Supplementary Materials: Manganese(I)-Based CORMs with 5-Substituted 3-(2-Pyridyl)Pyrazole Ligands

Ralf Mede, Steve Gläser, Benedikt Suchland, Björn Schowtka, Miles Mandel, Helmar Görls, Sven Krieck, Alexander Schiller and Matthias Westerhausen

General Procedure for the Preparation of the Ligands

Carboxylate ester and NaH in a 1:1.2 ratio were suspended in toluene. After the mixture was cooled to $0^{\circ} \mathrm{C}$, an equimolar amount of the ketone was added. The reaction was warmed to ambient temperature and an exothermic reaction took place. The reaction mixture was stirred for additional 12 h at room temp. and afterwards heated for 4 h at $80^{\circ} \mathrm{C}$ in order to get a higher conversion. Thereafter, all volatiles were removed in vacuo and the residue was quenched with a $1: 1$ mixture of water and acetic acid. The precipitate was recrystallized from hot ethanol. The received 1,3-substituted-propane-1,3-diones were dissolved in ethanol and hydrazine hydrate (1:1 ratio) was added. The mixture was refluxed for 4 h . All volatiles were removed in vacuo and the residue was recrystallized from hot toluene yielding a pure product of $\mathbf{1}$.

$\underline{R}=p-\operatorname{Br}(1 e)$

Yield: 58\% as colorless crystals.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600.130 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=13.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.62\left(\mathrm{~d},{ }^{3}{ }^{3} \mathrm{H}, \mathrm{H}=5.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.94-7.90(\mathrm{~m}, 1 \mathrm{H})$, $7.88\left(\mathrm{t},{ }^{3} \mathrm{~J}, \mathrm{H}=7.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}, \mathrm{H}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.81\left(\mathrm{~d},{ }^{3} \mathrm{~J} \mathrm{H}, \mathrm{H}=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.63\left(\mathrm{~d},{ }^{3} \mathrm{~J}, \mathrm{H}=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.36(\mathrm{~s}, 1 \mathrm{H})$, 7.35-7.32 (m, 1H).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($\mathbf{1 5 0 . 9 0 2} \mathbf{~ M H z}$ [D_{6}]DMSO): $\delta=149.3$ (s), 148.0 (s), 137.1 (s), 136.1 (s), 131.7 (s), 127.1 (s), 123.3 (s), 122.9 (s), 120.7 (s$), 119.7$ (s$), 101.1(\mathrm{~s})$.

MS (DEI): $m / z(\%)=301\left[\mathrm{M}^{+}+2\right](100), 299\left[\mathrm{M}^{+}\right](92), 272(5), 270(6), 191$ (28), 165 (2).
IR (solid): 3207 (b), 1593 (w), 1560 (w), 1505 (w), 1469 (w), 1449 (m), 1420 (w), 1372 (m), 1304 (w), 1292 (w), 1267 (w), 1228 (w), 1176 (m), 1146 (w), 1106 (m), 1090 (w), 1071 (m), 1045 (m), 1005 (m), 995 (m), $973(\mathrm{~m})$, $954(\mathrm{~m}), 884(\mathrm{w}), 831(\mathrm{~m}), 802(\mathrm{~m}), 774(\mathrm{~s}), 739(\mathrm{~m}), 700(\mathrm{~m}), 661(\mathrm{~m}), 619(\mathrm{w}), 522(\mathrm{~m}), 511(\mathrm{w}), 491(\mathrm{~m})$, 469 (m).
Elemental Analysis ($\left.\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrN}_{3}, \mathbf{3 0 0 . 1 5}\right)$:
calc.: \quad C 56.02 \%, H 3.36\%, N 14.00\%
found: C 55.39%, H 3.28\%, N 13.63\%.

Figure S1. Molecular structure and numbering scheme of $\mathbf{1 e}$. The ellipsoids represent a probability of 30%, H atoms are shown with arbitrary radii.

$\underline{\mathrm{R}=\mathrm{m}-\mathrm{Br}(\mathbf{1 f})}$

Yield: 42%, colorless crystals.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600.130 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): \delta=13.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.63\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.08-8.06(\mathrm{~m}, 1 \mathrm{H})$, $7.96-7.84(\mathrm{~m}, 3 \mathrm{H}), 7.53\left(\mathrm{~d},{ }^{3} \mathrm{H}, \mathrm{H}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 1 \mathrm{H})$.
 123.0 (s), 122.2 (s), 119.8 (s), 101.4 (s).

MS (DEI): $m / z(\%)=301\left[\mathrm{M}^{+}+2\right](95), 299\left[\mathrm{M}^{+}\right](100), 272(5), 270(2), 220\left[\mathrm{M}^{+}-\mathrm{Br}\right](9), 191$ (40), 165 (5), 95 (2), 78 (2).
IR (solid): 3138 (b), 3050 (w), 3012 (w), 2904 (w), 1597 (w), 1567 (w), 1480 (w), 1459 (m), 1445 (w), 1380 (w), 1307 (w), 1222 (w), 1184 (w), 1164 (w), 1114 (w), 1071 (w), 1053 (w), 996 (w), 970 (w), 960 (w), 884 (w), 833 (w), 767 (m), 744 (m), 703 (w), 693 (w), 673 (w), 657 (w), 623 (w), 543 (w), 519 (w), 501 (w), 431 (w), 417 (w).

Elemental analysis ($\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrN}_{3}, \mathbf{3 0 0 . 1 5}$):

calc.: \quad C 56.02%, H 3.36\%, N 14.00\%
found: C 55.55%, H 3.52%, N 13.96%.

Figure S2. Molecular structure and numbering scheme of $\mathbf{1 f}$. The ellipsoids represent a probability of 30%, H atoms are shown with arbitrary radii.

$\underline{R=F c(1 k)}$

Yield: 32%, orange crystals.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600.130 \mathrm{MHz},[\mathrm{D} 6 \mathrm{DMSO}): \delta=13.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.58-8.56(\mathrm{~m}, 1 \mathrm{H}), 7.97\left(\mathrm{~d},{ }^{3}{ }^{3} \mathrm{H}, \mathrm{H}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right)\right.$, $7.82-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 5 \mathrm{H})$.
${ }^{13}$ C $\left\{1{ }^{1} \mathbf{H}\right\}$-NMR ($\mathbf{1 5 0 . 9 0 2} \mathbf{~ M H z},\left[\mathrm{D}_{6}\right]$ DMSO): $\delta=152.3$ (s), 151.6 (s), 149.1 (s), 142.5 (s), 136.6 (s), 122.3 (s), 119.1 (s), 100.1 (s), 74.0 (s), 69.4 (s), 68.6 (s), 66.2 (s).

MS (DEI): $m / z(\%)=329\left[\mathrm{M}^{+}\right](100)$.
IR (solid): 3225 (b), 3094 (b), 1601 (w), 1570 (w), 1543 (w), 1485 (w), 1454 (w), 1411 (w), 1304 (w), 1281 (w), 1169 (w), 1153 (w), 1138 (w), 1103 (w), 1072 (w), 1022 (w), 999 (w), 972 (w), 872 (w), 813 (m), 779 (m), $729(\mathrm{~m}), 710(\mathrm{~m}), 656(\mathrm{w}), 625(\mathrm{w})$.
Elemental analysis ($\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FeN}_{3}$, 329.18):
calc.: \quad C 65.68%, H $4.59 \%, \mathrm{~N} 12.77 \%$
found: $\quad \mathrm{C} 65.52 \%, \mathrm{H} 4.56 \%, \mathrm{~N} 12.94 \%$.

Procedures for the preparation of the complexes

$\underline{R}=\mathbf{P h}(2 a)$

370 mg of $\mathbf{1 a}(1.67 \mathrm{mmol})$ were suspended in 5 mL of MeOH . In another flask 460 mg of $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}(1.76 \mathrm{mmol})$ were dissolved in 20 mL of MeOH and transferred at once to the suspension of $\mathbf{1 a}$. Then the reaction was refluxed for 4 h whereby a yellow precipitate formed. The reaction mixture was cooled to room temperature. The solid was collected, washed with 2 mL of MeOH and dried in vacuo.
Yield: $526 \mathrm{mg}(1.19 \mathrm{mmol}), 71 \%$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.130 \mathrm{MHz},\left[\mathrm{D}_{8}\right] \mathrm{THF}\right): \delta=13.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 9.09(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~s}$,
 2H), 7.79 ($\mathrm{s}, 1 \mathrm{H}), 7.72-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.30(\mathrm{~m}, 4 \mathrm{H})$.
 149.6 (s , 139.2 (s$), 130.2$ (s), 129.9 (s$), 129.2$ (s$), 126.9$ (s), 125.2 (s$), 122.5$ (s), 102.5 (s).

MS (DEI): $m / z(\%)=357\left[\mathrm{M}^{+}+2-3 \mathrm{CO}\right](12), 355\left[\mathrm{M}^{+}-3 \mathrm{CO}\right](12), 281$ (49), 221 [L] (13), 207 (10), 192 (6), 84 (6), 80 (47), 78 (47), 48 (100), 46 (47), 30 (33).
IR (solid): 3351 (w), 3105 (w), 3006 (w), 2969 (w), 2942 (w), 2021 (m), 1895 (s), 1612 (w), 1585 (w), 1572 (w), 1533 (w), 1494 (w), 1463 (w), 1448 (m), 1324 (w), 1301 (w), 1276 (w), 1257 (w), 1219 (w), 1157 (w), 1129 (w), 1100 (w), 1075 (w), 1012 (m), 991 (w), 902 (w), 834 (w), 781 (w), 762 (m), 726 (w), 683 (m), 645 (w), 627 (m), 552 (w), 531 (m), 517 (m), 508 (m), $488(\mathrm{~m}), 471(\mathrm{~m}), 459(\mathrm{~m}), 426(\mathrm{w})$.
Elemental analysis ($\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{BrMnN}_{3} \mathrm{O}_{3}, 440.14$):
calc.: $\quad \mathrm{C} 46.39 \%, \mathrm{H} 2.52 \%, \mathrm{~N} 9.55 \%$
found: \quad C $46.08 \%, \mathrm{H} 2.78 \%, \mathrm{~N} 9.30 \%$.

Figure S3. Molecular structure and numbering scheme of $\mathbf{2 a} \cdot \mathrm{MeOH}$. The ellipsoids represent a probability of $30 \%, \mathrm{H}$ atoms are shown with arbitrary radii. Selected bond lengths are summarized in Table 2.

Figure S4. UV-Vis spectra during irradiation of 2a at $480 \mathrm{~nm}(\mathrm{c}=99 \mu \mathrm{M})$ in methanol.

$\underline{R}=\operatorname{Naph}(2 b)$

A similar procedure as described for compound 2a, using 625 mg (2.27 mmol) of $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}, 617 \mathrm{mg}(2.27 \mathrm{mmol})$ of $\mathbf{1 b}$ and 24 mL of MeOH , gave compound $\mathbf{2 b}$ as a yellow solid.
Yield: $955 \mathrm{mg}(1.95 \mathrm{mmol}), 86 \%$.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400.130 \mathrm{MHz},\left[\mathrm{D}_{\mathrm{s}}\right.$]THF): $\delta=13.87$ (s, 1H, NH), 9.16 ($\mathrm{s}, 1 \mathrm{H}$), $8.06-7.98(\mathrm{~m}, 5 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 3 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($\mathbf{1 0 0 . 6 1 3} \mathbf{~ M H z},\left[\mathrm{D}_{8}\right] \mathrm{THF}$): $\delta=223.8$ (s, C Carbonyl), 223.3 (s , CCarbonyl), 221.5 (s, CCarbonyl), 154.5 (s), 153.2 (s), 153.0 (s), 148.0 (s), 139.4 (s), 134.8 (s), 132.4 (s), 131.0 (s), 129.4 (s), 128.9 (s), 128.1 (s), 127.4 (s), 127.3 (s),
 126.0 (s), 125.9 (s), 125.2 (s), 122.6 (s), 106.0 (s).

MS (Micro-ESI neg. in THF + Methanol): $m / z(\%)=587.9[\mathrm{M} \mathrm{-} \mathrm{H}+$].
IR (solid): 3372 (w), 3110 (w), 3051 (w), 2939 (w), 2835 (w), 2026 (m), 1948 (s), 1912 (s), 1612 (w), 1582 (w), 1566 (w), 1450 (w), 1428 (w), 1385 (w), 1368 (w), 1303 (w), 1263 (w), 1160 (w), 1116 (w), 1017 (m), $988(\mathrm{~m}), 905(\mathrm{w}), 887(\mathrm{w}), 860(\mathrm{w}), 800(\mathrm{w}), 783(\mathrm{w}), 773(\mathrm{~m}), 759(\mathrm{~m}), 732(\mathrm{~m}), 721(\mathrm{w}), 680(\mathrm{w}), 657(\mathrm{w})$, 646 (w), 633 (m), 575 (w), 541 (w), 530 (w), 497 (w), 467 (w), 447 (w), 434 (w), 420 (w).
Elemental analysis ($\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{BrMnN}_{3} \mathrm{O}_{3}$, 490.19):

$$
\begin{array}{ll}
\text { calc.: } & \text { C } 51.45 \%, \text { H } 2.67 \%, \text { N } 8.57 \% \\
\text { found: } & \text { C } 51.33 \%, \text { H } 2.86 \%, \text { N } 8.39 \% .
\end{array}
$$

Figure S5. Molecular structure and numbering scheme of $\mathbf{2 b} \cdot \mathrm{MeOH}$. The ellipsoids represent a probability of 30%, H atoms are omitted. Selected bond lengths are summarized in Table 2.

$\underline{R=A n t h(2 c)}$

A similar procedure as described for compound 2a, using 850 mg (3.09 $\mathrm{mmol})$ of $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}, 994 \mathrm{mg}(3.09 \mathrm{mmol})$ of $\mathbf{1 c}$ and 25 mL of MeOH , yielded compound 2 c as a yellow solid.
Yield: 1585 mg (2.93 mmol), 95%.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400.130 \mathrm{MHz},\left[\mathrm{D}_{\mathrm{s}}\right]$ THF): $\delta=13.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 9.14\left(\mathrm{~d},{ }^{3}{ }^{3} \mathrm{H}, \mathrm{H}=\right.$ $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01-7.94(\mathrm{~m}, 4 \mathrm{H}), 7.88-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.57\left(\mathrm{~d},{ }^{3}{ }^{3} \mathrm{H}, \mathrm{H}=7.2 \mathrm{~Hz}\right.$, 1H), 7.42-7.30 (m, 6H).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}-N M R\left(\mathbf{1 0 0 . 6 1 3} \mathbf{~ M H z},\left[\mathbf{D}_{8}\right] \mathbf{T H F}\right): \delta=154.6$ (s), 153.7 (s), 153.1 (s), 150.2 (s), 145.2 (s), 144.9 (s), 144.1 (s), 142.0 (s), 139.3 (s), 129.2 (s), 129.1 (s), 128.3 (s), 127.9 (s), 127.6 (s), 126.0 (s), 126.0 (s), 125.3 (s), 123.7 (s), 122.5 (s), 121.3 (s), 121.2 (s), 102.3 (s).

MS (Micro-ESI pos. in THF + Methanol): $m / z(\%)=539.2\left[\mathrm{M}+\mathrm{H}^{+}\right]$.
IR (solid): 3102 (w), 2023 (s), 1931 (m), 1904 (s), 1653 (w), 1613 (w), 1574 (w), 1540 (w), 1487 (w), 1449 (m), 1401 (w), 1301 (w), 1260 (w), 1243 (w), 1198 (w), 1159 (w), 1124 (w), 1098 (w), 1059 (w), 994 (w), 972 (w), 955 (w), 926 (w), 899 (w), 877 (w), 823 (w), $780(\mathrm{~m}), 768$ (m), 732 (m), $684(\mathrm{~m}), 647$ (w), 624 (m), 555 (w), 528 (m), 484 (w), 416 (w).

Elemental analysis $\left(\mathrm{C}_{25} \mathrm{H}_{15} \mathrm{BrMnN}_{3} \mathrm{O}_{3}, 540.26\right)$:
$\begin{array}{ll}\text { calc.: } & \text { C } 55.58 \%, \text { H } 2.80 \%, \text { N } 7.78 \% \\ \text { found: } & \text { C } 55.35 \%, \text { H } 2.95 \%, \text { N } 7.94 \% .\end{array}$

$\underline{R}=$ Pyrenyl (2d)

A similar procedure as described for compound 2a, using 302 mg $(1.10 \mathrm{mmol})$ of $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}, 361 \mathrm{mg}(1.04 \mathrm{mmol})$ of $\mathbf{1 d}$ and 14 mL of MeOH , yielded compound 2d as a yellow solid.
Yield: 545 mg (0.97 mmol), 93%.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.130 \mathrm{MHz},\left[\mathrm{D}_{8}\right] \mathrm{THF}\right): \delta=14.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 9.20\left(\mathrm{~d},{ }^{3}{ }_{\mathrm{H}, \mathrm{H}}=5.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 8.40-8.04(\mathrm{~m}, 11 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR ($\mathbf{1 0 0 . 6 1 3} \mathbf{~ M H z},\left[\mathrm{D}_{8}\right]$ THF): $\delta=154.7$ (s$), 153.5$ (s), 153.3 (s), 148.7 (s), 139.3 (s), 133.4 (s), 132.6 (s), 132.0 (s), 130.4 (s), 129.9 (s), 129.7 (s), 129.2 (s), 128.6 (s), 128.2 (s$), 127.5$ (s$), 127.0$ (s$), 126.8$ (s$), 125.8$ (s$), 125.6$ (s$)$, 125.3 (s), 125.1 (s), 124.4 (s$), 122.7$ (s$), 106.5$ (s$).$

MS (Micro-ESI neg. in THF + Methanol): $m / z(\%)=562.0\left[\mathrm{M}-\mathrm{H}^{+}\right]$.

IR (solid): 3142 (w), 2027 (s), 1930 (m), 1898 (s), 1864 (m), 1615 (w), 1603 (w), 1571 (w), 1561 (w), 1529 (w), 1502 (w), 1462 (w), 1445 (m), 1412 (w), 1299 (w), 1252 (w), 1203 (w), 1159 (w), 1114 (w), 957 (w), 862 (m), 841 (w), 834 (m), 825 (m), 813 (w), 799 (m), 774 (m), 752 (m), 716 (w), $697(\mathrm{~m}), 682(\mathrm{w}), 660(\mathrm{w}), 647(\mathrm{~m}), 627$ (w), 580 (w), $530(\mathrm{~m}), 507(\mathrm{~m}), 472(\mathrm{w}), 426(\mathrm{w})$.

Elemental analysis ($\mathrm{C}_{27} \mathrm{H}_{15} \mathrm{BrMnN}_{3} \mathrm{O}_{3}, 564.28$):
$\begin{array}{ll}\text { calc.: } & \text { C } 57.47 \%, \text { H } 2.68 \%, \text { N } 7.45 \% \\ \text { found: } & \text { C } 56.91 \%, \text { H } 2.67 \%, \text { N } 7.09 \%\end{array}$

$\underline{R}=\mathrm{p}-\mathrm{Br}-\mathrm{Phenyl}$ (2e)

A similar procedure as described for compound 2a, using 381 mg (1.39 mmol) of $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}, 416 \mathrm{mg}(1.39 \mathrm{mmol})$ of $\mathbf{1 e}$ and 20 mL of MeOH , yielded compound $\mathbf{2 e}$ as a yellow solid.
Yield: 448 mg (0.86 mmol), 62%.
${ }^{1} \mathbf{H}-N M R\left(400.130 \mathrm{MHz},\left[\mathrm{D}_{8}\right] \mathrm{THF}\right): \delta=13.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 9.13\left(\mathrm{~d},{ }^{3}{ }^{3} \mathrm{H}, \mathrm{H}=\right.$ $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.01-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}-N M R\left(100.613 \mathrm{MHz},\left[\mathrm{D}_{8}\right] \mathrm{THF}\right.$): $\delta=228.5$ ($\mathrm{s}, \mathrm{C}_{\text {Carbonyl }}$), 226.3 (s , CCarbonyl), 154.6 (s), 153.8 (s), 152.8 (s), 148.6 (s), 139.4 (s), 133.3 (s), 128.8 (s), 128.5 (s), 125.4 (s), 124.3 (s), 122.5 (s), 102.7 (s).

MS (Micro-ESI pos. in Methanol): $m / z(\%)=517.8\left[\mathrm{M}+\mathrm{H}^{+}\right]$.
IR (solid): 3152 (m), 2020 (s), 1940 (s), 1906 (s), 1886 (s), 1614 (m), 1600 (m), 1530 (w), 1486 (m), 1458 (m), 1447 (s , 1388 (w), 1299 (m), 1260 (m), 1211 (w), 1154 (m), 1129 (w), 1105 (m), 1071 (w), 1056 (m), 1007 (m), $992(\mathrm{~m}), 838(\mathrm{~m}), 825(\mathrm{~s}), 808(\mathrm{~s}), 776(\mathrm{~m}), 750(\mathrm{~m}), 702(\mathrm{~s}), 682(\mathrm{~m}), 647(\mathrm{~s}), 625(\mathrm{~m}), 552(\mathrm{~s}), 522(\mathrm{~s}), 497(\mathrm{~m})$, 482 (w), 473 (m), 460 (w), 427 (m).
Elemental analysis ($\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{MnN}_{3} \mathrm{O}_{3}, 519.03$):

calc.:	$\mathrm{C} 39.34 \%, \mathrm{H} 1.94 \%, \mathrm{~N} 8.10 \%$
found:	$\mathrm{C} 39.40 \%, \mathrm{H} 1.94 \%, \mathrm{~N} 8.04 \%$

Figure S6. Molecular structure and numbering scheme of $\mathbf{2 e} \cdot \mathbf{2 M e O H}$. The ellipsoids represent a probability of 30%, H atoms are shown with arbitrary radii. Selected bond lengths are summarized in Table 2.

R = m-Br-Phenyl (2f)

A similar procedure as described for compound 2a, using 372 mg $(1.35 \mathrm{mmol})$ of $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}, 405 \mathrm{mg}(1.35 \mathrm{mmol})$ of 1 f and 20 mL of MeOH , yielded compound 2 f as a yellow solid.
Yield: $613 \mathrm{mg}(1.18 \mathrm{mmol}), 87 \%$.
${ }^{1} \mathbf{H}-N M R\left(400.130 \mathrm{MHz},\left[\mathrm{D}_{8}\right]\right.$ THF): $\delta=13.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 9.08\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=\right.$ $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.93-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.71\left(\mathrm{~d},{ }^{3} \mathrm{~J}, \mathrm{H}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.57-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($\mathbf{1 0 0 . 6 1 3} \mathbf{~ M H z},\left[\mathrm{D}_{8}\right] \mathrm{THF}$): $\delta=223.2$ (s, C Carbonyl), 221.5 ($\mathrm{s}, \mathrm{C}_{\text {Carbonyl) }}$), 154.5 (s), 153.7 (s), 152.8 (s), 148.0 (s), 139.4 (s), 133.1 (s), 131.8 (s), 131.3 (s),
 129.8 (s), 125.9 (s$), 125.4$ (s$), 123.9$ (s$), 122.5$ (s$), 103.0$ (s$).$

MS (Micro-ESI pos. in Methanol): $m / z(\%)=517.8\left[\mathrm{M}+\mathrm{H}^{+}\right]$.
IR (solid): 3354 (w), 3088 (w), 2829 (w), 2024 (s), 1914 (s), 1862 (m), 1838 (m), 1819 (w), 1786 (w), 1612 (m), 1579 (m), 1451 (m), 1402 (w), 1390 (w), 1380 (w), 1304 (m), 1255 (w), 1221 (w), 1160 (m), 1105 (w), 1076 (w$)$, 1019 (s , 994 (m), 965 (w), 899 (w), 891 (w), 834 (s), 773 (m), 751 (s), 708 (s), 680 (w), 646 (s), 627 (w), 555 (s), 538 (w), 528 (m), 510 (m), 488 (s$), 473$ (m), 462 (m), 424 (s).
Elemental analysis ($\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{MnN}_{3} \mathrm{O}_{3}, 519.03$):
$\begin{array}{ll}\text { calc.: } & \text { C 39.34\%, H 1.94\%, N 8.10\% } \\ \text { found: } & \text { C } 39.57 \%, \text { H } 2.50 \%, \text { N } 7.70 \% .\end{array}$

Figure S7. Molecular structure and numbering scheme of $2 \mathbf{f} \cdot \mathbf{2 T H F}$. The ellipsoids represent a probability of 30%, H atoms are drawn with arbitrary radii. Selected bond lengths are summarized in Table 2.

$\underline{\mathbf{R}=\operatorname{Duryl}(2 \mathrm{~g})}$

A similar procedure as described for compound 2a, using 408 mg (1.48 mmol) of $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}, 413 \mathrm{mg}(1.48 \mathrm{mmol})$ of $\mathbf{1 g}$ and 15 mL of MeOH , yielded compound $\mathbf{2 g}$ as a yellow solid.
Yield: $478 \mathrm{mg}(0.96 \mathrm{mmol}), 65 \%$.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400.130 \mathrm{MHz},\left[\mathrm{D}_{8}\right] \mathrm{THF}$): $\delta=13.37$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), $9.14\left(\mathrm{~d},{ }^{3} \mathrm{~J}, \mathrm{H}=\right.$ $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.02-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 6.93-6.89$ (m, 1H,), $2.26(\mathrm{~s}, 6 \mathrm{H}), 2.03(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($100.613 \mathrm{MHz},\left[\mathrm{D}_{8}\right] \mathrm{THF}$): $\delta=222.9$ (s, CCarbonyl), 220.6 (s , CCarbonyl), 153.4 (s), 152.2 (s , 148.0 (s$), 138.1$ (s), 133.7 (s$), 132.4$ (s$), 128.7$
 (s), 128.0 (s), 123.9 (s), 121.4 (s), 104.3 (s), 19.0 (s), 16.2 (s).

MS (DEI): $m / z(\%)=494\left[\mathrm{M}^{+}-\mathrm{H}\right](4), 429$ (2), 410 [$\left.{ }^{+}-\mathrm{H}-3 \mathrm{CO}\right](20), 382$ (24), 354 (10), 326 (12), 298 (24), 270 (42), 215 (6), 191 (8), 162 (4), 136 (6), 134 (10), 91 (6), 74 (54), 59 (68), 31 (100).
IR (solid): 3188 (w), 2969 (w), 2861 (w), 2022 (s), 1940 (s), 1902 (s), 1641 (w), 1613 (w), 1500(w), 1492 (m), 1412 (w), 1389 (w), 1300 (w), 1248 (w), 1212 (w), 1159 (w), 1114 (w), 1082 (w), 1057 (w), 1009 (w), 776 (m), 752 (w), 685 (m), 621 (m), 525 (m), 498 (w), 466 (w), 424 (w).

Elemental analysis ($\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{BrMnN}_{3} \mathrm{O}_{3}, 496.24$):

$$
\begin{array}{ll}
\text { calc.: } & \text { C } 50.83 \%, \text { H 3.86\%, N 8.47\% } \\
\text { found: } & \text { C } 50.59 \%, \text { H } 4.11 \%, \text { N } 8.00 \% .
\end{array}
$$

Figure S8. Molecular structure and numbering scheme of $\mathbf{2 g}$. The ellipsoids represent a probability of 30%, H atoms are shown with arbitrary radii. Selected bond lengths are summarized in Table 2.

$\underline{R=P y r i d y l(2 h)}$

The suspension of 426 mg of $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}(1.55 \mathrm{mmol})$ and 344 mg of $\mathbf{1 h}$ (1.55 mmol) in 17 mL of $\mathrm{Et}_{2} \mathrm{O}$ was refluxed for 3 h until gas evolution ceased. During this time, a yellow solid precipitated. Then the reaction mixture was cooled to room temperature. The precipitate was collected, washed with 2 mL of cold $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo.
Yield: $668 \mathrm{mg}(1.51 \mathrm{mmol}), 98 \%$.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left.\left.400.130 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=9.09\left(\mathrm{~d},{ }^{3}\right]_{\mathrm{H}, \mathrm{H}}=5.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $8.74\left(\mathrm{~d},{ }^{3}{ }^{3} \mathrm{H}, \mathrm{H}=4.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.25-8.11(\mathrm{~m}, 2 \mathrm{H}), 8.05-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H})$,
 7.61-7.55 (m, 1H), 7.53-7.45 (m, 1H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($\mathbf{1 0 0 . 6 1 3} \mathbf{~ M H z},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=222.3$ ($\mathrm{s}, \mathrm{C}_{\text {Carbonyl }}$), 221.2 ($\mathrm{s}, \mathrm{C}_{\text {Carbonyl }}$), 220.9 ($\mathrm{s}, \mathrm{C}_{\text {Carbonyl }}$), 153.3 (s), 152.0 (s), 151.1 (s), 149.6 (s), 147.5 (s), 146.3 (s), 139.2 (s), 137.7 (s), 124.8 (s), 124.2 (s), 121.7 (s), 120.8 (s), 103.0 (s).

MS (Micro-ESI neg. in Methanol): $m / z(\%)=439.0\left[\mathrm{M}-\mathrm{H}^{+}\right]$.
IR (solid): 3129 (w), 3106 (w), 3065 (w), 2024 (s), 1932 (s), 1892 (s), 1612 (m), 1575 (m), 1560 (m), 1530 (m), 1484 (m), 1457 (m), 1446 (m), 1278 (w), 1252 (w), 1230 (w), 1195 (w), 1154 (w), 1135 (w), 815 (w), 777 (s), 732 (m), 719 (m), 623 (s$), 510$ (m), 489 (w), 473 (w), 461 (w).

Elemental analysis ($\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{BrMnN}_{4} \mathrm{O}_{3}, 441.12$):

$$
\begin{array}{ll}
\text { calc.: } & \mathrm{C} 43.57 \%, \mathrm{H} 2.29 \%, \text { N } 12.70 \% \\
\text { found: } & \mathrm{C} 43.56 \%, \mathrm{H} 2.25 \%, \mathrm{~N} 12.53 \%
\end{array}
$$

Figure S9. Molecular structure and numbering scheme of $\mathbf{2 h} \cdot \mathrm{MeOH}$. The ellipsoids represent a probability of 30%, H atoms are shown with arbitrary radii. Selected bond lengths are summarized in Table 2.

$\underline{R}=$ Furanyl (2i)

A similar procedure as described for compound $\mathbf{2 h}$, using 880 mg $(3.20 \mathrm{mmol})$ of $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}, 676 \mathrm{mg}(3.20 \mathrm{mmol})$ of $\mathbf{1 i}$ and 20 mL of $\mathrm{Et}_{2} \mathrm{O}$, yielded compound $2 \mathbf{i}$ as a yellow solid.
Yield: 1130 mg (2.63 mmol), 82\%.
${ }^{1} H-N M R\left(400.130 \mathrm{MHz},\left[\mathrm{D}_{8}\right]\right.$ THF): $\delta=13.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 9.12\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=\right.$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 2 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H})$, $6.60(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR ($\mathbf{1 0 0 . 6 1 3} \mathbf{~ M H z},\left[\mathrm{D}_{8}\right] \mathbf{T H F}$): $\delta=154.6$ (s), 153.5 (s), 152.8 (s), 144.8
 (s), 144.7 (s), 140.7 (s$), 139.3$ (s$), 125.4$ (s$), 122.6$ (s$), 112.9$ (s$), 109.5$ (s$), 101.2$ (s).
MS (Micro-ESI neg. in Methanol): $m / z(\%)=428.0\left[M-\mathrm{H}^{+}\right]$.
IR (solid): 3131 (w), 3111 (m), 3083 (w), 2986 (w), 2024 (s), 1933 (s), 1895 (vs), 1635 (w), 1611 (m), 1567 (w), 1545 (w), 1525 (m), 1484 (m), 1466 (w), 1448 (m), 1382 (w), 1297 (w), 1254 (w), 1224 (m), 1155 (w), 1125 (w), 1102 (w), 1075 (w), 1018 (m), 997 (m), 972 (w), 888 (w), $870(\mathrm{w}), 817$ (w), 796 (w), 774 (s), 742 (m), 712 (m), $683(\mathrm{~m}), 667(\mathrm{w}), 645(\mathrm{~m}), 625(\mathrm{~s}), 590(\mathrm{~m}), 553(\mathrm{~m}), 527(\mathrm{~m}), 516(\mathrm{~s}), 470(\mathrm{~m}), 460(\mathrm{~m}), 426(\mathrm{~m})$.

Elemental analysis ($\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{BrMnN}_{3} \mathrm{O}_{4}, 430.10$):
calc.: C $41.89 \%, \mathrm{H} 2.11 \%, \mathrm{~N} 9.77 \%$,
found: C $41.73 \%, \mathrm{H} 2.00 \%$, N 9.57%.

Figure S10. Molecular structure and numbering scheme of 2i. The ellipsoids represent a probability of 30%, H atoms are shown with arbitrary radii. Selected bond lengths are summarized in Table 2.

$\underline{R}=$ Thienyl (2 j)

A similar procedure as described for compound 2 h , using 480 mg (1.75 mmol) of $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}, 397 \mathrm{mg}(1.75 \mathrm{mmol})$ of $\mathbf{1} \mathbf{j}$ and 15 mL of $\mathrm{Et}_{2} \mathrm{O}$, yielded compound $\mathbf{2 j}$ as a yellow solid.
Yield: $625 \mathrm{mg}(1.19 \mathrm{mmol}), 80 \%$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.130 \mathrm{MHz},\left[\mathrm{D}_{8}\right] \mathrm{THF}\right): \delta=13.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 9.15\left(\mathrm{~d},{ }^{3}\right]_{\mathrm{H}, \mathrm{H}}=$ $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 3 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H})$, 7.19 ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($100.613 \mathrm{MHz},\left[\mathrm{D}_{8}\right] \mathrm{THF}$): $\delta=154.5$ (s), 153.5 (s), 152.8 (s),
 143.7 (s), 139.3 (s), 131.0 (s), 129.0 (s), 128.0 (s), 127.3 (s), 125.4 (s), 122.6 (s), 102.6 (s).

MS (Micro-ESI neg. in Methanol): $m / z(\%)=444.0\left[\mathrm{M}-\mathrm{H}^{+}\right]$.
IR (solid): 3110 (w), 3091 (w), 2994 (w), 2969 (w), 2933 (w), 2896 (w), 2859 (w), 2807 (w), 2020 (m), 1910 (s), 1786 (w), 1764 (w), 1742 (w), 1725 (w), 1709 (w), 1690 (w), 1677 (w), 1658 (w), 1640 (w), 1630 (w), 1613 (w), 1585 (w), 1485 (w), 1442 (m), 1413 (m), 1384 (w), 1351 (w), 1296 (w), 1281 (w), 1263 (w), 1227 (w), 1212 (w), 1153 (m), 1125 (w), 1095 (m), 1038 (m), 988 (w), 966 (w), 935 (w), 843 (m), 774 (m), 749 (m), $710(\mathrm{~m}), 682$ (m), 645 (w), 627 (m), 546 (w), 529 (m), 510 (m), 486 (w), 466 (w), 426 (w), 412 (w).

Elemental analysis $\left(\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{BrMnN}_{3} \mathrm{O}_{3} \mathrm{~S} \times 1 \mathrm{Et}_{2} \mathrm{O}, 520.28\right):$
calc.: $\quad \mathrm{C} 43.86 \%, \mathrm{H} 3.68 \%, \mathrm{~N} 8.08 \%$, S 6.16%
found: C 43.75\%, H 3.50\%, N 8.30\%, S 6.24\%.

Figure S11. Molecular structure and numbering scheme of $\mathbf{2 j} \cdot \mathrm{MeOH}$. The ellipsoids represent a probability of 30%, H atoms are shown with arbitrary radii. Selected bond lengths are summarized in Table 2.

$\underline{R}=$ Ferrocenyl (2k)

A similar procedure as described for compound $\mathbf{2 h}$, using 452 mg (1.64 mmol) of $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}, 541 \mathrm{mg}(1.64 \mathrm{mmol})$ of $\mathbf{1 k}$ and 20 mL of $\mathrm{Et}_{2} \mathrm{O}$, gave compound $\mathbf{2 k}$ as an orange solid.
Yield: 847 mg (1.64 mmol), 94%.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.130 \mathrm{MHz},\left[\mathrm{D}_{\mathrm{s}}\right] \mathrm{THF}\right): \delta=13.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 9.12\left(\mathrm{~d},{ }^{3}{ }^{3} \mathrm{H}, \mathrm{H}=5.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.95(\mathrm{~s}, 2 \mathrm{H}), 7.42\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=5.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.12(\mathrm{~s}, 1 \mathrm{H}), 4.85\left(\mathrm{~d},{ }^{3}{ }^{3} \mathrm{H}, \mathrm{H}=13.5 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}-N M R\left(100.613 \mathrm{MHz},\left[\mathrm{D}_{8}\right] \mathrm{THF}\right): \delta=224.1$ (s, CCarbonyl), 223.5 (s, CCarbonyl), 221.9 (s, CCarbonyl), 154.5 (s), 153.4 (s), 153.2 (s), 149.6 (s), 139.2 (s),
 125.1 (s), 122.4 (s), 101.6 (s), 73.5 (s), 70.9 (s), 70.5 (s), 70.5(s).

MS (Micro-ESI neg. in Methanol): $m / z(\%)=546.0\left[\mathrm{M}-\mathrm{H}^{+}\right]$.
IR (solid): 3187 (w), 3157 (w), 3095 (w), 3071 (w), 3023 (w), 2023 (s), 1931 (s), 1911 (vs), 1866 (s), 1613 (w), 1586 m, 1531 (w), 1477 (w), 1448 (m), 1401 (w), 1369 (w), 1303 (w), 1256 (w), 1207 (w), 1160 (w), 1134 (w), 1107 (m), 1079 (w), 1050 (w), 1038 (w), 1030 (w), $996(\mathrm{w}), 968(\mathrm{w}), 873$ (w), 819 (m), 777 (m), 756 (m), $694(\mathrm{w}), 682(\mathrm{~m}), 645(\mathrm{~m}), 632(\mathrm{~m}), 600(\mathrm{~m}), 549(\mathrm{~m}), 531(\mathrm{~m}), 509(\mathrm{~m}), 498(\mathrm{~m}), 483(\mathrm{~m}), 454(\mathrm{~m}), 421(\mathrm{~m})$.
Elemental analysis ($\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{BrMnN}_{3} \mathrm{O}_{3} \mathrm{Fe}, 548.06$):
$\begin{array}{ll}\text { calc.: } & \mathrm{C} 46.02 \%, \mathrm{H} 2.76 \%, \mathrm{~N} 7.67 \% \\ \text { found: } & \mathrm{C} 45.71 \%, \mathrm{H} 2.76 \%, \mathrm{~N} 7.52 \%\end{array}$

Figure S12. Molecular structure and numbering scheme of $\mathbf{2 a} \cdot \mathrm{MeOH}$. The ellipsoids represent a probability of 30%, H atoms are shown with arbitrary radii. Selected bond lengths are summarized in Table 2.

Figure S13. Square-wave voltammogram of $\mathbf{1 k}$ in acetonitrile/TBABF4.

Figure S14. Cyclovoltammogram of $\mathbf{2 k}$ in ACN/TBABF4.

Figure S15. UV-Vis spectrum of $\mathbf{2 k}(c=100 \mu \mathrm{M})$ in methanol.

$\underline{R}=$ Adamantyl (2l)

A similar procedure as described for compound $\mathbf{2 h}$, using 303 mg $(1.10 \mathrm{mmol})$ of $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}, 308 \mathrm{mg}(1.10 \mathrm{mmol})$ of $\mathbf{1 1}$ and 12 mL of $\mathrm{Et}_{2} \mathrm{O}$, yielded compound 21 as a yellow solid.
Yield: 495 mg (0.99 mmol), 90%.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400.130 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=13.94$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 9.04 (d, ${ }^{3}{ }^{3} \mathrm{H}, \mathrm{H}$ $=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.54\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.06(\mathrm{~s}, 1 \mathrm{H})$, $2.09(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 6 \mathrm{H}), 1.77(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ ($\mathbf{1 0 0 . 6 1 3} \mathbf{~ M H z}$ [$\left.\mathrm{D}_{6}\right]$ DMSO): $\delta=158.9$ (s), 153.3 (s), 151.6 (s), 150.7 (s), 139.1 (s), 124.6 (s), 121.6 (s), 100.4 (s), 41.2 (s), 35.9 (s), 33.2 (s),
 27.7 (s).

MS (Micro-ESI neg. in DMSO + Methanol): m/z (\%) = $496.1\left[\mathrm{M} \mathrm{-} \mathrm{H}^{+}\right]$.
IR (solid): 3151 (w), 3117 (w), 3065 (w), 2905 (m), 2885 (w), 2849 (w), 2030 (s), 1943 (s), 1913 (s), 1893 (s), 1612 (w), 1586 (w), 1567 (w), 1554 (w), 1524 (w), 1461 (w), 1447 (m), 1407 (w), 1369 (w), 1344 (w), 1315 (w),

1298 (w), 1246 (w), 1226 (w), 1196 (w), 1158 (w), 1122 (w), 1101 (w), 999 (w), 976 (w), 832 (w), 815 (w), 781 (m), 757 (m), 731 (w), 682 (m), 645 (w), 629 (m), 547 (w), 533 (m), 513 (w), 492 (w), 469 (w), $460(\mathrm{w})$, 427 (w).
Elemental analysis ($\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BrMnN}_{3} \mathrm{O}_{3}$, 498.26):

$$
\begin{array}{ll}
\text { calc.: } & \text { C } 50.62 \%, \text { H 4.25\%, N 8.43\% } \\
\text { found: } & \text { C } 49.19 \%, \text { H 4.13\%, N 8.05\%. }
\end{array}
$$

Degradation product $\mathrm{R}=\mathrm{Ph}$ (3a)

The defined degradation product $3 \mathbf{a}$ can be obtained as pale yellow crystals by dissolving of $\mathbf{2 a}$ in a small amount of MeOH after 7 d at daylight.

MS (DEI): $m / z(\%)=1294\left[\mathrm{M}^{+}+5-\mathrm{OMe}\right](20), 1293\left[\mathrm{M}^{+}+4-\mathrm{OMe}\right](60), 1292$ [$\mathrm{M}^{+}+3$ - OMe] (67) 1291 [$\mathrm{M}^{+}+2$ - OMe] (100), 1290 [$\mathrm{M}^{+}+1$ - OMe] (36), 1289 [M^{+}- OMe] (41).
IR (solid): 3054 (w), 2927 (w), 2823 (w), 1601 (w), 1566 (w), 1469 (w), 1445 (m), 1392 (w), 1333 (w), 1270 (w), 1250 (w), 1177 (w), 1150 (w), 1100 (w), 1080 (w), 1066 (w), 1049 (w), 993 (m), 967 (w), 913 (w), $800(\mathrm{w}), 782(\mathrm{w}), 755(\mathrm{~m}), 724(\mathrm{~m}), 692(\mathrm{~m}), 678(\mathrm{~m}), 635(\mathrm{w}), 545(\mathrm{w}), 491(\mathrm{w}), 440(\mathrm{~m}), 422(\mathrm{~m})$.
Elemental analysis ($\left.\mathrm{C}_{58} \mathrm{H}_{46} \mathrm{Br}_{2} \mathbf{M n}_{4} \mathbf{N}_{12} \mathrm{O}_{2}, \mathbf{1 3 2 2 . 6 5}\right)$:

$$
\begin{array}{ll}
\text { calc.: } & \text { C } 52.67 \%, \text { H 3.51\%, N 12.71\% } \\
\text { found: } & \text { C } 49.32 \%, \text { H 3.73\%, N 11.35\%. }
\end{array}
$$

Degradation product $\mathrm{R}=$ Naph (3b)

The defined degradation product $\mathbf{3 b}$ can be obtained as red crystals by dissolving of $\mathbf{2 b}$ in a few milliliters of MeOH after 10 d at daylight.

MS (DEI): $m / z(\%)=731\left[\mathrm{Mn}_{2} \mathrm{BrL2}^{+}+2\right](9), 729\left[\mathrm{Mn}_{2} \mathrm{BrL2}^{+}\right](9), 649$ (34), 405 (5), 325 (7), 285 (12), 169 (32), 147 (6), 119 (16), 105 (40), 91 (28), 64 (100), 44 (87), 31 (72).
IR (solid): 3370 (w), 3041 (w), 2917 (w), 2812 (w), 1602 (w), 1568 (w), 1511 (w), 1490 (w), 1445 (w), 1392 (w), 1377 (w), 1342 (w), 1300 (w), 1277 (w), 1253 (w), 1234 (w), 1201 (w), 1184 (w), 1135 (w), 1109 (w), 1084 (w), 1051 (w), 1012 (m), 943 (w), 818 (w), 797 (w), 776 (m), 748 (w), 713 (w), 688 (w), 657 (w), 635 (w), 555 (m), 504 (m), 453 (m), 428 (w), 413 (w).
Elemental analysis ($\mathrm{C}_{46} \mathrm{H}_{58} \mathrm{Br}_{2} \mathbf{M n}_{4} \mathrm{~N}_{6} \mathrm{O}_{10}, \mathbf{1 2 3 4} .56$):
calc.: $\quad \mathrm{C} 44.75 \%, \mathrm{H} 4.74 \%, \mathrm{~N} 6.81 \%$
found: \quad C 42.44%, H 4.21%, N 6.65%.

Table S1. Crystal data and refinement details for the X-ray structure determinations of the compounds $\mathbf{1 e} \mathbf{e} \mathbf{3 b}$.

Compound	1e	1f	2a	2b	2e
formula	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrN}_{3}$	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrN}_{3}$	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrMnN}_{3} \mathrm{O}_{4}$	$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{BrMnN}_{3} \mathrm{O}_{4}$	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Br} 2 \mathrm{MnN}_{3} \mathrm{O}_{5}$
$\mathrm{fw}\left(\mathrm{g} \cdot \mathrm{mol}^{-1}\right)$	300.16	300.16	472.18	522.24	583.12
${ }^{\circ} \mathrm{C}$	-140(2)	-140(2)	20(2)	-140(2)	-140(2)
crystal system	orthrhombic	monoclinic	monoclinic	triclinic	triclinic
space group	Pca 21	C 2 /c	P $21 / \mathrm{c}$	Pī	$\mathrm{P} \overline{1}^{1}$
a/ \AA	17.4723(4)	16.5402(5)	17.8730(3)	7.7299(2)	7.2675(2)
b / \AA	5.6934(1)	7.3312(3)	11.1246(2)	8.2135(3)	11.9274(3)
c/Å	23.9478(6)	19.9475(7)	9.7566(2)	16.7895(5)	13.4161(3)
$\alpha /{ }^{\circ}$	90	90	90	88.875(2)	100.095(1)
$\beta /{ }^{\circ}$	90	99.348(2)	102.747(1)	87.358(2)	103.438(2)
$\gamma /{ }^{\circ}$	90	90	90	88.9600(1)	102.674(1)
V / \AA^{3}	2382.25(9)	2386.70(15)	1892.09(6)	1064.46(6)	1071.71(5)
Z	8	8	4	2	2
$\rho\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	1.674	1.671	1.658	1.629	1.807
$\mu\left(\mathrm{cm}^{-1}\right)$	34.34	34.28	28.38	25.31	43.8
measured data	5082	6826	14714	7551	7091
data with $I>2 \sigma(I)$	4757	2524	3955	4192	4448
unique data ($R_{\text {int }}$)	5082/0.0000	2729/0.0193	4322/0.0364	4511/0.0287	4854/0.0222
$w R_{2}\left(\text { all data, on } F^{2}\right)^{(a)}$	0.1054	0.0751	0.0786	0.2330	0.0685
$R_{1}(I>2 \sigma(I))^{\text {(a) }}$	0.0428	0.0306	0.0348	0.0727	0.0306
$s{ }^{\text {(b) }}$	1.125	1.086	1.115	1.207	1.061
Res. dens./e. \AA^{-3}	1.751/-0.657	1.625/-0.287	0.729/-0.594	3.820/-0.999	0.796/-0.696
Flack-parameter	0.503(13)	促	-	-	-
absorpt method	multi-scan	multi-scan	multi-scan	multi-scan	multi-scan
absorpt corr $T_{\text {min }} /$ max	0.5873/0.7456	0.5734/0.7456	0.5709/0.7456	0.6103/0.7456	0.4683/0.7456
CCDC No.	1520243	1520244	1520245	1520246	1520247

Table S1. Cont.

Compound	2 f	2g	2h	2 i	2 j
formula	$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{MnN}_{3} \mathrm{O}_{5}$	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{BrMnNN}_{3} \mathrm{O}_{3}\left[{ }^{*}\right]$	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrMnN}_{4} \mathrm{O}_{4}$	$\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{BrMnN} \mathrm{S}_{3} \mathrm{O}_{4}$	$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrMnN}_{3} \mathrm{O}_{4} \mathrm{~S}$
$\mathrm{fw}\left(\mathrm{g} \cdot \mathrm{mol}^{-1}\right)$	663.25	496.24 [*]	473.17	430.10	478.20
${ }^{\circ} \mathrm{C}$	-140(2)	-140(2)	-140(2)	-140(2)	-140(2)
crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
space group	P 21/c	C 2/c	P $21 / \mathrm{n}$	P 21/c	P $21 / \mathrm{c}$
a / \AA	13.2094(3)	17.2476(3)	6.9507(2)	15.4805(5)	10.5153(2)
b/Å	10.7647(2)	13.8976(2)	16.3141(4)	11.0812(3)	13.2486(2)
c / \AA	19.2739(4)	18.1003(3)	16.1414(3)	9.0482(2)	13.2768(2)
$\alpha /{ }^{\circ}$	90	90	90	90	90
$\beta /{ }^{\circ}$	105.947(1)	95.553(1)	91.911(1)	98.349(2)	100.192(1)
$\gamma /{ }^{\circ}$	90	90	90	90	90
V / \AA^{3}	2635.19(9)	4318.29(12)	1829.33(8)	1535.70(7)	1820.44(5)
Z	4	8	4	4	4
$\rho\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	1.672	1.527 [*]	1.718	1.860	1.745
$\mu\left(\mathrm{cm}^{-1}\right)$	35.74	24.88 [*]	29.37	34.87	30.61
measured data	17110	12296	12655	10151	10969
data with $I>2 \sigma(I)$	5115	4214	3752	3191	3668
unique data ($R_{\text {int }}$)	6032/0.0554	4752/0.0263	4166/0.0321	3458/0.0350	4177/0.0305
$\mathrm{w} R_{2}\left(\text { all data, on } F^{2}\right)^{(a)}$	0.0775	0.0614	0.0566	0.0598	0.0646
$R_{1}(I>2 \sigma(I))^{\text {(a) }}$	0.0319	0.0279	0.0275	0.0276	0.0308
$s^{\text {(b) }}$	1.069	1.055	1.050	1.086	1.045
Res. dens./e $\cdot \AA^{-3}$	0.494/-0.444	0.334/-0.287	0.398/-0.280	0.390/-0.367	0.491/-0.394
absorpt method	multi-scan	multi-scan	multi-scan	multi-scan	multi-scan
absorpt corr $T_{\text {min }} / \max$	0.5024/0.7456	0.6070/0.7456	0.7033/0.7456	0.6266/0.7456	0.6449/0.7456
CCDC No.	1520248	1520249	1520250	1520251	1520252

[*] derived parameters do not contain the contribution of the disordered solvent.

Table S1. Cont.

Compound	2k	3a	3b
formula	$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{BrFeMnN}_{3} \mathrm{O}_{4}$	$\mathrm{C}_{58} \mathrm{H}_{46} \mathrm{Br} 2 \mathrm{Mn}_{4} \mathrm{~N}_{12} \mathrm{O}_{2}$	$\mathrm{C}_{48} \mathrm{H}_{66} \mathrm{Br}_{2} \mathrm{Mn}_{4} \mathrm{~N}_{6} \mathrm{O}_{12}$
$\mathrm{fw}\left(\mathrm{g} \cdot \mathrm{mol}^{-1}\right)$	580.10	1322.65	1298.65
${ }^{\circ} \mathrm{C}$	-140(2)	-140(2)	-140(2)
crystal system	monoclinic	triclinic	triclinic
space group	C 2/c	Pī	Pī
a / \AA	27.6169(6)	10.073(2)	8.6799(3)
b/Å	11.7315(3)	11.148(2)	12.0118(6)
c/Å	15.6609(4)	12.310(2)	14.4763(7)
$\alpha /{ }^{\circ}$	90	91.429(9)	113.405(2)
$\beta /{ }^{\circ}$	120.807(1)	96.848(8)	97.479(3)
$\gamma /{ }^{\circ}$	90	95.679(11)	90.983(3)
V / \AA^{3}	4357.99(18)	1364.8(4)	1369.41(11)
Z	8	1	1
$\rho\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	1.768	1.609	1.575
$\mu\left(\mathrm{cm}^{-1}\right)$	31.14	24.23	24.23
measured data	13138	15114	9804
data with $I>2 \sigma(I)$	3788	4846	5262
unique data ($R_{\text {int }}$)	5008/0.0689	6127/0.0423	6083/0.0294
$w R_{2}\left(\text { all data, on } F^{2}\right)^{(a)}$	0.1065	0.1759	0.1267
$R_{1}(I>2 \sigma(I))^{\text {(a) }}$	0.0570	0.0663	0.0504
$s{ }^{\text {(b) }}$	1.132	1.094	1.180
Res. dens./e $\cdot \AA^{-3}$	0.636/-0.530	1.067/-0.971	1.062/-0.715
absorpt method	multi-scan	multi-scan	multi-scan
absorpt corr $T_{\text {min }} /$ max	0.6165/0.7456	0.5457/0.7456	0.6468/0.7456
CCDC No.	1520253	1520254	1520255

