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Abstract: We report the first magnetically coupled guanidinate, α-Eu(CN3H4)2 (monoclinic, P21,
a = 5.8494(3) Å, b = 14.0007(8) Å, c = 8.4887(4) Å, β = 91.075(6)◦, V = 695.07(6) Å3, Z = 4).
Its synthesis, polymorphism, crystal structure, and properties are complemented and supported
by density-functional theory (DFT) calculations. The α-, β- and γ-polymorphs of Eu(CN3H4)2

differ in powder XRD, while the γ-phase transforms into the β-form over time. In α-Eu(CN3H4)2,
Eu is octahedrally coordinated and sits in one-dimensional chains; the guanidinate anions show a
hydrogen-bonding network. The different guanidinate anions are theoretically predicted to adopt
syn-, anti- and all-trans-conformations. Magnetic measurements evidence ferromagnetic interactions,
presumably along the Eu chains. Finally, EuC(NH)3 (isostructural to SrC(NH)3 and YbC(NH)3,
hexagonal, P63/m, a = 5.1634(7) Å, c = 7.1993(9) Å, V = 166.23(4) Å3, Z = 2) is introduced as a
possible ferromagnet.
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1. Introduction

At the beginning of the 21st century, rare-earth metals are critical materials in high-technology
applications [1]. Within the recent decades, several technological innovations disrupted the rare-earth
market [2], in turn stimulating the scientific quest for future materials. One vibrant field is the study of
Eu2+ compounds whose complex crystal structures are coupled with application-relevant properties
including, to name only some recent examples, luminescence [3–6], field-induced reversal of the
magnetoresistive effect [7], and complex magnetism [8,9]. The most renowned magnetic compounds
are the europium chalcogenides that are considered ideal 3D Heisenberg systems [10]. While EuO is a
ferromagnet with a Curie temperature of 69.3 K [11–13], EuS is also a ferromagnet but with a far lower
Curie temperature of 18.7 K, showing weak, secondary antiferromagnetic interactions [13].

Our interest lies in nitrogen-based materials. For Eu2+, there are a number of simple amides,
thiocyanates, and carbodiimides such as Eu(NH2)2 [14,15], Eu(NCS)2 [16], and EuNCN [17], but also a
growing number of more exotic and intriguing examples including Eu2Si5N8 [18,19], Eu3[NBN]2 [20],
Eu2Cl2NCN [21], and EuSi2O2N2 [22]. Low-dimensional magnetic properties have been reported in
Eu2+ coordination polymers with 2,2’-bipyridime showing 1D ferromagnetic interactions [23] and
in LiEu2(NCN)I3 and LiEu4(NCN)3I3 [24], also with low-dimensional ferromagnetic ordering and
possibly conflicting antiferromagnetic interactions at very low temperatures.

Here, we present the first europium guanidinates, inorganic salts derived from the molecule
guanidine CN3H5 [25,26]. Our group has already pioneered the deprotonation of this strongly
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basic molecule (Figure 1), demonstrated by the preparation of the alkali-metal guanidinates [27–29].
Progressing from there, we recently reported doubly deprotonated guanidinates—in SrC(NH)3 and
YbC(NH)3—and the first magnetic guanidinate, Yb(CN3H4)3, a non-Curie–Weiss paramagnet [30,31].
In the following, we present the first magnetically coupled guanidinate, α-Eu(CN3H4)2, with probable
1D ferromagnetic order. We detail its synthesis, polymorphism, crystal structure, and properties,
complemented and supported by density-functional theory (DFT) calculations. Also, we present a
preliminary report on EuC(NH)3 and a first indication of its magnetic properties.
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(Figure 2a). For the α-phase, the crystal structure was solved (see below). α-Eu(CN3H4)2 was prepared 
at temperatures around 65 °C, the β-phase at a lower 50 °C, and the γ-phase exclusively around room 
temperature. Under these conditions, Eu2+ is the stable oxidation state, and Eu3+ would only form at 
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IR measurements indicate a strong similarity between the α- and β-phase (Figure 3), not 
surprisingly so because the spectrum is dominated by the CN3H4− anion vibrations [31]. In addition, 
there is no trace of an IR contribution of the C(NH)32− unit, which supports the proposed composition. 
The IR spectrum of α-Eu(CN3H4)2 was also calculated by DFT from the density of phonon states and 
the Born effective charges as explained in references [33] and [34]. All observed signals were 
reproduced, while the differing intensity of the simulated signals could be caused by a thermal effect 
(calculated 0 K vs experimental 300 K). To identify the vibrations, the IR-active phonons at the Γ-
point were visualized (Table 1). 

Figure 1. Protonation and deprotonation of guanidine from guanidinium on the left to the doubly
deprotonated guanidinate on the right.

2. Results and Discussion

2.1. Polymorphism of Eu(CN3H4)2

Depending on the synthetic conditions, three polymorphs of Eu(CN3H4)2 could be prepared,
which we call α, β, and γ. The polymorphs show different powder X-ray diffraction (PXRD) patterns
(Figure 2a). For the α-phase, the crystal structure was solved (see below). α-Eu(CN3H4)2 was prepared
at temperatures around 65 ◦C, the β-phase at a lower 50 ◦C, and the γ-phase exclusively around room
temperature. Under these conditions, Eu2+ is the stable oxidation state, and Eu3+ would only form at
temperatures starting around 300 ◦C [32]. The oxidation state was also corroborated by the magnetic
measurements (see Section 2.3). Interestingly, the γ-phase spontaneously transforms to the β-phase
over several weeks (Figure 2b), so γ-Eu(CN3H4)2 must be a metastable phase.
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IR measurements indicate a strong similarity between the α- and β-phase (Figure 3), not surprisingly
so because the spectrum is dominated by the CN3H4

− anion vibrations [31]. In addition, there is no
trace of an IR contribution of the C(NH)3

2− unit, which supports the proposed composition. The IR
spectrum of α-Eu(CN3H4)2 was also calculated by DFT from the density of phonon states and the
Born effective charges as explained in references [33] and [34]. All observed signals were reproduced,
while the differing intensity of the simulated signals could be caused by a thermal effect (calculated
0 K vs experimental 300 K). To identify the vibrations, the IR-active phonons at the Γ-point were
visualized (Table 1).
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Figure 3. IR measurement of the β- (with an offset) and α-polymorphs of Eu(CN3H4)2 and simulation
of the latter.

Table 1. Assignment of vibrational bands of α-Eu(CN3H4)2 as obtained with density-functional theory (DFT).

Vibration α-Eu(CN3H4)2 (cm−1)

νs, as(N–H) 3299, 3172
δsciss(N–H) 1652, 1602

νs, δsciss(C–N); δsciss(N–H) 1533, 1495
δrock(N–H) 1197–1167
δwagg(N–H) 1147–1114
νbreath(CN3) 965
δtwist(N–H) 776

C-inversion by CN3 plane 746
δrock(C–N), δrock(N–H) 614
δsciss(C–N), δsciss(N–H) 532–514

Preliminary thermogravimetric analysis (TGA) measurements of α- and β-Eu(CN3H4)2 show a
two-step decay. The first step around 155 ◦C corresponds to the loss of two equivalents of ammonia,
typical for guanidinates [30,31,35], to arrive at the hydrogen cyanamide Eu(NCNH)2. This phase
has not been prepared before. The second step around 250 ◦C does not plateau in the measurement
range up to 350 ◦C. This step could be the transformation of europium hydrogen cyanamide to
the carbodiimide by releasing H2NCN, as observed, for example, in the transition-metal hydrogen
cyanamides of Fe, Co, and Ni [36,37]. EuNCN could not be prepared as a single-phase material in the
reported synthesis at 1300 K [17]. Thus, the guanidinates appear as interesting precursor materials for
new (hydrogen) cyanamides.

2.2. Refinement and Crystal Structure of α-Eu(CN3H4)2

α-Eu(CN3H4)2 crystallizes in the acentric, monoclinic space group P21 with a = 5.8494(3) Å,
b = 14.0007(8) Å, c = 8.4887(4) Å, β = 91.075(6)◦, V = 695.07(6) Å3, and Z = 4 (Table 2). The asymmetric
unit consists of two Eu atoms and four independent guanidinate units. The large number of parameters,
the limited number of reflections, and the domination of the X-ray scattering by the heavy Eu atoms
required a number of restraints and constraints to obtain a reasonable structure: while the Eu atoms
were refined anisotropically, the C and N atoms of each guanidinate unit were constrained to a single
Uiso value. Also, the C–N bond lengths, N–C–N angles, and CN3 torsion angles were restrained to
sensible values (as obtained from similar guanidinates in the literature). The obtained structural model
fits the PXRD measurement well (Figure 4). Different C–N bond lengths allowed for a distinction
between amine and imine groups, while the assignment was confirmed by the DFT calculations.
In addition, we detected a minor side phase of EuO, likely formed during handling of Eu metal under
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argon. Such an impurity can often be seen in the literature [38]. The Rietveld refinement estimates the
amount of EuO as 1.3(2) wt %.
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Table 2. Crystallographic data and refinement details for EuC(NH)3 and α-Eu(CN3H4)2.

Formula α-Eu(CN3H4)2 EuC(NH)3

Formula weight (g·mol−1) 268.09 209.02
Crystal system Monoclinic Hexagonal

Space group P21 (Nr. 4) P63/m (Nr. 176)
Temperature (K) 298 298

a (Å) 5.8494(3) 5.1634(7)
b (Å) 14.0007(8) = a
c (Å) 8.4887(4) 7.1993(9)
β (◦) 91.075(6) 90

V (Å3) 695.07(6) 166.22(4)
Z 4 2

Cryst. density (g·cm−3) 2.4848(2) 4.1176(9)
Radiation Mo Kα1 Mo Kα1

No. reflections 870 108
No. restraints/constraints 24/4 0/1

No. refined parameters 71 14
Rp, wRp

a 3.7/4.9 5.1/7.3
RBragg, RF

b 11.3/6.8 18.7/11.7

a Rp = ∑|y(obs)−y(calc)|
∑ y(obs) × 100; wRp =

√
∑ w(y(obs)−y( calc)) 2

∑ wy(obs)2 × 100

b RBragg = ∑|Iobs−Icalc |
∑|Iobs | × 100; RF = ∑|Fobs |−|Fcalc |

∑ Fobs
× 100

Neutron diffraction experiments—to improve the structural model and to localize the hydrogen
atoms—were not feasible owing to the high neutron absorption of Eu. Synchrotron PXRD
measurements degraded the sample visibly and led to a color change from yellow to black.
The obtained diffractograms were of poor quality, something which was also observed for long
measurements of β- and γ-Eu(CN3H4)2 with our in-house X-ray diffractometer. For that reason, the
crystal structures of β- and γ-Eu(CN3H4)2 could not be determined, very unfortunately.

Thus, we used our structural model of α-Eu(CN3H4)2 as the starting point for DFT calculations,
the ultima ratio in this difficult case. First, we began with full structural optimizations and tests for
dynamic stability to evaluate the plausibility of our structural model. To that end, the hydrogen
positions were varied such as to find the energetically most stable structure for further phonon
calculations. We will come back to the variation of the hydrogen positions below. The resulting
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structure shows only minor differences from the experimental structure, and it is also dynamically
stable (i.e., its density of phonon states does not contain significant imaginary modes). This is no
surprise because dispersion-corrected DFT calculations have been shown to be a powerful tool to
validate experimental molecular crystal structures [39]. The good agreement between experimental
and fully optimized structure by DFT and the dynamic stability strongly support the plausibility of
our experimental structure model.

In α-Eu(CN3H4)2, the Eu atoms are coordinated 6-fold in distorted octahedra (Figure 5, Table 3).
The octahedra are condensed to edge-sharing chains along the b-axis with short Eu–Eu distances of 3.66
and 3.77 Å, each bridged by two imine N atoms of different guanidinate units. Another guanidinate
unit connects the corners of two octahedra via its N–C–N core, tilting the octahedra towards each other.
This motif of two Eu octahedra, corresponding to the asymmetric unit, is repeated in a zigzag fashion
along the chain, propagated by the 21 screw axis.
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Figure 5. Crystal structure of α-Eu(CN3H4)2 shown along the a-axis as optimized by DFT.

Let us return to the first guanidinate units, bridging the Eu chains by an N imine atom. The very
same guanidinate units interconnect the chains along the a-axis, this time with the other imine N atom
over their N–C–N body. Here, the Eu–Eu distance is equal to the lattice parameter a = 5.85 Å. Finally,
along the c-axis, the chains are connected via the last corner of each Eu octahedron over the N–C–N
body of a guanidinate with a Eu–Eu distance of 7.55 Å.

The guanidinate units are connected with each other in a hydrogen-bonding network. While other
functional groups have relatively short N–H . . . N contacts, only those from amine to imine groups
should be considered to be hydrogen-bonded [40].

An unusual feature of α-Eu(CN3H4)2 is the conformation of the imine hydrogen atoms of the
guanidinate units (Figure 6). In the gas phase, the most stable conformation was calculated as the
syn-conformation [35], adopted in the solid state in KCN3H4, RbCN3H4, and CsCN3H4 [27,28,41].
The energetically less favorable anti-conformation is adopted in LiCN3H4 and NaCN3H4, owing
presumably to improved packing and hydrogen-bonding [28,29]. In α-Eu(CN3H4)2, both the
syn- and anti-conformation are adopted by guanidinate units. Furthermore, one unit also adopts
an all-trans-conformation that has never been observed before for a guanidinate. While this
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conformation is unfavorable in the gas phase by 40 kJ·mol−1 [35], it is the predicted conformation for a
hypothetical Li+CN3H4

− ion pair in the gas phase [29]. Substituted guanidinates can also adopt this
conformation [42,43]. In the case of α-Eu(CN3H4)2, this conformation is taken by the guanidinate unit
connecting the motif of the two tilted Eu octahedra, and this conformational change seemingly allows
for a better coordination by the imine groups.

Table 3. Atomic positions of α-Eu(CN3H4)2 in space group P21 (all on Wyckoff position 2a) as
determined from DFT.

Atom x y z

Eu1 0.5358 0.7086 0.0995
Eu2 0.5091 0.4477 0.1043
C1 0.4778 0.5939 −0.2622
C2 0.0096 0.5851 0.1186
C3 0.9894 0.8521 0.0723
C4 0.4115 0.8357 0.5014
N1 0.4261 0.6722 −0.1801
N2 0.5249 0.5123 −0.1822
N3 0.4775 0.5942 −0.4249
N4 0.2256 0.5851 0.1783
N5 −0.1886 0.5721 0.1963
N6 −0.0171 0.6030 −0.0391
N7 0.8237 0.8338 −0.0357
N8 1.2141 0.8350 0.0569
N9 0.9070 0.8881 0.2132

N10 0.5037 0.7872 0.3822
N11 0.5109 0.8953 0.6061
N12 0.1747 0.8252 0.5170
H1 0.3877 0.7278 −0.2540
H2 0.5761 0.4617 −0.2613
H3 0.4914 0.6572 −0.4856
H4 0.5196 0.533 −0.4836
H5 0.2196 0.5831 0.2991
H6 −0.1546 0.5563 0.3121
H7 0.1267 0.6207 −0.1006
H8 −0.1558 0.5741 −0.0972
H9 0.8935 0.7988 −0.1291
H10 1.2891 0.8532 0.1636
H11 0.7685 0.9334 0.2022
H12 1.0256 0.9096 0.2948
H13 0.6727 0.8069 0.3758
H14 0.6814 0.8996 0.5808
H15 0.1090 0.7649 0.4674
H16 0.1149 0.8394 0.6260
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Figure 6. Possible conformations for the singly deprotonated guanidinate CN3H4
−.

To further computationally test the calculated hydrogen positions and conformations, we optimized
four additional cells with anti- or syn-conformation, replacing the all-trans-conformation. All results
were energetically significantly less favorable by at least 12 kJ·mol−1 per formula unit of
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Eu(CN3H4)2. Thus, we consider the DFT prediction to be reliable, but eagerly wait for further
experimental corroboration.

2.3. Magnetism of α-Eu(CN3H4)2

Magnetic measurements of α-Eu(CN3H4)2 were conducted with different applied magnetic fields
(Figure 7). The field-dependence of the effective magnetic moment µeff at room temperature reveals
a small ferromagnetic impurity: tiny fragments of the steel autoclaves contaminating the sample,
described in reference [31]. The maximum at ca. 70 K further reveals traces of EuO within the sample,
consistent with the Rietveld analysis. Hence, the data for T > 20 K were corrected as detailed in the
Methods section and reference [10].
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At room temperature, the μeff value of noninteracting Eu2+ (4f7, gJ = 2, J = 7/2) ions is expected to 
be close to 7.91 μB, lowered by noticeable spin-orbit coupling contributions from the spin-only value 
of 7.94 μB [44,45]. A Curie–Weiss fit of the corrected data (T > 90 K) gives an effective magnetic 
moment of 7.74 μB and a slightly negative Curie temperature with −8(2) K. Although both values 
imply antiferromagnetic exchange interactions between the Eu2+ ions, they should be looked at as 
artifacts of the correction method since exchange interactions between lanthanide centers are usually 
very small (−2J < 2 cm−1). 

Figure 7. Effective magnetic moment (a) vs temperature for α-Eu(CN3H4)2 at different applied fields;
effective magnetic moment in more detail (b) revealing ferromagnetic exchange interactions (lines in
(b) and (c) as guide to the eye only). Molar, corrected magnetic susceptibility (c) vs temperature for
different applied fields; inset: magnetization versus applied field at 2.0 K. Corrected inverse molar
susceptibility (d) vs temperature, and fit to the Curie–Weiss law.

At room temperature, the µeff value of noninteracting Eu2+ (4f 7, gJ = 2, J = 7/2) ions is expected
to be close to 7.91 µB, lowered by noticeable spin-orbit coupling contributions from the spin-only
value of 7.94 µB [44,45]. A Curie–Weiss fit of the corrected data (T > 90 K) gives an effective magnetic
moment of 7.74 µB and a slightly negative Curie temperature with −8(2) K. Although both values
imply antiferromagnetic exchange interactions between the Eu2+ ions, they should be looked at as
artifacts of the correction method since exchange interactions between lanthanide centers are usually
very small (−2J < 2 cm−1).
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The field-dependent molar magnetization Mm curve at 2.0 K hints at a saturation value of
Mm,sat ≤ 6 NA µB, significantly lower than the expected saturation value of 7.0 NA µB for noninteracting
Eu2+ (4f 7) ions. The ratio of these saturation magnetizations is different from the squared ratio of the
effective moments µeff at room temperature; that is, there is not a common factor that could scale both
values to reach the expectation. Thus, we can conclude the existence of exchange interactions within
the compound, while their nature is ambiguous. The field-dependent maxima in the µeff vs T data in
the temperature range 2–6 K indicate ferromagnetic exchange interactions.

It should be noted that Eu3+ has a distinctly different magnetic behavior [10]: its magnetic
susceptibility as a function of temperature is almost constant and hence does not exhibit Curie–Weiss
behavior. Its high-temperature µeff value is expected to be only 3.5 µB, while µeff shows a strong
temperature dependence. This is all in stark contrast to the magnetic measurements of α-Eu(CN3H4)2,
thus conclusively showing that Eu is in the oxidation state +2.

In summary, the low-temperature data indicate ferromagnetic exchange interactions, most likely
due to one-dimensional, weak interactions along the Eu2+ chains of the crystal structure. Different,
minor antiferromagnetic exchange pathways may additionally characterize the compound as indicated
by the negative Curie temperature; they are, however, subject to speculation due to the uncertainties
arising from the necessary correction for ferromagnetic impurities at T > 20 K.

2.4. Introduction of EuC(NH)3

Finally, we want to give a preliminary account of EuC(NH)3. This compound is isostructural
to SrC(NH)3 [30] and YbC(NH)3 [31] and crystallizes in the hexagonal space group P63/m with
a = 5.1634(7) Å, c = 7.1993(9) Å, V = 166.23(4) Å3, and Z = 2 (Figure 8; Table 2). As for YbC(NH)3, DFT
calculations were used to locate the hydrogen atoms, a method validated in reference [46] (Table 4).
So far, EuC(NH)3 was only obtained together with an unidentified side phase.
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Table 4. Atomic positions and displacement parameters of EuC(NH)3 in space group P63/m. Hydrogen
position determined from DFT.

Atom Wyckoff position x y z Uiso or Ueq (Å2)

Eu 2b 0 0 0 0.058(1)
C 2c 1/3 2/3 1/4 0.005(7)
N 6h 0.065(4) 0.422(3) 1/4 0.005(7)

H (DFT) 6h −0.092 0.486 1/4 –
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Compared to both SrC(NH)3 [30] and YbC(NH)3 [31], EuC(NH)3 shows a shorter a- and a longer
c-axis, while the volume falls in-between the two. The C–N bonds are found to be somewhat short
at 1.328(1) Å, close to a double bond although the bond order should be 11/3. As for the isostructural
compounds, no hydrogen-bonding is expected.

The first magnetic measurements evidence ferromagnetic exchange interactions at low
temperatures indicated by the occurrence of maxima in the µeff vs T curve (Figure 9), but without
phase-pure samples, this result is only tentative. In particular, the µeff vs T curve for T > 25 K
reveals, as for Eu(CN3H4)2, ferromagnetic impurities that can be assigned to EuO and autoclave
material. Furthermore, the unidentified side phase could be magnetic and contribute to the
measured susceptibility.
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3. Materials and Methods

3.1. Syntheses

The highly moisture-sensitive compounds were handled in an argon-filled glove box (MBRAUN,
Garching, Germany) to prevent degradation. Reactants were used as obtained from the manufacturers
mentioned below.

Guanidine CN3H5 was prepared in a one-pot synthesis in liquid ammonia in steel autoclaves as
described in [31]. The autoclaves were constructed from stainless steel 1.4571 and a copper ring as a
sealing gasket with a reaction volume of about 75 cm3. A detailed description of the autoclaves can be
found in [47].

Eu(CN3H4)2 crystallizes in three different polymorphs, depending on the reaction temperature,
as differentiated by PXRD. In all cases, stoichiometric reactants (0.2–1 mmol of Eu metal; Smart
Elements, Vienna, Austria, 99.99%) were weighed in steel autoclaves and 15 cm3 of dried, solid
ammonia (Linde, Pullach, Germany, 99.999%, without further purification) were added. For the
α-polymorph, compounds of highest crystallinity were obtained by heating for 5–10 days to 65 ◦C.
β-Eu(CN3H4)2 could be prepared by shorter reaction times of 2–5 days at only 50 ◦C, but higher
quality and crystallinity could be obtained after the γ-polymorph converted to β-Eu(CN3H4)2 (see
below). γ-Eu(CN3H4)2 was synthesized by reacting for 4–8 days at room temperature, sometimes
yielding almost amorphous samples. During storage under argon, γ-Eu(CN3H4)2 converted into
β-Eu(CN3H4)2 over the course of weeks, as evidenced from PXRD. All products showed traces of EuO
(about 1 wt % from PXRD), most likely formed during handling of Eu metal in the glove box. Yields
were 70%–80%. All Eu(CN3H4)2 compounds were of a bright-yellow color.
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EuC(NH)3 was obtained from stoichiometric reactants (0.3–1 mmol of Eu) in steel autoclaves with
5–20 cm3 of dried, solid ammonia. Reaction times were 4–14 days at 50–70 ◦C to yield 60%–80% of
an orange powder. In some cases, however, only amorphous samples were obtained or EuC(NH)3

was a product when Eu(CN3H4)2 was targeted at suboptimal reaction conditions. Unfortunately, no
phase-pure products could be achieved, but only mixtures with an unidentified side-phase (volume
fraction estimated from PXRD 10%–20%).

3.2. Powder X-Ray Diffraction

For PXRD, the samples were sealed in 0.3 mm glass capillaries and measured with a STADI MP
diffractometer (STOE, Darmstadt, Germany) with monochromatic Mo Kα1 radiation and a Mythen
detector. The measurement ranges were 3◦–75◦ in 2θ with a step size of 0.015◦ for both EuC(NH)3

and α-Eu(CN3H4)2 and limited scans of 3◦–21◦ in 2θ for γ- and β-Eu(CN3H4)2. High-resolution
synchrotron powder-diffraction data were collected using beamline 11-BM at the Advanced Photon
Source (APS), Argonne National Laboratory using an average wavelength of 0.414170 Å. During the
measurement, darkening of the samples was observed and the diffractograms were different from
those obtained from our in-house diffractometer. Apparently, the samples decomposed under X-ray
radiation, even more so when exposed to intense synchrotron radiation. For γ- and β-Eu(CN3H4)2,
similar loss in crystallinity was observed for long measurements with our in-house diffractometer, so
limited scans were used for identification purposes.

The crystal structure of α-Eu(CN3H4)2 was solved by charge-flipping with SUPERFLIP [48]
as implemented in the Jana2006 suite [49] and further refined with the suite. To obtain a sensible
structural model, the Uiso of the C and N atoms of each guanidinate unit were constrained. Also, the
C–N distances, N–C–N angles, and CN3 torsion angles were restrained to established values for the
guanidinate unit as obtained from neutron-diffraction measurements [31,41]. Finally, a secondary
phase of EuO [50] was added in the refinement, reaching a weight-percentage of 1.3(2) wt %.

The DFT-optimized structure of α-Eu(CN3H4)2 in the experimental lattice parameters also
describes the PXRD pattern well. In this Rietveld refinement, only the profile parameters—a single
Uiso parameter for the Eu atoms, and another for all C and N atoms—were refined. These thermal
displacement parameters were deposited with the calculated atomic positions as a CIF file.

For EuC(NH)3, Rietveld refinements were performed with the Jana2006 suite using the
reported SrC(NH)3 structure type [30] as the starting model. The hydrogen atoms were located
by DFT calculations (see below). All CIF data may also be obtained from FIZ Karlsruhe, 76344
Eggenstein-Leopoldshafen, Germany (fax: (+49)-7247-808-666; e-mail: crysdata@fiz-karlsruhe.de), on
quoting the depository numbers CSD-432390 for α-Eu(CN3H4)2 and CSD-432391 for EuC(NH)3.

3.3. DFT Calculations

DFT calculations were computed at the PBE+D3(BJ)/PAW level [51–55] as implemented in
VASP [56–59]. The cutoff energy for the plane-wave expansion was 500 eV; the k-meshes used for
the calculations were sufficiently large. Phonon calculations did not use spin-polarization, and finite
displacements of 0.01 Å were applied. The supercells for the phonon calculations of α-Eu(CN3H4)2

and EuC(NH)3 were 3 × 1 × 2 and 4 × 4 × 3, respectively. To arrive at hydrogen positions fitting
our EuC(NH)3 experimental results at 300 K, we started out from the latter and placed the hydrogen
atoms as observed for SrC(NH)3 [30] and YbC(NH)3 [31]. Then, we selectively optimized the hydrogen
positions, leaving lattice vectors and all other positions fixed. The resulting hydrogen positions are
expected to be qualitatively comparable to those from neutron-diffraction experiments [46].

3.4. Magnetometry

Magnetic properties of both Eu(CN3H4)2 and EuC(NH)3 were measured with a superconducting
quantum interference device (SQUID) magnetometer (MPMS-5XL, Quantum Design Inc., San Diego,
CA, USA). Each polycrystalline sample was compacted and immobilized into cylindrical
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polytetrafluoroethylene (PTFE) capsules. Measurements included field- and temperature-dependent
molar magnetic susceptibilities (0.05–5.0 T, 2–290 K) and determination of the molar magnetization as a
function of the applied field at 2 K. At applied fields of 0.1 T, the magnetic susceptibility was measured
in field cooled (FC) and zero-field cooled (ZFC) mode, showing no significant difference. The data
were corrected for diamagnetic contributions of sample holder and compound (Pascal’s constants,
χdia = −1.68 × 10−9 m3·mol−1, Eu(CN3H4)2 and −1.31 × 10−9 m3·mol−1, EuC(NH)3).

Field-dependent measurements of the molar magnetic susceptibility χg allowed to correct for a
small ferromagnetic impurity by applying the formula below for each temperature (T > 20 K) [10].

χg(H) = χg(∞) +
σs

H

For this formula, the magnetization must be a linear function of the field. Therefore, we included
data of fields of up to 0.3 T to rule out errors caused by a saturation of α-Eu(CN3H4)2 or EuC(NH)3.
Extrapolations to infinitely high fields yield the corrected values χm(∞) through multiplying χg(∞) by
the molar mass of α-Eu(CN3H4)2 or EuC(NH)3.

3.5. IR Spectroscopy

An ALPHA FT-IR-spectrometer (Bruker, Billerica, MA, USA) placed in an argon-filled glove
box and equipped with an ATR Platinum Diamond sample holder with a measurement range of
4000−400 cm−1 was employed to measure the IR spectrum of Eu(CN3H4)2. The results were compared
to a DFT-based calculation of an IR spectrum of α-Eu(CN3H4)2. The frequencies and eigenvectors at
the Γ-point were derived by a finite displacement approach as implemented PHONOPY [60], and the
Born effective charge tensor was calculated by density-functional perturbation theory as implemented
in VASP (“LEPSILON=.TRUE.”). The IR intensities were derived from these values as described in
references [33] and [34]. Also, a Gaussian broadening was applied to the spectrum.

4. Conclusions

In summary, we synthesized the α-, β- and γ-polymorphs of Eu(CN3H4)2 and identified them
by PXRD. The γ-phase transforms into the β-form over time. The IR spectra are dominated by the
anion and are interpretable with the help of DFT calculations. Preliminary TGA measurements
show that the guanidinates could be precursors for the preparation of (hydrogen) cyanamides.
The crystal structure of α-Eu(CN3H4)2 was solved by PXRD, and DFT was used to optimize
the structural model. In α-Eu(CN3H4)2, Eu is coordinated in double zigzag chains that are
connected by the hydrogen-bonded guanidinate anions. The CN3H4

− anions are predicted to
adopt the syn-, anti-, and all-trans-conformations. The all-trans-conformation is found for the first
time in a guanidinate. Magnetic measurements show paramagnetism at high temperatures and
ferromagnetic exchange interactions below 6 K, presumably in one dimension along the Eu chains.
Finally, EuC(NH)3, isostructural to SrC(NH)3 [30] and YbC(NH)3 [31], is introduced as a possible
low-temperature ferromagnet.

Supplementary Materials: The following are available online at www.mdpi.com/2304-6740/5/1/10/s1,
Crystallographic Information Framework (.cif) and (.fcf) files of the DFT-optimized structure of α-Eu(CN3H4)2
and the experimental structure of EuC(NH)3 with H positions from DFT.
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