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Abstract: Amongst many strategies for renewable energy conversion, light-driven water splitting to
produce clean H2 represents a promising approach and has attracted increasing attention in recent
years. Owing to the multi-electron/multi-proton transfer nature of water splitting, low-cost and
competent catalysts are needed. Along the rapid development of metal–organic frameworks (MOFs)
during the last two decades or so, MOFs have been recognized as an interesting group of catalysts or
catalyst supports for photocatalytic water splitting. The modular synthesis, intrinsically high surface
area, tunable porosity, and diverse metal nodes and organic struts of MOFs render them excellent
catalyst candidates for photocatalytic water splitting. To date, the application of MOFs and their
derivatives as photocatalysts for water splitting has become a burgeoning field. Herein, we showcase
several representative MOF-based photocatalytic systems for both H2 and O2 evolution reactions
(HER, OER). The design principle of each catalytic system is specifically discussed. The current
challenges and opportunities of utilizing MOFs for photocatalytic water splitting are discussed in
the end.

Keywords: metal–organic framework; photocatalysis; water splitting

1. Introduction

The ever-increasing global energy demand, depletion of fossil fuel reserves, together with the
climate change resulting from fossil fuel consumption all motivate the exploration of alternative energy
solutions, which are preferably based on renewable and environmentally friendly energy sources [1–6].
The transformation from fossil fuel-based economy to renewable energy-driven economy calls for
the development of low-cost and competent catalysts for the capture and storage of intermittent
renewable energy sources, like solar and wind. Among various green energy carrier candidates,
dihydrogen (H2) is particularly attractive, not only because of its high gravimetric energy density
(120 kJ·g−1, by comparison the gravimetric energy density of petroleum is 44 kJ·g−1) [7–9], but also
because of its clean nature (the sole product of H2 combustion is water). The current industrial
approaches for H2 production, such as steam methane reforming and coal gasification, are very energy
intensive and rely highly on fossil fuels [10–19]. Therefore, it remains a great necessity to develop
alternative low-cost methods to produce H2, ideally driven by renewable energy sources. Within
this context, photocatalytic water splitting emerged as a very appealing method in producing H2

from solar energy and water [20,21]. Since the pioneering work of Fujishima and Honda in 1972 that
TiO2 was able to catalyze water splitting to produce H2 and O2 under ultraviolet light irradiation, the
last four-and-a-half decades have witnessed a tremendous growth in developing various competent
photocatalytic systems for light-driven water splitting [22–28]. A large number of light-absorbing
materials (semiconductors) and complexes (photosensitizers), as well as photocatalysts have been
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developed, albeit the quantum yield of H2 production and solar energy conversion efficiency both
require further improvement for large-scale applications.

During the last two decades, a new type of inorganic–organic hybrid and crystalline materials
of high porosity, named metal–organic frameworks (MOFs), have attracted intense academic interest
because of the following reasons [29–37]. MOFs are constructed by connecting metal and metal cluster
nodes with organic bridging ligands in three-dimensional space. Therefore, a rich library of metal
cations and organic ligands are available for the formation of diverse MOFs, enabling facile modulation
of each component in MOFs. In addition, the intrinsically high surface area and regular pores and
channels allow efficient interaction between substrates and reaction sites, beneficial to the overall
catalytic performance. Table 1 summarizes the physical properties of representative MOFs discussed
herein. Finally, MOFs are solid materials which might be able to be separated from reaction mixture
for recycling utilization. Besides directly acting as photocatalysts for water splitting, carbonization of
appropriate MOFs will result in metal/metal oxide nanoparticles embedded in highly porous carbon
matrices resulting from the original organic ligands. In this case, the original MOFs not only provide
the metal and carbon sources but also act as the sacrificial templates. The final hybrid composites can
also be utilized for various photocatalytic applications including water splitting [38–40]. Owing to the
aforementioned advantages, MOFs and their derivatives have been widely employed as photocatalysts
for H2 production through water splitting [41]. In this short review, we do not intend to present a
comprehensive overview of MOF-based photocatalytic systems for water splitting. Instead, we will
introduce several representative MOF or MOF-derived photocatalysts and highlight their designing
principle in order to achieve enhanced performance relative to their homogeneous/heterogeneous
counterparts. It is our hope that this mini review will provide the audience with a flavor of the
burgeoning field of photocatalytic water splitting utilizing MOFs and their derivatives.

2. Photocatalytic H2 Evolution Utilizing MOF-based Photocatalysts

Photocatalytic water splitting consists of two half-reactions: photocatalytic H2 and O2 evolution
reactions (HER and OER). Each half-reaction involves the transfer of multiple protons and multiple
electrons with slow kinetics under ambient conditions. Consequently, competent photocatalysts are
desired for both HER and OER. In this section, we will first introduce the application of MOF-based
photocatalytic systems for H2 production.

The first example of a MOF-based catalyst for photocatalytic H2 evolution was reported by Mori
et al. in 2009 [42]. A Ru-MOF constructed with paddlewheel diruthenium cores ([Ru2(p-BDC)2]n,
p-BDC = 1,4-benzenedicarboxylate) could act as active sites for water reduction to H2 in the presence
of [Ru(bpy)3]2+ (bpy = 2,2′-dipyridyl), MV2+ (methyl viologen, N,N′-dimethyl-4,4′-bipyridinium
dichloride), and EDTA-2Na (ethylenediaminetetraacetic acid disodium salt), each of which played the
role of photosensitizer, electron relay, and sacrificial electron donor, respectively (Figure 1). Control
experiments without photosensitizer or electron relay did not produce any H2 under visible light
irradiation, which indicated that [Ru2(p-BDC)2]n itself did not exhibit effective light absorption for
photocatalysis. Compared with the molecular counterpart Ru2(CH3COO)4BF4, [Ru2(p-BDC)2]n was
far more superior in photocatalyzing H2 production, resulting in a nearly 10 times higher turnover
number (TON) during the first hour of visible light irradiation (λ = 420 nm). It is believed that almost
all of the catalytic reaction occurred on [Ru2(p-BDC)2]n surface and in the inner pore space near to the
surface, because the pore size of [Ru2(p-BDC)2]n is small and does not allow MV2+ to enter the pores
freely. However, the overall turnover number based on Ru-MOF (TON = 8.16, Table 2) was mediocre
and the quantum yield (4.82%) required further improvement. In addition, expensive photosensitizer
[Ru(bpy)3]2+ was required for the production of H2. Following this work, Mori’s group also reported a
series of similar Ru-MOFs [43] and Rh-MOFs [44] as photocatalysts for H2 evolution from water under
visible light irradiation.



Inorganics 2017, 5, 40 3 of 15

Inorganics 2017, 5, 40 3 of 14 

 

 
Figure 1. The reaction scheme of photochemical H2 production from water using Ru-MOFs in the 
presence of Ru(bpy)32+, MV2+, and EDTA-2Na. Reproduced with permission from ref. [42], Royal 
Society of Chemistry. 
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as photosensitizers. For instance, Garcia and co-workers reported two highly water-stable Zr-based 
MOFs in 2010, UiO-66 (Zr6O4(OH)4(BDC)12, where BDC = 1,4-benzenedicarboxylate) and UiO-
66(NH2) (Zr6O4(OH)4(ATA)12, where ATA = 2-aminoterephthalate), which were able to show 
appreciable light absorption depending on organic ligand modification [45]. The two MOFs are 
isoreticular and they both contain hexameric Zr6O32 units as the metal clusters linked by 12 bridging 
ligands (BDC or ATA). The remarkable water stability of these two Zr-based MOFs enabled their 
application for photocatalysis applications, including water splitting. Even more exciting is that by 
tuning the bridging ligand, amending an amino group on the benzene ring of BDC, a significant 
bathochromic shift in the absorbance spectrum was obtained for UiO-66(NH2) as shown in Figure 2a. 
An intense absorption band between 300 and 400 nm with an absorption maximum at 360 nm was 
achieved for UiO-66(NH2). Such a ligand modification did not compromise the crystallinity and water 
stability of UiO-66(NH2) compared to the parent UiO-66. Even though these Zr-based MOFs did not 
exhibit appreciable H2 production by themselves under visible light irradiation, decent amounts of 
H2 were generated when Pt nanoparticles were introduced as cocatalysts, which could accelerate 
charge separation and reduce the reaction barriers towards H2 formation. Figure 2b compares the H2 
evolution performance of four samples. It is apparent that the presence of Pt substantially increased 
the activity towards photocatalytic H2 production and UiO-66(NH2) was more active than UiO-66. 
Thanks to the modular synthesis of MOFs, this work vividly demonstrates how to take advantage of 
ligand modification to achieve enhanced photocatalytic activities of MOF-based catalysts. 
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The aforementioned photocatalytic systems proceeded through the ligand-to-cluster charge 
transfer mechanism for H2 production. It was reasoned that an alternative titanium–oxo cluster 
would possess a more positive-lying conduction band than that of the zirconium counterpart. 
Therefore, more efficient charge transfer from the excited organic linkers to the metal clusters would 

Figure 1. The reaction scheme of photochemical H2 production from water using Ru-MOFs in the
presence of Ru(bpy)3

2+, MV2+, and EDTA-2Na. Reproduced with permission from ref. [42], Royal
Society of Chemistry.

Besides acting as the direct catalyst for photocatalytic H2 generation, MOFs can also be utilized as
photosensitizers. For instance, Garcia and co-workers reported two highly water-stable Zr-based MOFs
in 2010, UiO-66 (Zr6O4(OH)4(BDC)12, where BDC = 1,4-benzenedicarboxylate) and UiO-66(NH2)
(Zr6O4(OH)4(ATA)12, where ATA = 2-aminoterephthalate), which were able to show appreciable
light absorption depending on organic ligand modification [45]. The two MOFs are isoreticular
and they both contain hexameric Zr6O32 units as the metal clusters linked by 12 bridging ligands
(BDC or ATA). The remarkable water stability of these two Zr-based MOFs enabled their application
for photocatalysis applications, including water splitting. Even more exciting is that by tuning the
bridging ligand, amending an amino group on the benzene ring of BDC, a significant bathochromic
shift in the absorbance spectrum was obtained for UiO-66(NH2) as shown in Figure 2a. An intense
absorption band between 300 and 400 nm with an absorption maximum at 360 nm was achieved for
UiO-66(NH2). Such a ligand modification did not compromise the crystallinity and water stability
of UiO-66(NH2) compared to the parent UiO-66. Even though these Zr-based MOFs did not exhibit
appreciable H2 production by themselves under visible light irradiation, decent amounts of H2

were generated when Pt nanoparticles were introduced as cocatalysts, which could accelerate charge
separation and reduce the reaction barriers towards H2 formation. Figure 2b compares the H2 evolution
performance of four samples. It is apparent that the presence of Pt substantially increased the activity
towards photocatalytic H2 production and UiO-66(NH2) was more active than UiO-66. Thanks to
the modular synthesis of MOFs, this work vividly demonstrates how to take advantage of ligand
modification to achieve enhanced photocatalytic activities of MOF-based catalysts.
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The aforementioned photocatalytic systems proceeded through the ligand-to-cluster charge
transfer mechanism for H2 production. It was reasoned that an alternative titanium–oxo cluster would
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possess a more positive-lying conduction band than that of the zirconium counterpart. Therefore,
more efficient charge transfer from the excited organic linkers to the metal clusters would be realized
together with a higher yield of photocatalytic H2 production. Following this rationale, Matsuoka et
al. prepared an amino-functionalized Ti (IV) MOF (Ti-MOF-NH2) which utilized the same organic
linker 2-amino-1,4-benzenedicarboxylic acid [46]. In contrast to its counterpart Ti-MOF with the
conventional 1,4-benzenedicarboxylic acid linker (MIL-125), Ti-MOF-NH2 indeed exhibited intense
absorption in the visible region with its absorption tail beyond 500 nm (Figure 3a). When Pt
nanoparticles were photodeposited into the MOF pores and triethanolamine (TEOA) was utilized
as the sacrificial electron donor, light-to-cluster charge transfer took place for Ti-MOF-NH2 under
visible light irradiation. As schematically displayed in Figure 3b, photogenerated electrons were
transferred from the excited BDC-NH2 group to the conduction band of the titanium–oxo cluster,
followed by migration to Pt cocatalysts for eventual proton reduction to H2. Similar strategy has been
adopted by the Yamashita group to synthesize an amine-functionalized MIL-101(Cr) photocatalyst
for photocatalytic H2 production [47]. These works demonstrated that modifying the metal clusters
while keeping the same organic ligands would also lead to various photocatalytic activities for water
splitting, highlighting the beauty of the modular synthesis of MOFs for catalysis applications.
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(b) Schematic illustration of photocatalytic H2 production reaction over Pt-supported Ti-MOF-NH2.
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Another interesting and also widely studied organic species for visible light absorption is
porphyrin and its derivatives. Following the same strategy described above, Rosseinsky and
coworkers explored the photocatalytic H2 production performance of porphyrin-incorporated MOFs:
H2TCPP[AlOH]2(DMF3(H2O)2 (Al-MOF, where H2TCPP = meso-tetra(4-carboxy-phenyl)porphyrin)
and the zinc metalated ZnTCPP[AlOH]2 (Al/Zn-MOF) [48]. Owing to the presence of porphyrin
as the organic linker, the absorption spectrum of Al-MOF showed a strong Soret band at 415 nm
and four Q bands between 500 and 600 nm (Figure 4a). When a zinc cation was metalated into the
porphyrin core of Al-MOF, the resulting Al/Zn-MOF presented a slightly red-shifted Soret band at
425 nm and only two Q bands between 550 and 650 nm due to the higher symmetry of the metalated
compound. Both Al-MOF and Al/Zn-MOF were employed as photosensitizers to produce H2 under
visible light irradiation in the presence of colloidal platinum and sacrificial EDTA. The authors also
attempted to employ MV2+ cations as electron acceptors/mediators to facilitate the reaction rate.
Unfortunately, a rather low quantum yield (less than 0.01%) of H2 production was obtained after 15 h
photoirradiation. It was postulated that such a poor activity was mainly due to the limited diffusion of
MV2+ within the MOF pores. Nevertheless, a second approach with no MV2+ but higher concentration
of platinum was adopted to conduct the photocatalysis of H2 production catalyzed by both Al-MOF
and Al/Zn-MOF (Figure 4b). Both MOFs showed decent photocatalytic performance in producing
H2, reaching a rate of 100 and 200 µmol·g−1·h−1 for Al/Zn-MOF and Al-MOF, respectively. Control
experiments of removing all the solid components for photocatalysis were also carried out to prove
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that indeed H2 was produced from the heterogeneous MOF-based photocatalytic systems rather than
some unknown homogeneous species.
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In addition to simply mixing MOFs and Pt nanoparticles for photocatalysis, the tunable cavities of
MOFs can be purposely designed to encapsulate platinum nanoparticles for intimate interaction
between light-absorbing sites and H2-evolving sites. In 2012, Lin and co-workers reported the
synthesis of UiO-type MOFs (1 and 2) with diethyl (2,2′-bipyridine)-5,5′-dicarboxylate (1) and
dimethyl (2,2′-bipyridine)-5,5′-dibenzoate (2) bridging ligands which were able to coordinate Ir(ppy)2

(ppy = 2-phenylpyridine) units as phosphors for light absorption [49]. In situ photoreduction of
K2PtCl4 resulted in the incorporation of Pt nanoparticles into the cavities of MOF 1 and 2. Figure 5a
presents the schematic diagram for light-induced H2 evolution: excited iridium chromophores are
reductively quenched by the sacrificial electron donor triethylamine (TEA) and subsequently promotes
electron transfer to the encapsulated Pt nanoparticles where proton reduction to H2 takes place.
Under visible light irradiation (> 420 nm), it was found that Pt@2 showed the highest H2 evolution
activity, achieving a TON of 7000 based on Ir content after a 48 h photolysis (shown in Table 2).
Such a high activity was nearly five times that of its homogeneous control sample (Figure 5b). This
work demonstrates that in addition to organic ligands as light-absorbing units, highly photoactive
inorganic complexes can be incorporated into the linkers of MOFs for photocatalytic H2 production,
further highlighting the design flexibility of MOFs for photocatalytic applications. Following this work,
UiO-66/CdS/1% reduced graphene oxide (RGO) [50] and RhB-sensitized Pt@UiO-66 [51] were also
prepared and these MOF-based photocatalytic systems both showed enhanced catalytic performance
for H2 generation compared to their homogeneous counterparts.
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black: Pt/Ir 24.2). Reproduced with permission from ref. [49], American Chemical Society.



Inorganics 2017, 5, 40 6 of 15

Besides Pt nanoparticles, Pt coordination complexes can also be utilized as H2 evolution catalysts.
Recently, Xu and co-workers developed a new MOF material (MOF-253-Pt) by immobilizing Pt2+

into MOF-253 with 2,2-bipyridine-based linkers following a post-synthesis modification strategy
(Figure 6a) [52]. The resultant MOF-253-Pt served both as a photosensitizer and a photocatalyst for
H2 evolution under visible light irradiation. After the introduction of Pt, an obvious red-shift in
its absorption was observed (Figure 6b). The low-energy absorption in Pt-MOF-253 was due to the
metal-to-ligand (PtII/bipyridine) charge transfer transition. The photocatalytic H2 generation rate
was highly dependent on pH values. The optimum pH was found to be 8.5. At lower pH values, the
protonated TEOA was a weak electron donor, while at higher pH values, TEOA was not able to form
the hydride-diplatinum (II, III) species (a postulated reaction intermediate) and hence the driving force
for H2 formation was diminished. Compared to the bare MOF-253 and the molecular Pt(bpydc)Cl2
(bpydc = 2,2′-bipyridine-5,5′-dicar-boxylic acid) complex, the hybrid Pt-MOF-253 photocatalytic
system exhibited significantly improved photocatalytic activity for H2 evolution under visible light
irradiation. The enhanced activity of Pt-MOF-253 was due to the short spacing between Pt···Pt, which
was beneficial to the formation of the critical intermediate hydride–diplatinum (II, III), more efficient
electron transfer within the MOF structure, and the slowed decomposition of the anchored Pt(bpy)Cl2
units in Pt-MOF-253. The overall photocatalytic cycle was schematically pictured in Figure 6c.
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In order to develop cost-effective catalysts for future water splitting on an industrial scale, it is
imperative to explore noble metal-free catalysts for H2 production from water. Such a trend has
been well manifested in the electrocatalysis field which has witnessed the emergence of 1st-row
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transition metal-based complexes [53] and solid-state materials [54–59] as competent electrocatalysts
for water splitting. One of those well-established molecular electrocatalysts for H2 evolution is
cobaloxime complex. Recently, Gascon and co-workers introduced cobaloxime into the pores of
NH2-MIL-125(Ti) following a “ship-in-the-bottle” strategy [60]. As shown in Figure 7a, the size
selection of the pores in NH2-MIL-125(Ti) was crucial to the successful formation of the cobaloxime
complex inside the MOF cavities. For instance, the intact cobaloxime complex was too large to
diffuse into and out from the NH2-MIL-125(Ti) pore windows. However, the free ligand (DOH)2pn
(N2,N2′-propanediylbis(2,3-butanedione 2-imine 3-oxime)) was able to migrate into the internal
channels of NH2-MIL-125(Ti). Upon the addition of CoBr2 as the cobalt source under aerobic conditions,
cobaloxime was assembled inside the MOF pores. Such a strategy would minimize the exclusion of
the H2 catalyst from the MOF cavities. Varying the initial amounts of the free ligand and CoBr2 could
facilely tune the catalyst loading within the MOF structure. The pristine NH2-MIL-125(Ti) possessed a
pore volume of 0.58 cm3·g−1. After the loading of cobaloxime, the resulting Co@MOF exhibited an
expected smaller pore volume of 0.46 cm3·g−1. Figure 7b presented the evolved H2 amount over 25 h
photolysis under visible light irradiation (λ > 408 nm). The cobaloxime-encapsulated Co@MOF clearly
displayed a markedly improved photocatalytic performance for H2 evolution with nearly 20-fold
higher H2 production rate compared to the pristine MOF. More importantly, Co@MOF possessed
a high stability with a turnover frequency of 0.8 h−1 even after operating for 65 h. Furthermore,
the system could be recycled several times without any loss of activity (Figure 7c). Even though
remarkable photocatalytic H2 evolution performance was achieved by this hybrid Co@MOF systems
solely consisting of earth-abundant elements, the exact structure of the cobalt catalyst within the
MOF pores remained unknown. However, it still strongly demonstrates that the modular design and
synthesis of multicomponent MOF systems opens a new window to develop low-cost photocatalytic
composites for H2 production from water.
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3. O2 Evolution Catalyzed by MOF-based Hybrid Systems

In contrast to the large number of MOF-based photocatalytic systems for H2 evolution,
much fewer studies have been reported for the other half-reaction of water splitting, the O2

evolution reaction, utilizing MOF-based catalysts. This might be attributed to the harsh oxidizing
condition of O2 evolution where most MOFs could not survive [61–63]. Nevertheless, a few
MOF systems have still been reported with promising O2 evolution performance. The first
work of MOF-based catalysts for water oxidation was reported by Lin et al. in 2011 [64].
Highly robust and porous Zr6O4(OH)4(bpdc)6 (UiO-67, bpdc = para-biphenyldicarboxylic acid)
framework was employed as a heterogeneous support to incorporate a variety of iridium
and other complexes for various applications, including water oxidation. Following
a mix-and-match synthetic strategies, three iridium complexes, [Cp*IrIII(dcppy)Cl]
(MOF-1; Cp* = pentamethylcyclopentadienyl, dcppy = 2-phenylpyridine-5,4′-dicarboxylic
acid), [Cp*IrIII(dcbpy)Cl]Cl (MOF-2; dcbpy = 2,2′-bipyridine-5,5′-dicarboxylic acid),
and [IrIII(dcppy)2(H2O)2]OTf (MOF-3), were bound into UiO-67. The synthetic route and the
corresponding molecular structures of the three iridium units are included in Figure 8. The water
oxidation performance of MOF 1–3 was examined with Ce4+ as the chemical oxidant (Figure 9a).
All the Ir-incorporated MOFs were effective water oxidation catalysts with TON values as high as 4.8
(Table 2) (MOF 1). Repeated catalytic cycles demonstrated robust stability of these MOFs for elongated
water oxidation (Figure 9b). Control experiments confirmed that the observed water oxidation
activities were originated from the heterogeneous MOFs. However, compared to their homogeneous
counterparts, MOF 1–3 exhibited lower turnover frequencies (only 6.4–12.9% of the homogeneous
catalyst activities). Such a decreased performance was rationalized by the fact that only those iridium
complexes exposed on the MOF surfaces were involved in water oxidation, since the cerium nitrate
anions were too bulky to enter the MOF channels. Therefore, in order to increase catalytic activity, Lin
and co-workers further prepared two other Zr-based MOFs with larger channels using two elongated
dicarboxylate ligands [65]. These new MOFs showed enhanced water oxidation activity when using
cerium nitrate as the oxidant. Although their instability and partial decomposition of the iridium
complexes were observed under the water oxidation condition, these works presented the possibility
of incorporating molecular active sites in MOFs structures for water oxidation, complementary to
those homogeneous O2 evolution studies.
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4. Photocatalytic Water Splitting Utilizing MOF-derived Photocatalysts

Metal–organic frameworks not only represent attractive scaffolds for the incorporation of diverse
components (phosphors, active sites, etc.) for photocatalytic water splitting, but also can act as
sacrificial templates to produce a variety of highly porous carbon materials. Under certain conditions,
multiple beneficial components for photocatalysis, including nonmetals, metals, and metal oxides,
are embedded in those MOF-derived carbon composites. In fact, MOF-derived hybrid materials
have been successfully employed in many fields, ranging from catalysis [66–71], supercapacitors [72],
to batteries [73–75]. For photocatalytic water splitting, several representative MOF-derived systems
are introduced herein. Following the MIL-101 structure, Lin and co-workers utilized microwave
treatment to synthesize a MOF material with the formula of Fe3OCl(H2O)(BDC)3 (BDC = benzene
dicarboxylate) [76]. Subsequently, the Fe-based MIL-101 particles were coated with an amorphous layer
of TiO2 by acid-catalyzed hydrolysis and TALH (titanium (IV) bis(ammonium lactate)dihydroxide)
condensation in water. The obtained core–shell particles were then calcined at 550 ◦C in air to
form iron oxide covered with a shell of TiO2 (Fe2O3@TiO2). Pt particles were deposited on the
surface of Fe2O3@TiO2 for photocatalytic H2 evolution. The overall synthetic scheme is outlined
in Figure 10a. Compared to Fe2O3, TiO2, or their mixtures, the MOF-derived Fe2O3@TiO2 showed
superior photocatalytic performance for H2 generation under visible light irradiation (λ > 420 nm)
with triethylamine (TEA) as the sacrificial electron donor (Figure 10b). The amount of H2 produced
increased linearly during the 48 h photolysis (Figure 10b inset). The MOF-derived photocatalyst also
possessed high stability with nearly no decrease in activity for three photolysis cycles. Analogous
strategies were adopted to prepare other MOF-derived hollow Fe2O3-TiO2-PtOx systems employing
MIL-88B as a sacrificial MOF template [77]. Promising photocatalytic H2 evolution rate was obtained
from the Fe2O3-TiO2-PtOx system as well.

Photocatalytic H2 evolution could also be realized by MOF-derived hybrid composites without
noble-metal cocatalysts. For instance, Qiu et al. reported a magnetic photocatalyst derived from an
iron MOF [78]. The magnetic nature of this photocatalyst enabled its easy separation from the reaction
media for repeated use. In 2015, a cobalt-based MOF was utilized as a sacrificial template to prepare
Co3O4/TiO2 for photocatalytic H2 production from water [79]. After calcination, Co3O4 and TiO2

were well dispersed throughout the composite. It was found that the close heterojunction between
Co3O4 and TiO2 and the co-catalytic role of CO3O4 both resulted in fast interfacial charge transfer and
efficient electron-hole separation, contributing to the overall photocatalytic performance. Very recently,
a new mesoporous p–n heterojunction semiconductor nanocomposite, Cu2O@C3N, was prepared
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by pyrolysis of a copper-based MOF, Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboylate) together with
urea [80]. The obtained Cu2O@C3N nanocomposite exhibited a lower band gap energy in comparison
with bulk carbon nitride and Cu2O, as well as dramatically enhanced photocatalytic activity for H2

production from water.Inorganics 2017, 5, 40 10 of 14 
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Table 1. The porosity properties of the representative metal–organic frameworks (MOFs).

MOF Surface Area (m2·g−1) Pore Volume (cm3·g−1) Space Groups Reference

Ru-MOF 516.5 0.26 P213 [42]
Ti-MOF 1202 I4/mmm [46]

Ti-MOF-NH2 1101 I4/mmm [46]
MIL-101-NH2 1436 0.98 Fd-3m:2 [47]

Al-MOF 1400 0.62 Cmmm [48]
Al/Zn-MOF 1200 Cmm2 [48]

Zr-MOF 1194 F23 [49]
UiO-66 972 Fm-3m [50]

Co@NH2MIL-125 0.46 I4/mmm [60]
Doped-UiO-67 (1) 1254 [64]
Doped-UiO-67 (2) 1947 [64]
Doped-UiO-67 (3) 1410 [64]

Co-MOF 520 C2/c [79]
Cu-MOF 1182 Fm3 m [80]

Table 2. Comparison of photocatalytic properties of various photocatalysts.

Catalyst TON Time (h) Photocatalytic Reactions Ref.

Ru-MOF 8.16 4 HER [42]
Pt/NH2-MIL-101 110 6 HER [47]

Pt/Zr-MOF 7000 48 HER [49]
Doped-UiO-67 (1) 15 3 OER [64]
Doped-UiO-67 (2) 6 3 OER [64]
Doped-UiO-67 (3) 2 3 OER [64]

Zr/Ir MOF 4 1 OER [65]

5. Conclusions

The last decade has witnessed the rapid advance in photocatalytic water splitting utilizing
MOF-based and/or derived catalytic systems. This brief review has presented quite a few number of
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representative examples in this field. It is apparent that by taking advantage of the modular synthesis
and rich diversity in the selection of inorganic and organic components, MOFs and their derivatives will
certainly attract even more attention in the foreseeable future for catalytic applications, including water
splitting. Even though a great progress has been achieved in producing H2 under visible light
irradiation catalyzed by MOF-based composites, several challenges remain to be addressed. First of all,
very few systems have been reported for photocatalytic O2 evolution from water. Since H2 production
is only one of the two half-reactions of water splitting, it is equally if not more important to develop
competent water oxidation catalysts, in order to realize water splitting for practical applications. More
efforts need to be devoted to exploring the rich chemistry of MOFs and their derivatives in preparing
highly robust and active photocatalytic systems for water oxidation under visible light irradiation.
Secondly, most of those reported MOF-based photocatalysts require noble metal co-catalysts for the
efficient production of H2, which is not economically attractive for industrial application. Economically
competitive systems solely consisting of earth-abundant elements are highly desirable. In addition,
complex and expensive organic linkers for some MOFs also seem to be problematic. A mixed-linker
strategy with low-cost organic linkers might be a promising alternative to reduce the cost of desirable
MOFs, which should deserve more attention in the future. More efforts should be shifted towards
exploring mixed-organic linkers and 1st-row transition metal-based catalysts derived from MOFs
for photocatalytic water splitting. Finally, the intrinsic activity and density of active sites of the
photocatalysts should be further improved to meet the requirements of practical application. TONs
ought to be >1000 for small-scale and high-value products, but it is better to be >50,000 for industrial
applications. Currently, the reported activities (TON < 7000) of most MOF-based photocatalytic
systems are still below the expectation for industrial application. Therefore, the unique features
of MOFs, including large surface area, tunable pore volume and size, rich coordination chemistry,
high crystallinity, and diverse three-dimensional structure, should be wisely utilized to maximize the
overall catalytic performance. Molecular approaches of catalyst design coupled with materials science
strategies in the development of MOF-based catalysts will undoubtedly lead to a very bright future for
photocatalytic water splitting.
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