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Abstract: Despite its well-known toxicity, carbon monoxide (CO) is now recognized as a potential
therapeutic agent. Its inherent toxicity, however, has limited clinical applications because uncontrolled
inhalation of the gas leads to severe systemic derangements in higher organisms. In order to obviate
life-threatening effects and administer the gas by bypassing the respiratory system, CO releasing
molecules (CORMs) have emerged in the last decades as a plausible alternative to deliver controlled
quantities of CO in cellular systems and tissues. As stable, solid-storage forms of CO, CORMs
can be used to deliver the gas following activation by a stimulus. Light-activated CORMs, known
as photoCORMs, are one such example. This class of molecules is particularly attractive because,
for possible applications of CORMs, temporal and spatial control of CO delivery is highly desirable.
However, systems triggered by visible light are rare. Most currently known photoCORMs are
activated with UV light, but red light or even infrared photo-activation is required to ensure that
structures deeper inside the body can be reached while minimizing photo-damage to healthy tissue.
Thus, one of the most challenging chemical goals in the preparation of new photoCORMs is the
reduction of radiation energy required for their activation, together with strategies to modulate the
solubility, stability and nontoxicity of the organic or organometallic scaffolds. In this contribution,
we review the latest advances in visible light-activated photoCORMs, and the first promising studies
on near-infrared light activation of the same.
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1. Introduction

Carbon monoxide (CO) has been known for a long time as a dangerous gas to mammals [1].
Indeed, due to its toxicity, colorless, odorless and tasteless nature, the gas is commonly referred to as
“the silent killer”. Carbon monoxide toxicity partially originates from the high affinity of the molecule
for the iron of hemoglobin, with which it strongly interacts, thereby reducing the protein’s ability to
shuttle and transfer oxygen into tissues. However, it has also been demonstrated that hemoglobin acts
as detoxifying protein and that it is rather the small amount of unbound CO that escapes it that is
likely responsible for the main toxicity of the gas [2].

Despite its toxicity CO, is produced endogenously in mammals by the Heme Oxygenase family
of enzymes during heme catabolism. Studies on its role in mammals have revealed that CO plays
a fundamental part as a gaseous signaling neurotransmitter, together with nitric oxide (NO) and
dihydrogen sulfide (H2S) [3]. Lack of endogenous CO production leads to systemic function disorders,
including diabetes [4], inflammation [5–8], or tissue cellular apoptosis [4]. The discovery of the
unexpected beneficial role of CO has led, on one hand, to its evaluation as a therapeutic agent in clinics
and hospitals and, on the other hand, to an increasing interest in the chemistry of CO. The former has
most certainly fueled the latter as mounting biological and medicinal evidence indicates that CO can
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prevent or alleviate a variety of diseases, including, e.g., cardiovascular inflammation [4,9,10], hepatic
ischemia [11], cell proliferation [4] or have antiatherogenic [12] or cytoprotective effects [4,13], inter alia.

In order to exert its therapeutic effects, a proper amount of CO must be delivered in a controlled
manner to avoid tissue hypoxia and severe toxic side effects. In its gaseous form, however, the molecule
is difficult to handle and to administer in a precise concentration at a specific location within
the organism. As a way to deliver the gas by bypassing the respiratory system, CO releasing
molecules (CORMs) have emerged as an important research area, bridging disciplines ranging from
organometallic and organic chemistry to pharmacology and medicine. The rising interests in these
molecules are due to the fact that they, in principle, allow for the controlled and targeted delivery of
the gas into wounded or injured tissues [14–18], depending on the nature and the specificity of the
CORM used. To date, most CORMs are transition metal complexes bearing at least one carbonyl ligand.
It is this ligand that once released from the molecule with a defined stimulus, acts as the endogenously
generated CO.

The majority of CORMs release CO thermodynamically, i.e., spontaneously by dissolution in the
aqueous media [19,20]. The rate of CO delivery can be calculated kinetically by spectrophotometry
or infrared analysis and can be modulated by modification of the ancillary ligands of the releasing
complex [21,22]. Nevertheless, in the case of spontaneous CO liberation, the starting time of action
can be difficult to control. Thus, a stimulus that can activate CORMs at a precise moment would be
preferred. Enzyme-triggered release [23–26] or electromagnetic heating [27] are some of the ways
used to initiate CO release. However, the most commonly employed stimulus for CORM activation
is light. Several transition metal carbonyl complexes are known to be photosensitive, and they have
been naturally studied to this end. Indeed, the number of publications on photoCORMs has increased
exponentially in the last decade [28,29]. Early studies in this area resulted in promising compounds
that were activated by UV light irradiation [30–34]. Unfortunately, the shortest wavelengths have
poor penetration and are potentially harmful to healthy tissues. Thus, research in the area has also
moved towards the discovery and preparation of photoCORMs that can be activated with radiations
of longer wavelengths. These efforts have resulted in systems showing controlled CO release with red
light activation and, in some instances, with radiations approaching the boundaries of near infrared
excitation [21,35].

These systems are the subject of this brief review. Specifically, we have limited our contribution
to papers that have appeared since 2010 and in particular, to photoCORMs activated with light of
a wavelength >450 nm. However, when necessary for our discussion, we allowed for certain flexibility
to these stringent selection criteria. In any case, this review is not comprehensive of all contributions
in the CORM field in the mentioned timeframe and for a more wide-ranging view of CORMs and
photoCORMs, the reader may refer to other reviews [2,4,14–18,36–40]. Before introducing the latest
advances in visible and near-infrared activated photoCORMs, and in order to guide readers unfamiliar
with the subject matter, we will begin with a brief historical overview of photoCORMs.

2. PhotoCORMs: Identification and Design

The term photoCORM was introduced by Ford and coworkers, who examined the delivery of
small gasotransmitters (nitric oxide and carbon monoxide) from transition metal complexes, notably
a tungsten complex (1, Figure 1) showing CO release and water solubility [41]. Motterlini and
co-workers reported the first biological use of light-induced CO release from chemical compounds,
namely the pure metal carbonyl complexes Fe(CO)5 (2, Figure 1) and Mn2(CO)10 (3, Figure 1) [19].
Due to poor aqueous solubility and toxicity, most notably for the Fe compound, the development of
these CORMs was only possible by modifying the ancillary ligands around the metal center. Over
the years the fac-{Mn(CO)3}+ core became the prominent moiety in the advancement of photoCORMs.
The first ligand used in such fac-{Mn(CO)3}+-based photoactivatable CO delivery systems was
the tridentate tris(pyrazolyl)methane published by Schatzschneider (4, Figure 1). The resulting
photoCORM released 2 equivalents of CO per Mn unit [31,32].
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the formation of carboxyMyoglobin (MbCO) [42]. Typically, a myoglobin solution of known 
concentration is prepared, and sodium dithionite is used to reduce ferric to ferrous iron in the heme 
of the metalloprotein before the addition of 1 (or more) equivalent(s) of the tested compound. If the 
latter is not soluble in pure water, a final percentage of 0.5% of DMSO is generally safe. Binding of 
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Generally speaking, the mechanism of CO labilization and loss from transition metal carbonyl
complexes is nowadays well understood. Due to the high π-accepting capability of the carbonyl ligand,
CO induces a strong ligand field enhanced by synergistic CO σ-donation to an empty metal d-orbital
and π-backbonding from an occupied d-orbtital to the π* antibonding orbital of CO. Irradiation of the
photoCORM with sufficient energy can promote excitation of d-orbital electrons increasing, on one
hand, the formal oxidation state of the central metal ion and, consequently, reducing the synergistic
M–CO σ/σ interaction. The net result of irradiation is that of weakening the metal–carbonyl bond,
thereby promoting CO release. This simplified picture is also useful for understanding photo-induced
CO release ensuing from metal-to-ligand charge transfer (MLCT) processes where electrons are excited
(i.e., transferred) from a metal d-orbital to the π* anti-bonding orbital of an ancillary ligand. This last
process is one of the most prominent pathways leading to the photo-labialization of CO and examples
of it will be discussed in more details in the ensuing sections.

The role of the ancillary ligands is decisive for tuning MLCT, the irradiation wavelength, the rate
of CO loss and the toxicity of the photoproducts. In order to achieve visible light photoactivation,
the energy gap of the orbital involved in electron transfer (e.g., HOMO–LUMO energy levels) needs to
be as narrow as possible. Ancillary ligands with hyperconjugation and π-acceptors groups on the ligand
frame are used for this purpose, along with π-donor atoms directly bound to the metal center [21].
Bromide and chloride anions are often the first choice of the latter type of ligands [22]. Tuning the
wavelength of activation of photoCORMs is only one aspect to render the species possibly valuable
for further medical applications. In principle, any photoCORM has to be biocompatible with animal
systems to be further investigated. Thus, solubility in water, in biological media (phosphate buffer
solution, PBS) or water (≤0.5%) DMSO mixture, the non-toxicity of the CORM and the photoproducts,
as well as their elimination from the organism, are all key requirements for a pharmaceutically useful
photoCORM. Without light irradiation, stability in water and under aerobic conditions is also necessary
for the tested compounds. For adequate use as therapeutic agents, only light irradiation must provide
CO release and the decomposition into photoproducts.

An ideal photoCORM needs to release CO in a controlled manner and in correct amounts. At least
one CO equivalent should be delivered per metal center. Thus, confirmation of the photoactivity of
the CO releasing molecule is necessary. The most commonly used experiment to assess photo-CO
release is the myoglobin assay, a spectrophotometric assay that allows monitoring the formation of
carboxyMyoglobin (MbCO) [42]. Typically, a myoglobin solution of known concentration is prepared,
and sodium dithionite is used to reduce ferric to ferrous iron in the heme of the metalloprotein before
the addition of 1 (or more) equivalent(s) of the tested compound. If the latter is not soluble in pure
water, a final percentage of 0.5% of DMSO is generally safe. Binding of CO to the ferrous heme
(in this case referred to a deoxyMyoglobin, dMb) is then monitored by UV analysis. If CO is indeed
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released from the photoCORM, the visible absorption band of dMb at 560 nm is progressively replaced
by two bands at 540 and 579 nm (typical of MbCO); the Soret band shows also a shift, from ca. 435 to
424 nm [18]. While this assay has proven extremely valuable in the identification and screening of
CORMs, it should be kept in mind that the same assay is not perfect. McLean, Mann and Poole have
shown that in some instances, and depending on the type of CORM being evaluated, sodium dithionite
can influence CO release and give rise to artefacts [43]. Alternative experiments for CO release
assessment have been developed; these include gas chromatography [41], portable CO sensors [44],
IR [45] and fluorescence [46] spectroscopy.

3. UV Light Photoactivated CORMs

The conception of new photoactivatable CO releasing molecules, which are nontoxic, stable in
physiological media and safe and efficient CO deliverers upon visible light illumination, remains
a challenge. To date, the vast majority of organic and organometallic photoCORMs provide CO
only upon UV light irradiation [47–52]. The tris(pyrazolyl)methane photoCORM characterized by
Schatzschneider (4, Figure 1) and co-workers is a typical example. This fac-{Mn(CO)3}+-based complex
is cationic in nature; it shows good water-solubility and anticancer activity [32] and could also be
used as a tag in medical imaging applications due to the characteristic and intense IR bands of the
carbonyl stretching frequencies [34]. Furthermore, the tripodal ligand could be used to tune the outer
coordination sphere of the photoCORM without altering the photoactivity of the compound. Peptide
functionality or binding to SiO2 surface were thus reported for similar compounds showing similar
CO releasing properties [30].

Other examples of fac-{Mn(CO)3}+-based photoCORMs with tripodal ligands have also been
reported. Berends and Kurz replaced a pyrazolyl ring by an acetate unit, thus conferring a neutral
charge to the complex (5 and 6, Figure 2) [53]. They demonstrated a stepwise CO loss process and
hypothesized the formation of intermediate photoproducts before the oxidation of the metal center and
the formation of a Mn–O–Mn moiety. Moreover, this complex had better CO release capabilities than the
tris-pyrazolyl CORM of Schatzschneider. Recently, the group of Kelebekli reported novel tricarbonyl
Mn complexes bearing bipyridiyl and imidazole derivatives (7 and 8, Figure 2) [54,55]. This set of
complexes showed effective cancer treatment and cytotoxic activity against breast cancer cells and the
MCF-7 human cell line. Antioxidant capability and redox properties were also revealed, by scavenging
2,2-diphenyl-1-picrylhydrazyl, superoxide and nitroxyl radicals. Taken together, the results showed
promising steps for the use of photoCORMs as drug templates for the treatment of breast cancer.
Tinajero and coworkers reported an Mn-based photoactivated CORM which reduces growth and
viability of Escherichia coli, only by light induction [56]. They demonstrated that CO binds to specific
intracellular sites, namely, respiratory oxidases and a globin protein expressed in a particular strain,
while the Mn metal center is not accumulated in the cells. This study is notably the first investigation
of the antimicrobial activity of a photoCORM against a resistant pathogen. The understanding of
the mechanisms of the CORM toxicity is in fact the key challenge for the increase in the use of such
compounds as therapeutic agents.

As solubility and nontoxicity are amongst the required elements for a valuable therapeutic
CORM, the use of various biocompatible scaffolds is displaying a marked increase in publications
(vide infra). For example, Yang and coworkers synthesized and characterized sawhorse-shaped
ruthenium complexes with diverse amino and carboxylic acid derivatives on the outer coordination
sphere of the CORM [57]. Cell viability investigation of 10 (Figure 2) indicated the absence of toxicity
with or without irradiation. While the compound was stable in the dark for hours, CO release was
proven by the common myoglobin assay, making it a potential lead structure for further investigations.

Mascharak and coworkers reported recently an interesting use of photoCORMs as luminescent
trackers [58]. The orange color assigned to the intact CORM (11, Figure 2) was used to successfully
track the entry of the prodrug into the cancer cells, while the shift to deep blue fluorescence after CO
loss was used for the assessment of the delivery in specific cellular sites. The utility of the theranostic
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photoCORM was proven in breast cancer cells with the help of flow cytometry and fluorescence
microscopy, attesting the therapeutic potential of the compound.
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4. Visible Light and Near Infrared-Light (NIR) Photoactivated CORMs

4.1. Inorganic and Organometallic PhotoCORMs

Westerhausen and co-workers reported in 2011 a dicarbonylbis(cysteamine)iron(II) complex
(12, Figure 3), named CORM-S1 [59]. To our knowledge, this is the first photoCORM activated by visible
light (i.e., >450 nm). Indeed, 470 nm light irradiation of 12 promotes constant CO release over several
minutes, whereas exposition to broadband white light leads to rapid and complete CO liberation in
a physiological medium. This property together with the high water solubility of the complex argues
for its biocompatibility. The cysteamine ligand does not seem provide easy possibilities for further
modifications of the inner- and outer-coordination sphere of the molecule, in order to finely tune the
excitation wavelength needed for the CO liberation. Nonetheless, Motterlini and coworkers [60] did
derivatize the corresponding ligand into cysteinate. More recently, Westerhausen [61] proposed the
thiolato-bridged [{(OC)3Mn}2(µ-SCH2CH2NH3)3] dimer, obtained from the reaction of pentacarbonyl
manganese with cysteamine (13, Figure 3). The complex was shown to be highly soluble in water,
stable under anaerobic conditions and released CO when irradiated at 365 nm and 470 nm. Although
CO liberation was faster with UV-light, both irradiation wavelengths promoted delivery of the all six
COs. Another interesting example of biocompatible photoCORM is the [FeFe]-hydrogenase derivative
proposed by Fan and co-workers (14, Figure 3) [62]. The carboxylate groups on the side chain provide
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a polar water soluble complex, and COs are completely released by white light irradiation. Detailed
investigations with a specific irradiation at 390 nm were also performed. Cell proliferation assay on
MCF-10A epithelial cells indicates that the salt Na2[(µ-SCH2CH2COO)-Fe(CO)3]2 (i.e., Na+ salt of 14)
is not cytotoxic.
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photoCORM (14).

Early in 2012, Mascharak reported the use of (2-pyridylmethyl)(2-quinolylmethyl)amine as
tripodal based ligand (15, Figure 4) for fac-{Mn(CO)3}+ complexes [63]. This photoCORM was activated
by visible light. Later that year, the same group reported the most prominent step towards visible
light activation of photoCORMs, using highly conjugated Schiff bases as ligands for similar cores
(16–18, Figure 4) [64]. Noticeable in the series were the [MnBr(CO)3qmtpm] (17, Figure 4) and
[MnBr(CO)3pmtpm] (18, Figure 5) complexes, which exhibit MLCT maximal absorbance at 535 and
500 nm, respectively. As described above, the small energy transition could be explained by the
combined effect of hyperconjugation of the bidentate ligand, the π-donor character of the bromo
ancillary ligand and the electron donating nature of the –SMe group. These considerations led the
same group to the design and synthesis of azobipyridine type complexes (19, Figure 4) reported in
2014 [65]. The complex with Mn as the metal center and bromide as the sixth ancillary ligand exhibits
MLCT transition at 585 nm, whereas the same complex with an Re center shows a MLCT band at
530 nm. As this later compound also displays MLCT under visible light, one might have expected
it to be the first CO releasing molecule with a ReI center. The myoglobin assay, however, does not
indicate any CO delivery. DFT calculations performed to understand this discrepancy indicate that the
spin-orbit coupling (prominent in heavy metals [66]) promotes intersystem 1MLCT–3MLCT crossing
in the rhenium complex, thereby dissipating the excitation energy without inducing Re–CO bond
rupture. As expected, both complexes with PPh3 as the ancillary ligand show low MLCT transition
energy due to the high π-acceptor character of PPh3.

More recently, the group of Mascharak published visible light-induced CO release
by a biocompatible tris-carbonyl Mn-based photoCORM showing good water-solubility [67].
Three α-diimines ligand-based complexes were prepared (20–22, Figure 4) and one of them
(21, Figure 4) demonstrated carbon monoxide delivery to myoglobin in PBS solution. In these
complexes, one of the imine functions is not part of a conjugated rigid ring, leading to higher
molar absorbance and faster CO release, compared to imines in a rigid α-diimine ring system
of bipyridine or phenanthroline type ligands [68]. In order to enhance the accumulation on the
targeted specific site, cellular uptake, non-toxicity of byproducts and water-solubility of these
CORMs, Mascharak and his group proposed ligand-appended adamantylamine derivatives [33,69].
Aminoadamantane-containing compounds are commercially available in the pharmaceutical market
and are used for the treatment of ovarian carcinoma or human prostate and colon cancer [70,71].
Side effects of released adamantine-based ligands following photo-activation of CORMs and their
cellular uptake were also studied in detail and indicated promising results [71]. Of the series of
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molecules, only complex 21 dissolved in pure aqueous media and physiological PBS conditions and
remained stable for at least 24 h if kept in the dark. The three CORMs showed CO delivery upon
illumination with light ≥ 450 nm. The CO release rates increased according to the order 20 < 21 < 22 in
CH2Cl2, and UV analysis indicated that 21 released 2 eq. of CO upon light irradiation under aerobic
conditions in water. Furthermore, the photo-activation of 21 appears to be insensitive to dithionite or
glutathione reductants.

Inorganics 2017, 5, 24 7 of 19 

 

indicated that 21 released 2 eq. of CO upon light irradiation under aerobic conditions in water. 
Furthermore, the photo-activation of 21 appears to be insensitive to dithionite or glutathione 
reductants. 

 
Figure 4. Selected structures of photoCORMs developped by Mascharak et al. [63–65,67]. 

Since hyperconjugated diimines ligands coordinated to fac-{Mn(CO)3}+ complexes permit 
photoCORM activation and liberation of carbon monoxide with visible light, the group of Bengali 
proposed compound 23 (Figure 5) [72]. The MLCT transition of this species was observed at 582 nm, 
and 560 nm light irradiation provided rapid CO release by substitution of the carbonyl with a 
solvent molecule (CH3CN or THF). DFT calculations on 23 and the corresponding diimine 
tetracarbonyl manganese cation indicate that the bulky steric environment around the carbonyl 
ligands is the predominant cause of the weakening of the metal–carbonyl bond interaction. 

 
Figure 5. Structure of Bengali’s photoCORM. 

An approach to visible-light activated CORMs, which also took into consideration the toxicity 
of the ensuing photoproducts, was described by Mansour and Shehab, who reported the tazarotene 
(TZ) and metamizole (MZ) [MnBr(CO)3TZ] (24, Figure 6) and [MnBr(CO)3MZ] (25, Figure 6) species 
[73]. Both TZ and MZ are approved drugs in medical treatments [74,75], and following photo-CO 
release and dissociation from the fac-{Mn(CO)3}+ core ensured no toxicity of the photoproducts. TZ 
interacts with the Mn center as a bidentate (N-pyridine– and C≡C–) ligand while MZ behaves as 
tridentate ligand. Although these photoCORMs (i.e., 24 and 25) demonstrated poor stability in 

Figure 4. Selected structures of photoCORMs developped by Mascharak et al. [63–65,67].

Inorganics 2017, 5, 24 7 of 19 

 

indicated that 21 released 2 eq. of CO upon light irradiation under aerobic conditions in water. 
Furthermore, the photo-activation of 21 appears to be insensitive to dithionite or glutathione 
reductants. 

 
Figure 4. Selected structures of photoCORMs developped by Mascharak et al. [63–65,67]. 

Since hyperconjugated diimines ligands coordinated to fac-{Mn(CO)3}+ complexes permit 
photoCORM activation and liberation of carbon monoxide with visible light, the group of Bengali 
proposed compound 23 (Figure 5) [72]. The MLCT transition of this species was observed at 582 nm, 
and 560 nm light irradiation provided rapid CO release by substitution of the carbonyl with a 
solvent molecule (CH3CN or THF). DFT calculations on 23 and the corresponding diimine 
tetracarbonyl manganese cation indicate that the bulky steric environment around the carbonyl 
ligands is the predominant cause of the weakening of the metal–carbonyl bond interaction. 

 
Figure 5. Structure of Bengali’s photoCORM. 

An approach to visible-light activated CORMs, which also took into consideration the toxicity 
of the ensuing photoproducts, was described by Mansour and Shehab, who reported the tazarotene 
(TZ) and metamizole (MZ) [MnBr(CO)3TZ] (24, Figure 6) and [MnBr(CO)3MZ] (25, Figure 6) species 
[73]. Both TZ and MZ are approved drugs in medical treatments [74,75], and following photo-CO 
release and dissociation from the fac-{Mn(CO)3}+ core ensured no toxicity of the photoproducts. TZ 
interacts with the Mn center as a bidentate (N-pyridine– and C≡C–) ligand while MZ behaves as 
tridentate ligand. Although these photoCORMs (i.e., 24 and 25) demonstrated poor stability in 

Figure 5. Structure of Bengali’s photoCORM.

Since hyperconjugated diimines ligands coordinated to fac-{Mn(CO)3}+ complexes permit
photoCORM activation and liberation of carbon monoxide with visible light, the group of Bengali
proposed compound 23 (Figure 5) [72]. The MLCT transition of this species was observed at 582 nm,
and 560 nm light irradiation provided rapid CO release by substitution of the carbonyl with a solvent
molecule (CH3CN or THF). DFT calculations on 23 and the corresponding diimine tetracarbonyl
manganese cation indicate that the bulky steric environment around the carbonyl ligands is the
predominant cause of the weakening of the metal–carbonyl bond interaction.

An approach to visible-light activated CORMs, which also took into consideration the toxicity of
the ensuing photoproducts, was described by Mansour and Shehab, who reported the tazarotene (TZ)
and metamizole (MZ) [MnBr(CO)3TZ] (24, Figure 6) and [MnBr(CO)3MZ] (25, Figure 6) species [73].
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Both TZ and MZ are approved drugs in medical treatments [74,75], and following photo-CO release
and dissociation from the fac-{Mn(CO)3}+ core ensured no toxicity of the photoproducts. TZ interacts
with the Mn center as a bidentate (N-pyridine– and C≡C–) ligand while MZ behaves as tridentate
ligand. Although these photoCORMs (i.e., 24 and 25) demonstrated poor stability in DMSO, they
are able to release CO upon exposure to blue light (468 nm). Under these conditions, complex 24
released 1 eq. of CO after 42 min of irradiation while 25 only 0.5 eq. after 70 min. When 24 and
25 were irradiated at longer wavelengths (535 nm) and tested via the myoglobin (Mb) assays, no
evidence of CO loss or of Mb–CO binding could be observed. The antimicrobial activity of TZ, MZ
and their corresponding CO releasing molecules 24 and 25 was also tested against two bacterial strains.
Both TZ and MZ drugs are ineffective against Staphylococcus aureus and Escherichia coli, but the authors
mentioned that 24, and to a lower extent 25, demonstrates higher antimicrobial effects. The authors
suggested, therefore, that the coordination of the two drugs to the fac-{Mn(CO)3}+ moiety results in
an increased antibacterial effect.
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A bio-compatible vitamin B12-conjugate bearing the same fac-[Mn(CO)3]+ core (26, Figure 6) was
the subject of a study published by our group in 2013. IR spectromicroscopy was used to characterize
the intracellular uptake and reactivity of the photosensitive compound (in 3T3 fibroblasts), whose CO
releasing properties could be triggered by illumination with visible light (470 nm). The intracellular
reactivity of the compound, evaluated as a function of the release of the CO ligands following light
exposure, was elucidated. The distribution of the complex could be described by IR mapping and,
taking into consideration the role of cellular topography in the quantitative interpretation of the maps,
a perinuclear distribution, in the nucleus and/or in its proximity, appeared to be the most likely
interpretation of the images obtained. Intracellular photoinduced CO release of 26 prevents fibroblasts
from dying under conditions of hypoxia and metabolic depletion, conditions that may occur in vivo
during insufficient blood supply to oxygen-sensitive tissues such as the heart or brain.

4.2. Organic PhotoCORMs

An interesting novel feature of a class of photoCORMs bearing flavonato derivatives was
demonstrated by Berreau and coworkers [76]. They reported two types of Zn(II) flavonolato complexes
that exhibit red-shift energy absorbance and enhanced CO release compared to the free corresponding
flavonols. These ligands (27–30, Figure 7) were known to deliver CO in organic or organic/water
media when induced by visible light [77]. In this latter publication, the tuning on the phenyl moiety of
the flavonol structures was demonstrated to be relevant for the red-shift of the absorption maximum
of the free ligand. Whereas 27 exhibits an absorption centered at 409 nm, the dialkylamine subunit
on 28 shifted the same absorption band to 442 nm. With both dialkylamine and thione present
(30), the maximum was observed at 544 nm. The characterization of the flavonolato complexes
(31–34, Figure 7) indicated a spectral absorption band in the therapeutic window (>650 nm) and
a solid-state CO release reactivity comparable to the activity seen in solution when irradiated with
546 nm light. The quantum yield was also significantly higher for the Zn compounds with respect
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to the neutral flavonols and reported organic photoCORMs [78,79]. A 1 eq. of CO per Zn unit is
delivered from 31–34 when dissolved in pyridine. Similar to the free flavonols, the MLCT maximum
of the corresponding complexes shifted gradually from 480 nm (for 31) to 600 nm (for 34), showing
that the tunability of the ligand framework impacts the MLCT without influencing the amount of CO
release. Furthermore, the bis-flavonato based complexes (35–38, Figure 7) demonstrated release of
2 eq. of CO per Zn(II). Surprisingly, 35 and 36 do exhibit also 2 eq. of CO release in the solid state,
while 37 and 38 do not. The MLCT maximum of 35–38 was comparable to the corresponding 31–34
complexes. It should also be mentioned that CO release of both free ligands 27–30 and complexes 31–38
exhibit dioxygenase-type (O2-dependent) CO release reactivity and the flavonato species are degraded
by dioxygenase-type enzymes when CO is released, either by thermal reactivity [80] or enzyme
catalysis [81]. Moreover, compound 35, when coated as a film on a flask, showed the delivery of CO in
oxidative palladium-catalyzed carbonylation processes. A total of 1 eq. of CO was delivered after 24 h
of irradiation of the evaluated solid film. Overall, these results suggest that flavonolato derivatives are
adjustable molecules for the design of and development of both inorganic and organic photoCORMs,
and these solid bis-flavonolato derivatives can be used in oxidative catalyzed alkoxycarbonylations as
CO releasing agents. However, further studies on efficiency and applications of this novel feature need
to be assessed.
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The main advance towards visible light induction of organic photoCORMs was accomplished by
Klán and coworkers [79]. Two boron dipyrromethene (BODIPY) derivatives were used as non-metallic
CORMs. BODIPY compounds are widely known as strong chromophores. The CO releasing properties
of molecules 39 and 40 (Figure 8) their biocompatilibity and toxicity were evaluated by Klán at
several irradiation wavelengths (350–730 nm). Molecule 39 exhibits photochemical decomposition
with 500 nm light irradiation. Compound 40 was designed with an extended π-system in order to
decrease the LUMO level energy by π delocalization. Under aerobic condition in PBS, 40 showed



Inorganics 2017, 5, 24 10 of 19

CO release upon irradiation at 358 and 652 nm (both absorption maxima of the molecule) and also at
732 nm, at the absorption tail. However, under aerobic conditions the quantum yield of 39–40 drops to
ca. 45% of the maximum. Thus, in opposition to the flavonol compounds, the BODIPY derivatives
operate best in anaerobic environments. In in vivo experiments, hairless mice were separated in
three groups, (i) without any treatment; (ii) with intraperitoneal application of 40 left in the dark;
(iii) with intraperitoneal application of 40 followed by irradiation for 4 h with white light. This last
group exhibited accumulation of carboxyhaemoglobin in blood, and high CO levels in kidney and
hepatic tissues. Additionally, an in vitro blood sample containing 40 was irradiated and there also,
CO could be easily detected. Furthermore, irradiation of a long-lasting sample was evaluated and
revealed that CO release stopped when the illumination was suspended, granting control over the
CO delivery. Finally, the mechanism of CO loss was assessed as being provided by a photoinduced
electron transfer (PET) from the carboxylate to the BODIPY moiety, leading to an intersystem crossing
from an excited singlet state to the triplet state. Finally, these compounds showed no in vivo toxicity
in mice making this class of near-infrared light activated photoCORMs a major advance towards
longer wavelength induction. However, whereas the organic flavonol derivatives yield, for the most
part, well characterized (and non-toxic) products, the products of the BODIPY CO release reaction are
less defined.
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Another class of nonmetallic photoCORMs reported by Liao and coworkers allowed
a non-invasive and simple approach to track the degree of photo-induced release of CO via fluorescence
measurements [82]. These cyclic diketone compounds (41, Figure 8) require a hydrophobic carrier to
be activated, and they were thus incorporated into micelles. In a study showing the first use of this
CO releasing composite material for engineered tissue applications, Bashur and coworkers published
photoCORM materials incorporated into electrospun scaffolds for engineered vascular tissues [83].
Tissue engineering is a promising approach as bypass graft overcoming coronary heart disease, but has
demonstrated poor durability due to aneurysm and thrombosis development. The use of CO for
the regulation of the tissue functionalities is thus being investigated [84]. The CO releasing material,
9,10-dihydro-9,10-ethanoanthracene-11,12-dione (41, Figure 8), improves vascular cellular functions in
small-diameter grafts by CO liberation. As a photoactivatable and nontoxic CORM, 41 showed CO
delivery when incorporated (ca. 2% w/w) in an electrospun poly-caprolactone scaffold under 470 nm
light irradiation. Photo-activation of 41 is reproducible under both dry and cell culture conditions.
Under dry conditions, 41-derived CO nearly saturates myoglobin in the assay reaching up to 92% of
the theoretical capacity of the CORM-loaded scaffold. Under cell culture conditions, a photo-induction
period of 30 min activation before cellular incubation and fluorescence analysis indicated maximal
CO release. CORM 41 does not appear to affect cell viability up to a 100 µM concentration, but the
cell phenotypic response of rat smooth muscle cells (SMC) does not indicate a significant impact of
the CO delivery. As this could be due to the slow release of CO during the activation time, a higher
CORM-loading could be needed (although an increased dose of CO may also be toxic). This obstacle
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may be surmounted by increasing the hydrophobicity of the environment encapsulating 41, thereby
accelerating the activation rate of CO loss during incubation.

4.3. PhotoCORM Materials

An alternative strategy of photoCORM incorporation into material matrices was reported by
Schiller and coworkers, via the use of optical device remote-controlled activation of a tetranuclear
Mn-based complex (42, Figure 9) embedded on poly-lactide (42a) and polymethacrylate (42b)
non-woven fabrics [44]. The same group reported previously an efficient poly-lactide matrix
for light-induced CO delivery from the water-insoluble photoactivatable Mn2(CO)10 CORM [85].
This matrix-incorporated compound demonstrated antimicrobial activity against Staphylococcus aureus
upon light irradiation at 405 nm. Experiments performed on dry compounds (405 nm irradiation)
indicated a total amount of CO being released in the range of 8.1–8.3 µmol/mg of material for 42a and
11.0–11.7 µmol/mg for 42b after 30 min illumination. When the same experiment was performed with
an incident radiation of 365 nm, 10.7 µmol/mg and 11.5 µmol/mg were measured respectively for 42a
and 42b. Surprisingly, the rate of CO delivery of 42a was faster upon irradiation at 405 nm as compared
to 365 nm, which is in contrast with common expectations. The investigation of both structures with
the fiber optical device was also reported. Technically, a glass sphere was connected to the extremity of
a fiber optic in order to extend the irradiated surface of sample areas, in combination with a laser. CO
release was determined to reach 1.2 µmol/mg after 30 min at 405 nm light exposition. This lower value
in comparison to dry tests could be explained as a result of a narrower spatial irradiation. In this device,
the intensity of the irradiating light plays also a role in CO release. The concentration of delivered CO
increases with a higher irradiation intensity, at a similar wavelength. 42a was also determined to be
nontoxic against 3T3 mouse fibroblast cells, similar to the control polymer matrix.
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Ueno and coworkers recently published the characterization of engineered protein crystals
containing the Mn(CO)5Br photoCORM and as a CO releasing material with the aim of modulating
nuclear factor activation [86]. The choice of this particular carrier matrix was driven by the opportunity
of using the inner pores of the protein crystals, acting as solvent channels [87,88], and by the natural
production of those crystals in insects after infection by a cypovirus. In order to increase the amount of
photoCORMs loaded in the carrier, and thus the relative CO concentration, a mutant of the protein
containing a hexa-histidine tag was prepared. This composite protein-CORM matrix showed CO
liberation by illumination at 456 nm, while the release was considerably lower without irradiation.
Various analyses suggested moreover that Mn ions are retained into the protein crystal after CO release,
thereby reducing the possible toxicity of Mn metabolites. Since it is widely known that the intensity
and the rate of CO production into cells are necessary for the activation of the nuclear factor NF-κB [89],
the activity of this NF was checked against the presence of the CORM-embedded protein crystal [90].
The activity of the κB-Fluc transfected HEK293 cells cultured with the photoCORM was evaluated by
investigation of the bioluminescence intensity of the cells after 12 h of incubation. The data indicate that
the mutant protein enhanced photoactivation of NF-κB compared to the wild type protein after 10 min
of light irradiation. There were no notable differences at 0, 5 and 20 min of illumination. The detailed
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mechanism of biological mechanism of this type of composite is currently being investigated by this
group. Another strategy to overcome the potential toxicity of the remaining metal-ligand fragment
was reported by the group of Smith [91]. This photoCORM system is composed of four and eight
manganese cores attached via a dendritic structure (43, Figure 10). The formed dendrimers exhibit
stability in the dark and release CO when irradiated at 410 nm. By contrast, the monomer model
system (44, Figure 10) demonstrated a delivery twice as fast in otherwise similar conditions. The total
amount of CO delivered with the eight core dendrimer reached 15 CO eq. The quantum yield and the
half-life time were similar for both the four and the eight metallic centers, demonstrating no dependent
behavior from one end to another.
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4.4. NIR PhotoCORMs

Similar to manganese, the fac-{Re(CO)3}+ core was used by Ford and coworkers to synthesize
a water-soluble and luminescent photoactivated CORM [92] (45, Figure 11). Specifically, the –CH2OH
substituents of the phosphinetriyltrimethanol ligand allowed conferring water solubility of the
entire complex without modification on the overall charge of the compound. One CO was
delivered when irradiated at 405 nm, and the luminescent properties of the photoproduct (following
H2O–CO ligand exchange) allowed monitoring cellular uptake of 45 via confocal fluorescence
microscopy. Based on the same ligand, Ford reported in 2015 a water-soluble nanocarrier with
upconversion nanoparticles embedded in an amphiphilic polymer containing a water-insoluble
Mn-based photoCORM (46, Figure 11) [35]. In such an ensemble, the up-converted nanoparticles
absorb NIR light at 980 nm. CO is thus released by ‘45 by reabsorption of the emitted light
from the up-converted particles. Previously, Ford and others used NIR wavelengths to uncage
lanthanide ion doped with up-converted nanoparticles [93–96]. While the nanoparticles consist of
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NaGDF4 moieties doped with ytterbium and thulium, the amphiliphic matrix is prepared from
phospholipid-functionalized poly(ethylene glycol). When 46 is dissolved in CH2Cl2, it exhibits
an MLCT band around 470 nm, thus the 490 nm light emitted from the particles can excite MLCT
transition and thus promote CO release. In myoglobin experiments, the CO delivering properties of the
composite was assessed. With 365 nm illumination, CO is delivered to myoglobin by photo-labilization
and migration through the matrix. As expected, a 980 nm irradiation also induces CO release via
up-converted nanoparticles. Furthermore, the tuning on the polymer capsule could be used to modify
the circulation, specificity and elimination of the composite.Inorganics 2017, 5, 24 13 of 19 
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With the same purpose, Zobi and coworkers described substituted azobipyridine-based
photoactivatable CORMs that release CO directly upon NIR irradiation(47–51, Figure 11) [21].
By investigating a series of azobipyridine derivatives, they reported rational fine tuning of the
maximal absorbance of the complexes by modification of the π-frame of the ligand. A similar ligand
was previously reported by Mascharak, with a strategy based on two complementary approaches:
(a) the stabilization of the LUMO involved in the MLCT transition by increasing the conjugation of
aromatic bidentate ligands; (b) the presence of σ-donor ancillary ligands in order to elevate the energy
HOMO-2 orbital (also involved in MLCT) by increasing the electronic density on the metal center [22].
The series of ligands synthesized and characterized by the group of Zobi consists of a symmetric
azobipyridine. The introduction of a second pyridine was rationalized so as to lower the energy level
of the π* MO, given the higher electronegativity of nitrogen compared to carbon. Electron-donating
and electron-withdrawing substituents on the π-frame are expected to finely modulate the MLCT
wavelength of absorbance. Electron poor π-ligands would facilitate the transfer of the electron density
from the metal center to the π* orbital of the ligand, and thus promote the photo-labilization of the
corresponding CO bond. To confirm these assumptions, the stability of complexes 47–51 in CH2Cl2 was
assessed in absence of light, with irradiation at the maximal absorbance wavelength in the visible region
(MLCT) of each complex (λmax), and with NIR light irradiation (810 nm). The results demonstrated that
47 and 48 are stable in the absence of light for several hours. Conversely, 49–51 exhibit decomposition
at room temperature as evidenced by hypochromic shift of the λmax. With illumination at λmax, all
CORMs shows faster decomposition, and as the MLCT band of the complexes tails beyond the visible
spectral region, photodecomposition of 51 is triggered at 810 nm. The myoglobin assay confirmed that
the photodegradation is followed by CO release. Similarly, CO release is faster with λmax activation
than in the dark. Moreover, DFT calculations confirmed the red-shift of the MLCT absorption band
with electron withdrawing substituents (from 625 to 695 nm, for 47 to 51, respectively) observed by the
experimental procedure. Although the toxicity of those compounds needs to be investigated, this study
represents a major step towards direct NIR photoactivation of metallic CORMs.

5. Discussion

In the past ten years, developments in photoCORM chemistry followed two main approaches:
(i) the tuning of ligands in the primary coordination sphere of metal-based CORMs to obtain



Inorganics 2017, 5, 24 14 of 19

a precise wavelength sensitivity in terms of photoactivation, (ii) the use of materials such as matrices,
scaffolds, crystals or upconversion particles to either enhance photoCORMs water-solubility, or provide
encapsulation of possible toxic metal-based photoproducts. While important steps forwards have been
archived in the last decade, the common use of CO releasing molecule in medical environments is yet
to be realized and the key chemical requirements to attain this goal are currently still being mapped.
In general, more comprehensive studies regarding the performance of photoCORMs in in vitro and
in vivo experiments need to be addressed. Cytotoxicity evaluations of new photoCORMs are not
commonly realized while anti-inflammatory assays are rarely reported. In general the biocompatibility
of photoCORMs remains a crucial point. This is particularly so with metal-based CORMs, while organic
photoCORMs allow for the opportunity of a more straightforward functionalization for the specificity
and tunability of their biological properties. In this respect, future investigations on organic
photoCORMs are certainly poised to contribute to the next key advances in the field. Furthermore,
the appreciation of the new reported photoCORM materials in a complex biological system remains
to be evaluated. In addition, one major question is emerging from the NIR activatable photoCORMs:
how far can one, or needs one, go to lengthen irradiation wavelengths? As the photoactivation limits
are pushed, issues such as thermostability of the photoCORMs become important. It would appear
to us that an excitation “limit” will be reached soon. The same perhaps has already been reached.
Nevertheless, the large existing panel of tunable photoCORMs will help the scientific community
to determine the adequate light sensitivity and will help the researchers to succeed in the transition
between the laboratories and the common therapeutic administration.
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