

Article

Flux Synthesis, Crystal Structures, and Magnetism of the Series $La_{2n+2}MnSe_{n+2}O_{2n+2}$ (n = 0-2)

Simon Peschke and Dirk Johrendt *

Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 (D), 81377 München, Germany; simon.peschke@cup.uni-muenchen.de * Correspondence: johrendt@lmu.de; Tel.: +49-89-2180-77430

Academic Editor: Duncan H. Gregory Received: 19 December 2016; Accepted: 15 January 2017; Published: 31 January 2017

Abstract: Three members of the homologous series of manganese oxyselenides with the general formula La_{2n+2}MnSe_{n+2}O_{2n+2} (n = 0-2) have been synthesized in a NaI/KI flux and characterized by single-crystal X-ray diffraction, powder X-ray diffraction and magnetic measurements. The structures consist of chains of edge-sharing MnSe₄O₂-octahedra along the *b*-axis which are linked together along the *a*-axis by edge-sharing OLa₄- and/or OLa₃Mn-tetrahedra forming infinite ribbons of increasing width. mC-La₂MnSe₂O₂ (Pb₂HgCl₂O₂-type, C2/m, a = 11.6621(5) Å, b = 3.9719(1) Å, c = 7.2049(3) Å, $\beta = 121.655(2)^{\circ}$) represents a new polymorph of this compound. La₄MnSe₃O₄ (P2/m, a = 9.0055(4) Å, b = 4.0186(1) Å, c = 7.1946(3) Å, $\beta = 109.715(2)^{\circ}$) and La₆MnSe₄O₆ (C2/m, a = 24.760(2) Å, b = 4.0359(3) Å, c = 7.1850(6) Å, $\beta = 104.162(3)^{\circ}$) exhibit new structure types. Magnetic measurements suggest antiferromagnetic order of the moments below about 15 K with effective magnetic moments of 5.53(1), 5.99(1) and 6.01(1) $\mu_{\rm B}$ per formula unit for n = 1, 2 and 3, respectively.

Keywords: manganese; rare-earth; oxyselenides; crystal structure; magnetism

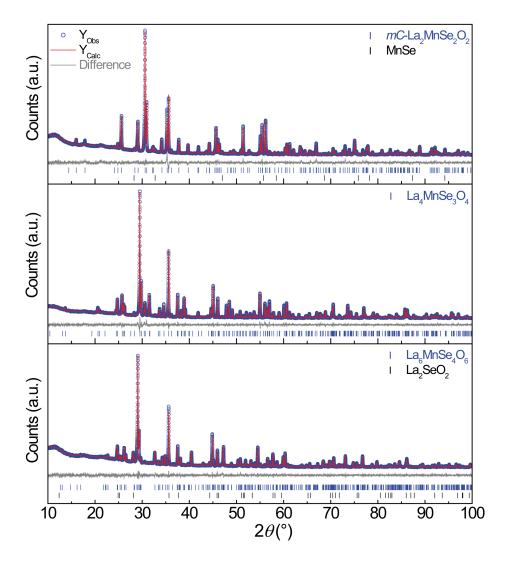
1. Introduction

The research into structural chemistry and physical properties of transition-metal oxyselenides has been very fruitful during the last years. Numerous new compounds with the general formula $RE_2TSe_2O_2$ (RE = La, Ce; T = Cd, Fe, Mn, Zn) [1–9] have been discovered and their structures and magnetism have been studied. Among the particular families, different polymorphs may exist which makes the diversity even bigger. In order to distinguish the different polymorphs mentioned in this paper, we extend the formulae by the *Pearson* letters. Recently, we found new polymorphs in the $RE_2FeSe_2O_2$ -family (RE = La, Ce) [2]. $mC-La_2FeSe_2O_2$ and $mC-Ce_2FeSe_2O_2$ crystallize in the Pb₂HgCl₂O₂-structure type with distorted edge-sharing FeSe₄O₂-octahedra linked together by edge-sharing OLa₃Fe-tetrahedra forming infinite ribbons which are two tetrahedra in width. Similar building blocks with an analogous connectivity between the TSe₄O₂-octahedra and the ORE_3T -tetrahedra have already been observed in the compounds $RE_{3,67}Ti_2Se_6O_3$ (RE = Ce, Nd, Sm) [10], La₄Ti₂Se₅O₄ [11], La₆Ti₃Se₉O₅ [11] and CeCrSe₂O [12]. Beside the iron compounds, there are two polymorphs known in the analogous manganese family. $oC-La_2MnSe_2O_2$ [1] has a defect ZrCuSiAs-type structure with slabs of edge-sharing OLa4-tetrahedra stacked alternating with slabs of MnSe₄-tetrahedra. The structure of oA-La₂MnSe₂O₂ [8] consists of MnSe₄-tetrahedra and edge-sharing MnSe₄O₂-octahedra which are connected by infinite ribbons of edge-sharing OLa₄- and OLa3Mn-tetrahedra four units wide.

Beside oxyselenides with the general chemical composition above, numerous other rare-earth oxyselenides are known, for example $RE_4\text{TiSe}_4\text{O}_4$ (RE = Sm, Gd, Tb, Dy, Ho, Er, Y) [13,14] and $RE_4\text{O}_4\text{Se}(\text{Se}_2)$ (RE = La, Ce, Pr, Nd, Sm) [15]. $RE_4\text{TiSe}_4\text{O}_4$ can be regarded as a defect variant of oA-La₂MnSe₂O₂ with the same building blocks but without TiSe₄-tetrahedra. In contrast, $RE_4\text{O}_4\text{Se}(\text{Se}_2)$

compounds contain Se^{2–} anions as well as $(Se-Se)^{2-}$ dumbbells, which are separated by layers of distorted $(RE_4O)^{10+}$ tetrahedra. Their magnetism origins from the 4*f*-electrons of the particular rare-earth metal, and spin frustration is observed in the rare-earth-oxide tetrahedra of these compounds [15]. Formally, it should be possible to insert divalent transition-metals in this structure by breaking up the diselenide units leading to the formula $RE_4TSe_3O_4$.

In this paper, we present La₄MnSe₃O₄ as the first example of such compounds with only Se^{2–} anions in a new structure related to the RE_4 TiSe₄O₄-type. La₄MnSe₃O₄ can formally be obtained by adding one La₂SeO₂-unit to La₂MnSe₂O₂. We were also successful to add a second La₂SeO₂-unit in order to obtain the compound La₆MnSe₄O₆, which represents the third member of the homologous series La_{2*n*+2}MnSe_{*n*+2}O_{2*n*+2}. Additional we have found *mC*-La₂MnSe₂O₂ as a new polymorph to the manganese-family and present magnetic susceptibility data of all compounds.


2. Results

Since conventional solid state synthesis did not lead to satisfying results, a flux synthesis was developed in order to get high purity samples (>95 wt %). mC-La₂MnSe₂O₂ was synthesized in a NaI/KI-flux at 1273 K starting from the low temperature polymorph oC-La₂MnSe₂O₂. The other two members of the homologous series were synthesized starting from the binary compounds La₂O₃, La₂Se₃ and MnSe, which were pre-reacted at 873 K, homogenized and then heated in a NaI/KI-flux at 1273–1373 K. After washing the reaction mixture to remove the flux, a large amount of bright brown, transparent rod-like crystals, as well as polycrystalline yellow-brown powders were obtained. The crystal structures were determined by single-crystal X-ray diffraction. A comparison of the obtained data is given in Table 1, for details see Tables A1–A3 in the appendix. mC-La₂MnSe₂O₂ and La₆MnSe₄O₆ adopt monoclinic C2/m (No. 12) symmetry, whereas La₄MnSe₃O₄ crystallizes in space group P2/m (No. 10). It is noticeable, that the lattice parameter *b* increases (\approx 1.6%) and *c* decreases (\approx 0.3%) slightly with increasing *n*. In contrast, the monoclinic angle β decreases strongly (\approx 14%) with increasing *n*. Further relevant crystallographic data are compiled in the appendix.

	mC-La2MnSe2O2	La4MnSe3O4	La ₆ MnSe ₄ O ₆
Space group	C2/m	P2/m	C2/m
a (Å)	11.6621(5)	9.0055(4)	24.760(2)
b (Å)	3.9719(1)	4.0186(1)	4.0359(3)
c (Å)	7.2049(3)	7.1946(3)	7.1850(6)
β (°)	121.655(2)	109.715(2)	104.162(3)
Volume (Å ³)	284.08(2)	245.11(2)	696.16(10)
Ζ	2	1	2
R _{int}	0.024	0.028	0.056
R_{σ}	0.032	0.021	0.048
$\theta_{max}(\circ)$	53.88	34.98	35.10
R_1 (obs)	0.024	0.023	0.026
R_1 (all)	0.036	0.032	0.049
wR_2 (obs)	0.048	0.050	0.041
wR_2 (all)	0.051	0.056	0.049
GooF	1.20	1.51	1.00
$\Delta e (e/\text{\AA}^3)$	+1.9/-2.5	+3.9/-1.7	+1.7/-1.7

Table 1. Crystal data and structure refinement of $La_{2n+2}MnSe_{n+2}O_{2n+2}$ (n = 0, 1, 2).

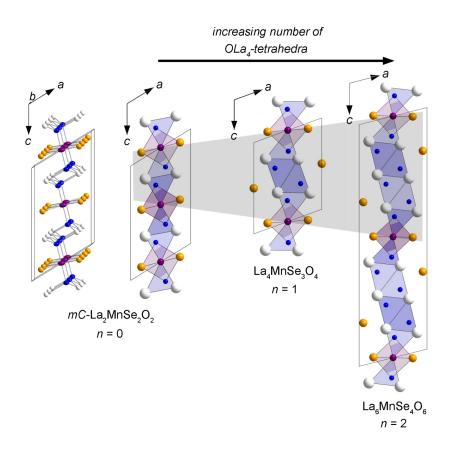

Rietveld refinements of the X-ray powder patterns (Figure 1) of mC-La₂MnSe₂O₂ and La₆MnSe₄O₆ revealed small fractions of impurity phases of $\approx 1\%$ MnSe or $\approx 4\%$ La₂SeO₂, respectively. The La₄MnSe₃O₄ sample contained a minor impurity phase (peak at $2\theta \approx 31^{\circ}$) which has not been identified.

Figure 1. X-ray powder patterns (blue), Rietveld fits (red) and difference curve (gray) of *m*C-La₂MnSe₂O₂ (**top**), La₄MnSe₃O₄ (**middle**) and La₆MnSe₄O₆ (**bottom**).

2.1. mC-La₂ $MnSe_2O_2$

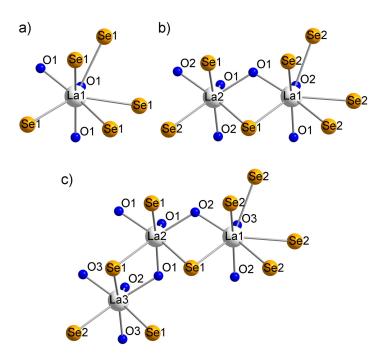

 $mC-La_2MnSe_2O_2$ crystallizes isotypic with $mC-La_2FeSe_2O_2$ and $mC-Ce_2FeSe_2O_2$ [2] in the $Pb_2HgCl_2O_2$ -type structure. The iron compounds are low-temperature polymorphs in the $RE_2FeSe_2O_2$ family (dwelling temperature = 1073 K), while *mC*-La₂MnSe₂O₂ is observed at high temperatures $(\geq 1273 \text{ K})$. The structure of mC-La₂MnSe₂O₂ consists of chains of distorted edge-sharing MnSe₄O₂-octahedra along the b-axis which are linked together along the a-axis by edge-sharing OLa_3Mn -tetrahedra forming infinite ribbons parallel to b (Figure 2). The La³⁺ ion has a distorted LaSe₅O₃ square antiprismatic coordination environment (Figure 3), which was already observed in RE_4 TiSe₄O₄ compounds [13,14]. Similar to all RE_2 FeSe₂O₂ polymorphs, the displacement ellipsoid of the manganese atom in $mC-La_2MnSe_2O_2$ exhibits an oblate spheroid shape in direction of the selenium atoms which is a consequence of the distorted MnSe₄O₂-octahedra. The distance between two manganese atoms in the MnSe₄O₂ chains (d_{intra}) is 397.2(1) pm, whereas the distance between the chains (d_{inter}) is 616.0(1) pm. Mn–O and Mn–Se bond lengths are 205.4(1) and 284.1(1) pm, respectively, which shows that MnSe₄O₂-octahedra are strongly compressed towards the oxygen atoms. The O–Mn–Se and Se–Mn–Se bond angles within the MnSe₄O₂-octahedra are nearly regular $(88.7(1)^{\circ}-91.3(1)^{\circ})$, while the La–O–La and La–O–Mn bond angles in the OLa₃Mn-tetrahedra are $105.1(1)^{\circ}$ –115.8(1)° and thus differ significantly from a perfect tetrahedral shape (109.5°).

Figure 2. Crystal structures of $La_{2n+2}MnSe_{n+2}O_{2n+2}$ (n = 0-2). OLa₄- and OLa₃Mn-tetrahedra in blue, MnSe₄O₂-octahedra in violet. Rare-earth in white, manganese in violet, selenium in orange and oxygen in blue.

2.2. La₄MnSe₃O₄ and La₆MnSe₄O₆

La₄MnSe₃O₄ and La₆MnSe₄O₆ crystallize in new structure types which contain two or three crystallographically independent La atoms with two different coordination environments, respectively. The crystal structures are closely related to that of *mC*-La₂MnSe₂O₂ (Figure 2). They also consist of chains of edge-sharing MnSe₄O₂-octahedra along the *b*-axis. However, these octahedra are connected by two edge-sharing OLa₃Mn- as well as either two or four additional OLa₄-tetrahedra along the *a*-axis, respectively. The framework of four units wide, edge-sharing tetrahedra forming infinite ribbons was already observed in *RE*₄TiSe₄O₄ [13,14] and *oP/oA*-La₂TSe₂O₂ (*T* = Fe, Mn) [8]. Frameworks with six units wide tetrahedra are, to our best knowledge, unknown so far. La₄MnSe₃O₄ has two crystallographically independent La³⁺ ions which have either a La(1) Se₅O₃ square antiprismatic or a La(2) Se₃O₄ monocapped trigonal antiprismatic coordination environment. La₆MnSe₄O₆ contains a third independent La³⁺ ion which shows also a monocapped trigonal antiprismatic coordination. A comparison of the coordination evironments of the different lanthanum ions is depicted in Figure 3. The coordination polyhedra of La(1) and La(2) as well as La(2) and La(3) are connected via common Se–O edges. Compared to *mC*-La₂MnSe₂O₂, *d_{intra}* is slightly and *d_{inter}* is significantly longer in La₄MnSe₃O₄ and La₆MnSe₄O₆ as depicted in Table 2.

Figure 3. Coordination environments of the lanthanum ions in (**a**) *m*C-La₂MnSe₂O₂; (**b**) La₄MnSe₃O₄ and (**c**) La₆MnSe₄O₆ showing the connectivity between the distorted square and the mono-capped trigonal antiprisms.

Table 2. Distances between the manganese atoms in (d_{intra}) and between (d_{inter}) the MnSe₄O₂-octahedra chains and selected bond lengths (/pm) of *mC*-La₂MnSe₂O₂ (*n* = 0), La₄MnSe₃O₄ (*n* = 1) and La₆MnSe₄O₆ (*n* = 2).

n	d _{intra}	d _{inter}	d(Mn–O)	d(Mn–Se)	d(La–O)	d(La–Se)
0	397.2(1)	616.0(1)	205.4(1)	284.1(1)	234.4(1)-240.8(1)	315.9(1)-337.1(1)
1	401.9(1)	900.6(1)	207.0(1)	284.8(1)	236.4(1)-246.5(1)	313.0(1)-333.8(1)
2	403.6(1)	1247.8(2)	207.7(1)	284.8(1)	236.2(1)-245.2(1)	309.4(1)-333.3(1)

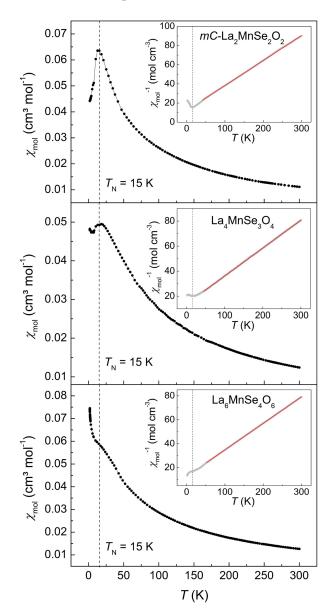

Selected bond lengths of the three members of the homologous series are depicted in Table 2. The Mn–O, Mn–Se and La–O bond lengths of La₄MnSe₃O₄ and La₆MnSe₄O₆ are very similar leading to strongly compressed MnSe₄O₂-octahedra analogue to those in mC-La₂MnSe₂O₂. As observed in mC-La₂MnSe₂O₂, the octahedra in La₄MnSe₃O₄ and La₆MnSe₄O₆ are more regular than the tetrahedra with respect to the bond angles listed in Table 3.

Table 3. Selected bond angles (°) of mC-La₂MnSe₂O₂ (n = 0), La₄MnSe₃O₄ (n = 1) and La₆MnSe₄O₆ (n = 2).

n	∡(La–O–La)	∡(La–O–Mn)	∡(Se–Mn–Se)	∡(Se–Mn–O)
0	105.1(1)-115.8(1)	106.4(1)-111.7(1)	88.7(1)-91.3(1)	89.5(1)-90.5(1)
1	102.8(1)-116.4(1)	106.9(1)-109.8(1)	89.8(1)-90.2(1)	87.8(1)-92.2(1)
2	102.8(1)-117.3(1)	106.0(1)-109.9(1)	89.8(1)-90.2(1)	88.0(1)-92.0(1)

2.3. Magnetism

The magnetic susceptibilities of mC-La₂MnSe₂O₂, La₄MnSe₃O₄ and La₆MnSe₄O₆ (Figure 4) obey the Curie–Weiss rule and indicate antiferromagnetic ordering of the moments near 15 K, similar to the Néel temperature of mC-La₂FeSe₂O₂ ($T_N = 20$ K, [2]). In case of mC-La₂MnSe₂O₂ and La₄MnSe₃O₄, χ_{mol} decreases clearly below this temperature, whereas the effect is more distinctive

for *mC*-La₂MnSe₂O₂. In contrast, the susceptibility of La₆MnSe₄O₆ shows no decrease in χ_{mol} but a clear turning point of the curve at this temperature.

Figure 4. Magnetic susceptibilities (black, B = 1 T) and inverse susceptibilities (inset) of mC-La₂MnSe₂O₂ (**top**), La₄MnSe₃O₄ (**middle**) and La₆MnSe₄O₆ (**bottom**) with Curie–Weiss fit (red). Parameters obtained from the fits are given in Table 4.

Isothermal magnetization plots (see Figure A1 in the Appendix A) at 300 K are linear with field. mC-La₂MnSe₂O₂ exhibits a tiny hysteresis at 1.8 K, which can be due to small impurities, while those of La₄MnSe₃O₄ and La₆MnSe₄O₆ are nearly linear at 1.8 K. Plots of the inverse susceptibilities versus temperature (inserts in Figure 4) allow Curie–Weiss fits. The resulting effective magnetic moments (μ_{eff}) are 5.53(1), 5.98(1) and 6.01(1) μ_{B} per formula unit for n = 1, 2 and 3, respectively. Only the value for mC-La₂MnSe₂O₂ is slightly smaller than the theoretical moment of Mn²⁺ (5.92 μ_{B}). Negative values of the Weiss constant θ (Table 4) support antiferromagnetic ordering in all compounds.

Compound	$\mu_{\rm eff}~(\mu_{\rm B})$	θ (K)	$C (\text{cm}^3 \cdot \text{K} \cdot \text{mol}^{-1})$
mC-La2MnSe2O2 La4MnSe3O4	5.53(1) 5.99(1)	-46.5(1) -62.1(1)	3.82(1) 4.48(1)
$La_6MnSe_4O_6$	6.01(1)	-57.4(1)	4.51(1)

Table 4. Effective magnetic moments (μ_{eff}), Weiss-constants (θ), and Curie-constants (*C*) of *mC*-La₂MnSe₂O₂, La₄MnSe₃O₄, and La₆MnSe₄O₆.

The detailed magnetic structure is not ascertainable from susceptibilty data. We have recently determined the spin structure of $La_2CrSe_2O_2$ which is isotypic to mC-La₂MnSe₂O₂. Neutron powder diffraction [16] experiments revealed a three-dimensional (G-type) ordering, tantamount to antiferromagnetic order within and between the chains of CrSe₄O₂-octahedra. mC-La₂MnSe₂O₂ has presumably the same magnetic structure, and the almost identical Néel temperatures suggest at least similar magnetic ordering patterns in La₄MnSe₃O₄ and La₆MnSe₄O₆.

3. Materials and Methods

All starting materials (purity \geq 99.9%) were handled in an argon-filled glove box (M. Braun, $p(O_2)$) \leq 1 ppm, $p(H_2O) \leq$ 1 ppm). Powder samples and single crystals of *mC*-La₂MnSe₂O₂ were prepared in a NaI/KI-flux starting from oC-La₂MnSe₂O₂, which was prepared as described in Reference [1]. oC-La₂MnSe₂O₂ (0.10 g) was sandwiched with 0.30 g of an eutectic mixture of NaI/KI (mass ratio 0.6:0.4, dried in dynamic vacuum at 673 K) in an alumina crucible. The crucible was sealed in an argon filled silica tube and heated to 1273 K at a rate of 100 K/h, kept at this temperature for 50 h and cooled to room temperature at a cooling rate of 100 K/h. Powder samples and single crystals of $La_4MnSe_3O_4$ and $La_6MnSe_4O_6$ were prepared in a two step reaction of appropriate amounts of La_2O_3 , La₂Se₃ and MnSe. The rare-earth oxide was heated to 1273 K prior to use. La₂Se₃ was prepared by the reaction of freshly filed rare-earth metal and selenium powder at 573 K for 12 h. MnSe was prepared by the reaction of manganese and selenium powder at 1023 K for 24 h. The starting materials (0.20 g) were mixed intimately, filled in an alumina crucible, sealed in an argon filled silica tube and heated to 873 K at a rate of 25 K/h, kept at this temperature for 10 h and slowly cooled to room temperature at a cooling rate of 50 K/h. In a second step, the reaction mixture was ground in an agate mortar and sandwiched between 0.50 g of an eutectic mixture of NaI/KI. The crucibles were sealed in argon filled silica tubes and heated to 1073 K at a rate of 50 K/h, then to 1273–1373 K at a rate of 25 K/h, kept at this temperature for 40 h and cooled to room temperature at a cooling rate of 100 K/h. The reaction mixtures were then washed with deionized water and ethanol and dried in vacuum. The resulting samples were yellow-brown powders (purity > 95 wt %) and bright brown, transparent single crystals. The compounds are stable in air for months.

Single crystal X-ray diffraction data was collected with a Bruker D8 QUEST (fixed- χ goniometer, Mo-K α , I μ S with HE-LIOS multi-layer optics, PHOTON 100 detector, Bruker, Karlsruhe, Germany). Reflection intensity integration, data reductions, and multi-scan absorption corrections were done with APEX2 [17] and SADABS [18]. The structures were solved with Jana2006 [19]. Further details of the crystal structure investigations may be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (Fax: +49-7247-808-666; E-Mail: crysdata@fiz-karlsruhe.de, http://www.fiz-karlsruhe.de/request for deposited data.html) on quoting the depository numbers CSD-432365 (mC-La₂O₂MnSe₂), CSD-432366 (La₄MnSe₃O₄) and CSD-432367 (La₆MnSe₄O₆).

X-ray powder diffraction patterns were measured with a Huber G670 diffractometer (Cu-K α_1 radiation, Ge-monochromator, Huber Diffraktionstechnik GmbH & Co. KG, Rimstig, Germany). Rietveld refinements were done with TOPAS [20]. Magnetization isotherms and susceptibility measurements were performed with a MPMS-XL SQUID magnetometer (Quantum Design Inc., San Diego, CA, USA).

4. Conclusions

In this article we have reported the synthesis, structural characterization and magnetic properties of three new oxyselenides, which are members of the homologous series $La_{2n+2}MnSe_{n+2}O_{2n+2}$ (n = 0-2). The compounds are accessible using a flux synthesis at high temperatures (1273–1373 K). The crystal structures contain edge-sharing distorted MnSe₄O₂-octahedra along the *b*-axis as common building block. These are linked together along the *a*-axis by edge-sharing OLa₃Mn- and/or OLa₄-tetrahedra forming ribbons of increasing width. The lattice parameters *b* and *c* vary only slightly, whereas the monoclinic angle decreases strongly with increasing *n*. The magnetic susceptibilities obey the Curie–Weiss rule with effective magnetic moments compatible to Mn²⁺ and indicate antiferromagnetic ordering below 15 K.

Acknowledgments: We thank the German Research Foundation (DFG) for financial support. Author Contributions: Simon Peschke and Dirk Johrendt equally contributed to the paper. Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Form	ula w	eight (g·mol ⁻¹)	522.7					
Space group, Z			<i>C</i> 2/ <i>m</i> , 2					
a, b, c	<u> </u>		11.662(1),	11.662(1), 3.972(1), 7.205(1)				
β (°)	. ,		121.7(1)					
Volume (Å ³), ρ_{X-ray} (g·cm ⁻³) 284.1(1), 6.11								
		(mm^3)	0.06×0.02	2×0.01				
Diffr	actome	eter	Bruker D8	QUEST				
Radia	ation λ	. (pm)	71.073					
Abso	rption	coeff. μ (mm ⁻¹)	29.6					
2θ rat	nge (°)		6.64–107.7	6				
Inde	x range	e (hkl)	$-19 \le h \le$	$\leq 25, k \pm 8, -$	$-16 \le l \le 14$			
No. 1	eflecti	ons collected	5770					
No. 1	ınique	data, R_{int} , R_{σ}	1731, 0.02,	1731, 0.02, 0.03				
No. c	lata w	$ith I > 3\sigma(I)$	1441					
No. I	parame	eters	23					
	os/all)		0.024/0.03	6				
	obs/al	1)	0.048/0.05	0.048/0.051				
$\Delta e (e$	/Å ³)		1.92/-2.5	1.92/-2.53				
		Atomic and Dis	placement F	arameters				
	Site	x, y, z	U_{11}	U ₂₂	U ₃₃	Occ.		
La	4i	0.6923(1), 0, 0.2430(1)	0.0073(1)	0.0058(1)	0.0059(1)	1		
Mn	2d	$0, \frac{1}{2}, \frac{1}{2}$	0.0063(2)	0.0141(2)	0.0137(2)	1		
Se	4i	0.9405(1), 0, 0.1797(1)	0.0087(1)		0.0080(1)	1		
0	4i	$0.8028(2), \frac{1}{2}, 0.4187(1)$	0.0059(1)	0.0077(7)	0.0081(6)	1		
		-						

Table A1. Crystallographic data of *mC*-La₂MnSe₂O₂.

Formu	la wei	ght (g·mol ^{−1})	911.4					
Space group, Z			<i>P</i> 2/ <i>m</i> , 1					
a, b, c (Å)		9.006(1), 4.0)19(1), 7.195(1	.)			
β (°)			109.7(1)					
Volum	e (Å ³)	, ρ_{X-ray} (g·cm ⁻³)	245.1(1), 6.1	.7				
Crysta	l size ((mm ³)	0.04 imes 0.02	$\times 0.01$				
Diffrac	tomet	er	Bruker D8 (QUEST				
Radiat		·1 /	71.073					
Absorp	otion o	coeff. μ (mm ⁻¹)	29.4					
2θ rang	ge (°)		4.80-69.96					
Index 1			,	$\leq k \leq 5, l \pm 1$.1			
No. ref	flectio	ns collected	6887					
		lata, R _{int} , R _σ		1210, 0.03, 0.02				
		h $I > 3\sigma(I)$	1017					
No. pa		ers	39					
1 ($R_1(\text{obs/all})$			0.023/0.032				
$wR_2(obs/all)$			0.050/0.056					
$\Delta e (e/z)$	$\Delta e (e/Å^3)$							
		Atomic and Dis	splacement F	arameters				
	Site	x, y, z	U_{11}	U ₂₂	U ₃₃	Occ.		
La1	2n	$0.2245(1), \frac{1}{2}, 0.1732(1)$	0.0053(1)	0.0056(1)	0.0046(1)	1		
La2	2m	0.6430(1), 0, 0.3496(1)	0.0053(1)	0.0044(1)	0.0048(1)	1		
Mn1	1f	$0, \frac{1}{2}, \frac{1}{2}$	0.0120(6)	0.0113(5)	0.0115(5)	1		
Se1	1e	$\frac{1}{2}, \frac{1}{2}, \overline{0}$	0.0072(3)	0.0062(3)	0.0048(3)	1		
Se2	2m	0.0627(1), Ō, 0.7971(1)	0.0078(2)	0.0095(2)	0.0079(2)	1		
O1	2m	0.3651(4), 0, 0.3114(5)	0.0048(16)	0.0069(16)	0.0082(16)	1		
O2	2 <i>n</i>	$0.2317(4), \frac{1}{2}, 0.5070(5)$	0.0046(16)	0.0057(15)	0.0079(16)	1		

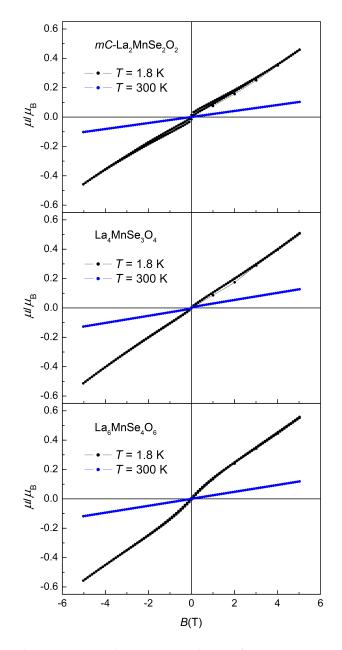
Table A2. Crystallographic data of La₄MnSe₃O₄.

Table A3. Crystallographic data of La₆MnSe₄O₆.

Form	ıla wei	ght (g·mol ^{-1})	1300.2					
Space group, Z			$C_2/m, 2$					
<i>a, b, c</i> (Å)				4.036(1), 7.18	85(1)			
β (°)	()		104.2(1)					
	ne (Å ³)	, ρ_{X-ray} (g·cm ⁻³)	696.2(1), 6	.20				
	al size (0.03×0.02					
	ctomet		Bruker D8	QUEST				
Radia	tion λ	(pm)	71.073					
		coeff. μ (mm ⁻¹)	29.3					
2θ ran			5.84-70.20					
	range	(hkl)	$-40 \le h \le$	\leq 38, $k \pm 6$, l	± 11			
No. re	eflectio	ns collected	8892					
No. u	nique d	lata, $R_{\rm int}$, R_{σ}	1375, 0.05, 0.05					
No. d	ata wit	h $I > 3\sigma(I)$	957	957				
No. p	aramet	ers	53					
$R_1(\text{obs/all})$		0.023/0.04						
$wR_2(obs/all)$		0.041/0.04						
$\Delta e (e/$	(A^3)		1.65/-1.7	0				
		Atomic and Disp	lacement Pa	arameters				
	Site	x, y, z	<i>U</i> ₁₁	U ₂₂	U ₃₃	Occ.		
La1	4i	$0.0788(1), \frac{1}{2}, 0.1453(1)$	0.0050(2)	0.0060(2)	0.0049(2)	1		
La2	4i	0.2263(1), 0, 0.2665(1)	0.0045(2)	0.0044(2)	0.0043(2)	1		
La3	4i	0.1261(1), 0, 0.6051(61)	0.0056(2)	0.0045(2)	0.0052(2)	1		
Mn1	2d	$0, \frac{1}{2}, \frac{1}{2}$	0.0110(9)	0.0110(7)	0.0100(8)	1		
Se1	4i	$0.8252(1), \frac{1}{2}, 0.0613(1)$	0.0069(3)	0.0067(3)	0.0048(3)	1		
Se2	4i	$0.4781(1), \frac{1}{2}, 0.2116(1)$	0.0076(4)	0.0095(3)	0.0075(4)	1		
O1	4i	$0.2752(2), \frac{1}{2}, 0.3975(6)$	0.004(2)	0.009(2)	0.006(2)	1		
O2	4i	0.1288(2), 0, 0.2662(7)	0.007(2)	0.007(2)	0.007(2)	1		
03	Λi	0.0823(2) ¹ $0.4801(6)$	0.003(2)	0.005(2)	0.010(2)	1		

0.003(2)

0.005(2)


0.010(2)

1

4i

 $0.0823(2), \frac{1}{2}, 0.4801(6)$

O3

Figure A1. Isothermal magnetization plots at 300 K and 1.8 K of mC-La₂MnSe₂O₂ (**top**), La₄MnSe₃O₄ (**middle**) and La₆MnSe₄O₆ (**bottom**).

References

- 1. Peschke, S.; Nitsche, F.; Johrendt, D. Flux Synthesis, Modulated Crystal Structures, and Physical Properties of *REMn*_{0.5}SeO (*RE* = La, Ce). *Z. Anorg. Allg. Chem.* **2015**, *641*, 529–536.
- Nitsche, F.; Niklaus, R.; Johrendt, D. New Polymorphs of RE₂FeSe₂O₂ (RE = La, Ce). Z. Anorg. Allg. Chem. 2014, 640, 2897–2902.
- 3. Wang, C.H.; Ainsworth, C.M.; Gui, D.Y.; McCabe, E.E.; Tucker, M.G.; Evans, I.R.; Evans, J.S.O. Infinitely Adaptive Transition Metal Oxychalcogenides: The Modulated Structures of Ce₂O₂MnSe₂ and (Ce_{0.78}La_{0.22})₂O₂MnSe₂. *Chem. Mater.* **2015**, *27*, 3121–3134.
- 4. McCabe, E.E.; Free, D.G.; Evans, J.S.O. A new iron oxyselenide Ce₂O₂FeSe₂: Synthesis and characterisation. *Chem. Commun.* **2011**, *47*, 1261–1263.
- Tuxworth, A.J.; McCabe, E.E.; Free, D.G.; Clark, S.J.; Evans, J.S.O. Structural Characterization and Physical Properties of the New Transition Metal Oxyselenide La₂O₂ZnSe₂. *Inorg. Chem.* 2013, 52, 2078–2085.

- 6. Ainsworth, C.M.; Wang, C.H.; Tucker, M.G.; Evans, J.S.O. Synthesis, Structural Characterization, and Physical Properties of the New Transition Metal Oxyselenide Ce₂O₂ZnSe₂. *Inorg. Chem.* **2015**, *54*, 1563–1571.
- Hiramatsu, H.; Ueda, K.; Kamiya, T.; Ohta, H.; Hirano, M.; Hosono, H. Synthesis of single-phase layered oxychalcogenide La₂CdO₂Se₂: Crystal structure, optical and electrical properties. *J. Mater. Chem.* 2004, 14, 2946–2950.
- 8. McCabe, E.E.; Free, D.G.; Mendis, B.G.; Higgins, J.S.; Evans, J.S.O. Preparation, Characterization, and Structural Phase Transitions in a New Family of Semiconducting Transition Metal Oxychalcogenides β -La₂O₂MSe₂ (M = Mn, Fe). *Chem. Mater.* **2010**, *22*, 6171–6182.
- Ainsworth, C.M.; Wang, C.H.; Johnston, H.E.; McCabe, E.E.; Tucker, M.G.; Brand, H.E.A.; Evans, J.S.O. Infinitely Adaptive Transition-Metal Ordering in *Ln*₂O₂*MS*e₂-Type Oxychalcogenides. *Inorg. Chem.* 2015, 54, 7230–7238.
- 10. Tougait, O.; Ibers, J.A. Synthesis and Characterization of Three New Rare-Earth Titanium Oxyselenides: *Ln*_{3.67}Ti₂O₃Se₆ (*Ln* = Ce, Nd, Sm). *Chem. Mater.* **2000**, *12*, 2653–2658.
- 11. Tougait, O.; Ibers, J.A. Syntheses and Crystal Structures of the Lanthanum Titanium Oxyselenides La₄Ti₂O₄Se₅ and La₆Ti₃O₅Se₉. *J. Solid State Chem.* **2001**, *157*, 289–295.
- 12. Dung, N.H.; Tien, V.V. Synthèse et structure cristalline d'une nouvelle famille d'oxyséléniures de chrome III et de lanthanides légers, de formule générale *R*CrSe₂O (*R*= La, Ce). *C. R. Seances Acad. Sci.* **1981**, *293*, 933–936.
- 13. Meerschaut, A.; Lafond, A.; Meignen, V.; Deudon, C. Crystal Structure and Magnetic Properties of a New Oxyselenide of Gadolinium and Titanium: Gd₄TiSe₄O₄. *J. Solid State Chem.* **2001**, *162*, 182–187.
- 14. Tuxworth, A.J.; Evans, J. Synthesis, structure and properties of the oxychalcogenide series *A*₄O₄TiSe₄ (*A* = Sm, Gd, Tb, Dy, Ho, Er and Y). *J. Solid State Chem.* **2014**, *210*, 188–194.
- Strobel, S.; Choudhury, A.; Dorhout, P.K.; Lipp, C.; Schleid, T. Rare-Earth Metal(III) Oxide Selenides M₄O₄Se[Se₂] (*M* = La, Ce, Pr, Nd, Sm) with Discrete Diselenide Units: Crystal Structures, Magnetic Frustration, and Other Properties. *Inorg. Chem.* 2008, *47*, 4936–4944.
- Peschke, S.; Weippert, V.; Senyshyn, A.; Mühlbauer, M.J.; Janka, O.; Pöttgen, R.; Holenstein, S.; Luetkens, H.; Johrendt, D. Flux synthesis, crystal structures, and magnetic ordering of the rare-earth chromium(II) oxyselenides RE₂CrSe₂O₂ (RE = La–Nd). *Inorg. Chem.* **2017**, in press.
- 17. APEX2, version 2012.12-0; Bruker AXS Inc.: Madison, WI, USA, 2007.
- 18. Sheldrick, G.M. SADABS, version 2012/1; Bruker AXS Inc.: Madison, WI, USA, 2001.
- 19. Petricek, V.; Dusek, M.; Palatinus, L. *Jana2006*, version 26/09/2012; Institute of Physics: Praha, Czech Republic, 2006.
- 20. Coelho, A. TOPAS-Academic, version 4.1; Coelho Software: Brisbane, Australia, 2007.

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).