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Abstract: In recent years, the organometallic and coordination chemistry of the alkali and alkaline
earth metals has experienced tremendous progress to tackle the needs of today’s society. Enhanced
ecological awareness and global availability favor research on the chemistry of the essential s-block
metals. Nowadays, the s-block metals are conquering new chemical fields based on sophisticated
theoretical and preparative achievements. Recent investigations show a huge impact of the s-block
elements on stoichiometric and catalytic processes.
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The s-block metals subsume the elements of the first two groups of the periodic table—the alkali
and alkaline earth metals. The non-radioactive elements were all discovered by the middle of the 19th
century [1] (Table 1), initiating a profound s-block metal-based chemistry with a very long tradition.
Generally, the toxicity is low and highly toxic congeners are limited to the radioactive metals and
beryllium [2], justifying the underrepresented extent of their chemistry.

Table 1. Year of discovery [1] and selected properties [3] of the s-block metals (radii are given in pm;
cation radii are given for six-coordinate ions).

Year of
Discovery

Allred–Rochow
Electronegativity

Atomic
Radius

Cation
Radius

Element
Essential

Toxicity of
Element

Li 1817 0.97 157 90 − +
Na 1807 1.01 191 116 + −
K 1807 0.91 235 152 + −
Rb 1861 0.89 250 166 − +
Cs 1860 0.86 272 181 − −
Fr 1939 0.86 270 194 − + + +
Be 1797 1.47 111.3 59 − + + +
Mg 1755 1.23 159.9 86 + −
Ca 1808 1.04 197.4 114 + −
Sr 1790 0.99 215.1 132 − −
Ba 1808 0.97 224 149 − +
Ra 1898 0.97 230 162 − + + +

The organic and coordination chemistry of these highly electropositive metals is dominated
by mainly ionic bonds and the salt-like nature of their compounds. The most electropositive
non-radioactive element, cesium, has an Allred–Rochow electronegativity of 0.86 [3] (Table 1).
Generally, these elements are redox inert and oxidation states of +−I and +II of the alkali and alkaline
earth metals, respectively, are maintained throughout the chemical transformations; exceptions include
the thermally stable magnesium(I) [4] and calcium(I) complexes [5]. Polar organometallic chemistry has
recently gained tremendous interest due to a paradigm shift in the principles and practice, widening
the tasks and applications of these reagents [6].
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Organomagnesium compounds have been known for more than a century, and in 1912, Victor
Grignard was awarded with the Nobel Prize for the achievement of introducing organomagnesium
halides, the so-called Grignard reagents, to organic and organometallic chemistry [7]. Still today, the
coordination and organic chemistry of magnesium offers many facets for future tasks [8–11]. A few
years after the discovery of the Grignard reagents, organolithium chemistry was developed by the
research groups of Gilman [12] and Schlenk [13] and long lasting, extensive research efforts now
allow us to understand the chemistry of these light s-block metals [14]. The chemistry of the heavier
congeners poses severe challenges due to diverse reasons. The salt-like nature of the organometallics
of the heavy alkali metals leads to solubility problems in common organic solvents. In addition,
the strongly heteropolar nature of bonds to non-metallic p-block elements increases the nucleophilic
character of the anions. This enhanced reactivity eases side-reactions with solvents and substrates
(such as ligand coordination, aggregation, solvent and ligand degradation, as well as Wurtz-type
coupling reactions) and hampers the straightforward direct synthesis. The heavy alkaline earth metals
are high-melting elements and activation is required to reduce the discrepancy between the inertness
of the metal itself and the enormous reactivity of its organometallics.

In very recent years, the interest in the chemistry of the s-block metals has gained tremendously in
importance due to increased environmental and ecological awareness and, hence, the need for non-toxic
reagents with a broad diversity of properties with respect to availability, reactivity, applicability, and
costs has become evident. This fact led to the increasing impact of this chemistry in all fields of
chemistry (Figure 1), especially in organometallic and catalytic applications [15,16]. Thus, the delayed
development of a sophisticated organic [17] and coordination chemistry of calcium [18] led to the
nickname of "sleeping beauty" for this dormant element [18,19]. Lithium (and to a lesser extend sodium
and magnesium) will become the foundation for car batteries, ensuring electric-based transport and,
hence, the demand (as well as the price) will increase significantly. Recent studies have elucidated the
suitability of magnesium hydrides as storage materials for hydrogen, one of the future energy carriers.
In the recent past, increasing efforts have been undertaken to develop a sophisticated chemistry of these
elements [19–21]. The chemistry of methanediides [22] and the relevance of secondary interactions [23],
discussed in this Special Issue, may be viewed as representative examples.
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In contrast to lithium, the heavier homologous elements, sodium and potassium as well as calcium,
are globally abundant, easily available, inexpensive and of low toxicity. Whereas the mining and salt
production of these metals (e.g., rock salt, lime and gypsum) are routinely performed in industrial
processes in very large scale, the organic and organometallic as well as coordination chemistry of
the heavier alkali and alkaline earth metals is now awakening and diverse research groups are
focusing on specific aspects of the demanding chemistry of s-block metal compounds. On the one
hand, the electropositive nature of the metals increases toward the heavier congeners (decreasing
electronegativity), leading to the enhanced heteropolar nature of bonds to carbon, nitrogen and oxygen.
On the other hand, Lewis acidity is related to the charge-to-radius (or charge-to-surface) ratio with
cesium being the softest element in the periodic table. Softness of an element or ion is directly related
to its polarizability and compressibility. Thus, lithium and calcium have very similar electronegativity
values and, hence, comparable bond polarities but a significantly enhanced Lewis acidic character of
the calcium ions can be expected. This consideration might emblematize the reason for stronger bonds
to even very weak Lewis bases such as σ-bonds (agostic bonds) and π-electron density (π-interactions).

Future tasks related to the chemistry of these s-block organometallics include stability and
reactivity [17], catalysis and stoichiometric conversions [18,21], Lewis acidity and nucleophilicity [24].
Quantum chemical calculations are valuable tools to elucidate the agostic and π-interactions
between the s-block metal ions and multiple bonds [25,26]. Isoelectronic ion pairs such as
Na+/Mg2+, K+/Ca2+/Sc3+, Rb+/Sr2+/Y3+, and Cs+/Ba2+/La3+ allow one to deduce the influence of
electronegativity, size and hardness on reactivity and bonding parameters. The isoelectronic relations
demonstrate that the heavy alkaline earth metals calcium, strontium and barium have intermediate
positions between the alkali metal ions (highly electropositive, polarizable, highly ionic character)
and the early transition metal ions (highly Lewis acidic, d-orbital participation, catalytic reactivity).
This fact interrelates the chemistry of these heavy alkaline earth metals to the catalytic activity of
complexes of the scandium group.

Understanding the diverse characteristics of these highly reactive compounds will expand the
knowledge on reactivity and property; this will enable one to commonly tackle future challenges
related to these highly polar organometallic and coordination compounds and catalysts that often
have unique reaction patterns and mechanisms.
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