3A)–N(3)–H(3A) 144(9)
Zn–N(3)–H(3A) 105(7)

Zn–N(3)–Zn 124.4(5)
∅N –H 89
∅Zn –N 204

Hydrogen atoms of the amide groups point towards the chloride ions located between the layers
and form hydrogen bonds (Figure 2). Every chloride ion connects to twelve hydrogen atoms, where
half of the hydrogen atoms belong to each neighboring layer. Table 4 summarizes donor–acceptor
distances and angles.Inorganics 2016, 4, 41 5 of 11 
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twelve H-bonds and (b) connects two adjacent layers 2
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[
Zn(NH3)(NH2)3/2

1/2+
]

within the third
dimension (yellow spheres: Cl, green spheres: N, red spheres: H, and blue spheres surrounded by
grey tetrahedra: Zn).

Table 4. Donor–acceptor distances (pm) and angles (deg.) in [Zn2(NH3)2(NH2)3]Cl.

Arrangement d(N–H) d(H . . . Cl) <(NHCl) d(N . . . Cl)

N(1)–H(1A) . . . Cl 88 304 143.0 378
N(1)–H(1B) . . . Cl 89 287 149.9 367
N(2)–H(2A) . . . Cl 89 267 163.2 352
N(2)–H(2B) . . . Cl 88 284 135.1 352
N(2)–H(2C) . . . Cl 89 274 161.7 359
N(3)–H(3A) . . . Cl 90 287 152.7 369
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[Zn(NH3)2(NH2)]Br suffers from twinning by partial merohedry via two-fold rotation around
the face diagonal [101] in space group P121/n1 setting. Due to application of the respective twin
law, the reliability factors significantly drop (see the experimental part). Table 1 summarizes selected
information for the final structure refinement, Table 5 gives positional parameters and Table A2
anisotropic displacement parameters.

Table 5. Positional and isotropic displacement parameters Uiso (104 pm2) for [Zn(NH3)2(NH2)]Br.

Atom Site x y z Uiso

Br 4e 0.1858(4) 0.22474(7) 0.4382(4) 0.0214(3)
Zn 4e 0.1606(4) 0.1440(2) 0.7794(4) 0.0166(3)

N(1) 4e 0.163(3) 0.243(5) 0.9347(2) 0.021(2)
H(1A) 4e 0.054(9) 0.28(5) 0.95(2) 1.5Uiso(N(1))
H(1B) 4e 0.20(3) 0.14(2) 0.98(1) 1.5Uiso(N(1))
H(1C) 4e 0.23(2) 0.36(2) 0.94(1) 1.5Uiso(N(1))
N(2) 4e 0.419(4) 0.247(5) 0.206(2) 0.023(8)

H(2A) 4e 0.83(3) 0.22(2) 0.75(2) 1.5Uiso(N(2))
H(2B) 4e 0.89(3) 0.38(2) 0.67(1) 1.5Uiso(N(2))
H(2C) 4e 0.86(3) 0.13(2) 0.67(2) 1.5Uiso(N(2))
N(3) 4e 0.859(3) 0.190(1) 0.221(3) 0.015(3)

H(3A) 4e 0.95(1) 0.26(2) 0.257(8) 1.2Uiso(N(3))
H(3B) 4e 0.90(1) 0.20(2) 0.157(4) 1.2Uiso(N(3))

Very similar to [Zn2(NH3)2(NH2)3]Cl, the ammonia molecules, amide and bromide ions in the
crystal structure of [Zn(NH3)2(NH2)]Br, form the motif of a hexagonal closed packing with stacking
along [010] (Figure 3). According to the composition, only 1/8 of the tetrahedral voids exclusively
formed by two ammonia molecules and two amide ions are occupied by Zn. As discussed above
for the chloride, the distances to the terminal ammonia ligands with 204(3) pm and 211(3) pm are
significantly longer than those to the bridging amide ligands with 198.4(8) pm and 200.2(8) pm. Angles
around Zn with 104◦–123.8◦ deviate little from to the ideal tetrahedral angle. Table 6 collects selected
interatomic distances and angles. Vertex-sharing via amide ligands leads to 1

∞

[
Zn(NH3)2(NH2)2/2

+
]

zigzag chains running along [010]. According to the Liebau nomenclature, these chains are classified
as unbranched zweier single-chains with molar ratio of n(Zn):n(N) = 1:3 [12]. Once again, these chains
may be viewed as sections from the three-dimensional crystal structure of binary zinc amide, formally
broken up by the addition of HBr.
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Figure 3. Sections of the crystal structure of [Zn(NH3)2(NH2)]Br: (a) infinite 1
∞

[
Zn(NH3)2(NH2)2/2

+
]

zigzag chains result from occupation of tetrahedral voids exclusively built by amide ions and ammonia
molecules by Zn within the motif of an hcp formed by bromide and amide ions together with ammonia
molecules (the hcp stacking motif is indicated by an anticuboctahedron and capital letters); (b) every
bromide ion employs eight H-bonds and interconnects three chains (large red spheres: Cl, green
spheres: N, small red spheres: H, and blue spheres surrounded by grey tetrahedra: Zn).
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Table 6. Selected interatomic distances (pm) and angles (deg.) in the crystal structure of
[Zn(NH3)2(NH2)]Br.

Bond Distance Arrangement Angle

Zn –N(1) 204(3) N(1)–Zn–N(2) 106.7(6)
Zn –N(2) 211(3) N(1)–Zn–N(3) 104(1)
Zn –N(3) 198.4(8) N(1)–Zn–N(3) 107(1)
Zn –N(3) 200.2(8) N(2)–Zn–N(3) 110(1)

N(2)–Zn–N(3) 105(1)
N(1) –H(1A) 91(7) N(3)–Zn–N(3) 123.8(2)
N(1) –H(1B) 89(3) H(1A)–N(1)–H(1B) 103(10)
N(1) –H(1C) 89(3) H(1A)–N(1)–H(1C) 109(10)

H(1B)–N(1)–H(1C) 110(10)
N(2) –H(2A) 92(4) Zn–N(1)–H(1A) 112(10)
N(2) –H(2B) 90(4) Zn–N(1)–H(1B) 116(10)
N(2) –H(2C) 90(4) Zn–N(1)–H(1C) 108(10)

H(2A)–N(2)–H(2B) 112(10)
N(3) –H(3A) 89(3) H(2A)–N(2)–H(2C) 83(10)
N(3) –H(3B) 89(3) H(2B)–N(2)–H(2C) 113(10)

Zn–N(2)–H(2A) 107(10)
∅Zn –NH3 207.5 Zn–N(2)–H(2B) 131(10)
∅Zn –NH2 199.3 Zn–N(2)–H(2C) 100(10)
∅Zn –N 203.4 H(3A)–N(3)–H(3B) 97(9)

Zn–N(3)–H(3A) 97(9)
Zn–N(3)–H(3A) 123(10)
Zn–N(3)–H(3B) 128(8)
Zn–N(3)–H(3B) 97(8)

Zn–N(3)–Zn 116.2(5)

Bromide ions interconnect three 1
∞

[
Zn(NH3)2(NH2)2/2

+
]

zigzag chains each via eight H-bonds
(see Figure 3). Table 7 gives relevant donor–acceptor distances and angles. For both title compounds,
there are no indications for a rotational disorder of the ammonia ligands, prohibited by an involvement
in hydrogen bonding networks.

Table 7. Donor–acceptor distances (pm) and angles (deg.) in [Zn2(NH3)2(NH2)]Br.

Arrangement d(N–H) d(H . . . Br) <(NHBr) d(N . . . Br)

N(1)–H(1A) . . . Br 91 280 153.9 364
N(1)–H(1B) . . . Br 89 268 159.2 352
N(1)–H(1C) . . . Br 89 280 146.1 357
N(2)–H(2A) . . . Br 91 268 150.4 351
N(2)–H(2B) . . . Br 89 265 178.6 355
N(2)–H(2C) . . . Br 90 268 173.6 357
N(3)–H(3A) . . . Br 89 283 144.3 360
N(3)–H(3B) . . . Br 89 313 127.4 373

2.2. Raman Spectroscopy

The Raman spectrum (Figure 4) of a [Zn2(NH3)2(NH2)3]Cl single crystal can be interpreted
according to those of Zn(NH3)2Br2 [13], Zn(NH3)6Cl2 [14], [Zn(NH3)4]Br2 [4], [Zn(NH3)4]I2 [4,15] as
well as calculations for [Zn(NH3)4]2+ [16] and is in agreement with general trends for ammoniates of
transition metal halides [14,17,18]. Four groups of signals appear in the spectrum, of which three groups
are due to modes of NH3 and NH2

− molecules (3167–3493 cm−1, 1301–1621 cm−1, 737–1031 cm−1)
and one group evokes from Zn–N skeletal vibrations (134–476 cm−1).

In the range of 3167–3493 cm−1, three asymmetric and three symmetric valence vibrations appear
in agreement with the three crystallographic different nitrogen sites of ammonia and amide ligands.
The broadening of this group of signals indicates the presence of hydrogen bonds of relevant strength,
which is in perfect agreement with short NH . . . Cl distances (see above) [18,19]. These hydrogen
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bonds are also the reason for a shift to smaller wave numbers as compared to the respective modes of
the free ammonia molecule (3337 and 3450 cm−1 [20]). For ammoniates of zinc fluoride Zn(NH3)3F2

and Zn(NH3)2F2 (3093–3337 cm−1 [2]), a similar, but even larger shift was observed, due to the higher
electronegativity of fluorine compared to chlorine, while the bromide [Zn(NH3)4]Br2 (3194 cm−1 [4])
and the iodide [Zn(NH3)4]I2 (3177 cm−1 [21]) exhibit smaller shifts in the symmetric valence mode.
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The second range is due to the symmetric (1302 cm−1) and asymmetric (1621 cm−1) scissoring
modes, which are not resolved for the different crystallographic sites. These vibrations also appear
in the spectra of [Zn(NH3)4]Br2 (1607 and 1246 cm−1 in IR [4]) and [Zn(NH3)4]I2 (1615, 1600, 1256
and 1242 cm−1 [21]). In comparison to the ammoniates of zinc fluoride, these signals are shifted
to lower wave numbers, again as a result of reduced hydrogen bond strength. In the third region
(1031–737 cm−1), rocking and wagging modes are present. The rocking vibrations are not present
in the spectrum of free ammonia molecules, but are known to increase in intensity with increasing
covalent character in complexes [22]. The last range (476–134 cm−1) is due to Zn–N skeleton vibrations.

The absence of signals above 3500 cm−1 indicates the absence of significant impurities of OH−

and H2O, which should provoke a prominent mode at around 3700 cm−1 [23].

3. Materials and Methods

3.1. Synthesis

All ammonothermal syntheses were carried out in custom-built autoclaves from austenitic
nickel-chromium-based alloy 718 with an inner volume of 97 mL and equipped with a high-pressure
valve, a filling line, a rupture disc and a pressure transmitter (HBM P2VA1/5000 bar), which enables
continuous pressure monitoring during synthesis [24]. A platinum liner was introduced to minimize
contact of the solution with the autoclave wall and thus reduce corrosion. A tubular furnace (LOBA,
HTM Reetz GmbH, Berlin, Germany) in vertical position was used to heat the autoclave bodies. Due
to unheated installations at the top of the vessel, a natural temperature gradient with a temperature
difference of about 100 K developed, resulting in suitable convection for a chemical material transport.
Additionally, the applied furnace temperature, which is referred to in the synthesis description, is
about 150 K higher than the average reaction temperature [25].

Colorless transparent plate-like crystals [Zn2(NH3)2(NH2)3]Cl with maximum size of several
hundred µm were obtained from Zn and NH4Cl (molar ratio 10:1) under ammonothermal conditions
(873 K, 97 MPa for 6 h, in 38 h cooling to RT) in the cold zone of the autoclave. In a similar reaction,
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[Zn(NH3)2(NH2)]Br was synthesized from Zn and NH4Br (molar ratio 1:1.7; 773 K, 230 MPa for 12 h,
72 h cooling duration), and colorless crystals were collected from the cold zone. Both compounds
are sensitive to moist air and immediately lose their transparency on contact. In the hot zone of
the autoclaves, there was always well crystallized Zn(NH2)2 present along with small amounts of
unreacted Zn.

Due to the hygroscopic nature of the reactants and products, all manipulations were carried out
inside an argon filled glovebox (p(O2) < 0.1 ppm). A known amount of ammonia was condensed
into the autoclave with use of a tensieudiometer [26] for the simultaneous pressure and temperature
measurement and a dry ice ethanol cooling bath (T = 198 K). After successful synthesis, the excess
ammonia was vented and the autoclave was subsequently evacuated.

3.2. Diffraction Data Collection and Structure Refinements

Selected single crystals were isolated under Ar, sealed in glass capillaries and immediately
mounted on a Bruker–Nonius Kappa-CCD diffractometer (Billerica, MA, USA). The chloride was
measured at room temperature, while successful intensity data collection on the bromide was only
possible if directly cooled to 100 K and subsequently measured (Mo-Kα radiation). Structure solution
and refinements were carried out using the program package SHELXL97 [27]. All atom positions
except hydrogen were determined by direct methods and anisotropically refined. The hydrogen
positions attached to amide groups of the complex amidozincate ions were refined using the riding
model, constraining the interatomic N–H distances to 89(2) pm. The isotropic displacement factors
Uiso were restrained to 1.2/1.5 times the Uiso of the nitrogen atom to which they are attached to.
For absorption correction, a linear scaling was applied using the absorption correction coefficients
12.93 mm−1 ([Zn2(NH3)2(NH2)3]Cl) and 11.17 mm−1 ([Zn(NH3)2(NH2)]Br) [28].

[Zn(NH3)2(NH2)]Br suffers from twinning by partial merohedry via a two-fold rotation around
[100] in a cell setting in P1121/a. The partial merohedry leads to overlap of reflections (hkl) with h = 2n
with those reflections (hkl) of the second twin domain. Reflections with h = 2n + 1 are unaffected, but
additional reflections (h 1

2 kl) with h = 2n + 1 appear. In the standard setting, P121/n1, the twinning
occurs via a rotation around the face diagonal [101]. Assignment of the reflections to the domains
was carried out with the program TWINXLI [29]. Due to application of the twin law, the reliability
factors significantly drop from R1 = 0.1136, wR2 = 0.227, GooF = 1.685 (all reflections) to R1 = 0.0445,
wR2 = 0.0864, GooF = 1.047 and the residual electron density from ρmax = 13.29 × 10−6 pm−3,
ρmin = −1.51 × 10−6 pm−3 to ρmax = 1.23 × 10−6 pm−3, ρmin = −1.13 × 10−6 pm−3. Tables A1
and A2 additionally give the final anisotropic displacement parameters. Further details of the
crystal structure investigation are available from the Fachinformationszentrum Karlsruhe, 76344
Eggenstein-Leopoldshafen, Germany (Fax: +49-7247-808-666; E-mail: crysdata@fiz-karlsruhe.de,
http://www.fiz-karlsruhe.de/request_for_deposited_data.html#c665) on quoting the depository
numbers CSD-432188 ([Zn2(NH3)2(NH2)3]Cl) and CSD-432189 ([Zn(NH3)2(NH2)]Br).

3.3. Vibrational Spectroscopy

The solid state Raman spectrum of ([Zn2(NH3)2(NH2)3]Cl was measured with a Horiba XploRa
Raman spectrometer (Kyoto, Japan) coupled with a confocal polarization microscope (Olympus BX51,
Tokio, Japan) employing a 638 nm solid state laser at a single crystal sealed in a glass capillary.

4. Conclusions

Zinc metal easily dissolves in ammonia, particularly in ammonoacidic or -basic solutions
under ammonothermal conditions. From these solutions at increased temperatures, zinc amide
crystallizes. However, quasi-ternary ammoniates of zinc amide halides can also be obtained. With
increasing temperatures, condensation of the cationic ions in diamminetriamidodizinc chloride
[Zn2(NH3)2(NH2)3]Cl and diamminemonoamidozinc bromide [Zn(NH3)2(NH2)]Br occurs via amide
ions towards two- and three-dimensional moieties, which can be viewed as sections of the crystal

http://www.fiz-karlsruhe.de/request_for_deposited_data.html#c665
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structure of binary zinc nitride, Zn3N2. The formation of amides in solutions containing halide ions,
hence nominally ammonoacidic conditions, might be understood by the large excess of Zn, providing
an ammonobasic buffer solution Zn(NH2)2/ZnX2 in ammonia. Such investigations may pave the way
to ammonothermal zinc nitride synthesis and crystal growth, a potential novel nitride semiconductor
material for which currently no technique for bulk crystal production is known.

Supplementary Materials: The following are available online at www.mdpi.com/2304-6740/4/4/41/s1.
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Appendix

Table A1. Anisotropic displacement parameters Uij (104 pm2) for [Zn2(NH3)2(NH2)3]Cl.

Atom U11 U22 U33 U23 U13 U12

Zn 0.0195(4) 0.0198(5) 0.0312(5) −0.0017(4) 0.0006(4) 0.0009(4)
Cl 0.023(1) 0.026(1) 0.025(1) 0 0 0

N(1) 0.014(3) 0.023(3) 0.047(4) −0.008(4) 0 0
N(2) 0.037(3) 0.039(3) 0.029(3) 0 0.005(3) 0
N(3) 0.022(4) 0.027(5) 0.031(5) 0 0 0

Table A2. Anisotropic displacement parameters Uij (104 pm2) for [Zn2(NH3)2(NH2)]Br.

Atom U11 U22 U33 U23 U13 U12

Br 0.028(3) 0.0153(4) 0.021(3) 0 −0.003(2) 0
Zn 0.019(3) 0.0126(5) 0.017(3) 0 0 0.002(2)

N(1) 0.03(1) 0.02(1) 0.01(1) 0 0 0
N(2) 0.03(1) 0 0.03(1) −0.02(1) 0 0
N(3) 0.019(9) 0.011(4) 0.015(9) 0 0 0
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