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Abstract: Rational, fine tuning of magnetic anisotropy is critical to obtain new coordination
compounds with enhanced single molecule magnet properties. For mononuclear transition metal
complexes, the largest contribution to zero-field splitting is usually related to the excited states of
the same spin as the ground level. Thus, the contribution of lower multiplicity roots tends to be
overlooked due to its lower magnitude. In this article, we explore the role of lower multiplicity
excited states in zero-field splitting parameters in model structures of Fe(II) and Co(II). Model
aquo complexes with coordination numbers ranging from 2 to 6 were constructed. The magnetic
anisotropy was calculated by state of the art ab initio methodologies, including spin-orbit coupling
effects. For non-degenerate ground states, contributions to the zero-field splitting parameter
(D) from highest and lower multiplicity roots were of the same sign. In addition, their relative
magnitude was in a relatively narrow range, irrespective of the coordination geometry. For degenerate
ground states, the contribution from lower multiplicity roots was significantly smaller. Results are
rationalized in terms of general expressions for D and are expected to be reasonably transferable to
real molecular systems.
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1. Introduction

The discovery of mononuclear single molecule magnets [1] (also known as single ion magnets)
led to new opportunities for the interplay of theoretical methods in this field. Concretely, complete
active space self-consistent field (CASSCF) calculations permitted the direct calculation of magnetic
anisotropy, which is the physical phenomenon responsible for the development of an energy
barrier blocking magnetic relaxation. Nowadays, CASSCF calculations are widely applied for the
rationalization of magnetic properties of mononuclear single molecule magnets based on transition
metal ions and lanthanides [2–18]. Besides energies and wave functions, ab initio calculations can be
analyzed in terms of Spin-Hamiltonian and ligand field parameters [19–21]. In this way, experimentally
derived parameters as zero-field splitting D and E, effective g-factors, and Racah and ligand field
parameters can be directly compared with their calculated counterparts. In many cases, data from
magnetic measurements is not enough to fit a consistent parameter set in a univocal way, which can be
estimated by electronic structure methods [22–24].

One of the critical parameters to optimize in the quest for single molecule magnets operating
at higher temperatures is the height of the demagnetization barrier. In the double well model for
magnetic moment inversion [25], the demagnetization barrier (U) is proportional to the zero-field
splitting parameter D. Concretely, U == DS2 and U = DS2− 1/4 for integer and half-integer systems,
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respectively. Although magnetic relaxation depends on several mechanisms [26–29], the fine tuning of
magnetic anisotropy remains critical to improve the performance of single molecule magnets.

Concerning transition metal single molecule magnets, the relation between molecular structure
and zero-field splitting has been explored [13,30–34]. These studies are useful to rationalize magnetic
relaxation properties of new examples of single molecule magnets and to spot simple design rules to
synthesize new systems with enhanced properties.

In most cases, magnetic anisotropy can be understood from the contributions of excited states of
the same spin (S→S) as the ground level, which are mixed by the spin-orbit coupling (SOC) operator.
Understandably, excited states of other multiplicities (S→S ± 1) are often not considered due to their
lower contribution to D. An exception to the prevalence of S→S contributions are, of course, high-spin
Fe(III) complexes, where magnetic anisotropy stems from sextet-quartet excitations. There are some
examples of multireference ab initio studies on magnetic anisotropy of d5 systems [35–37] and one
example of a mononuclear single molecule magnet featuring a high spin Fe(III) center [38]. Thus, it is
interesting to explore the role of S→S − 1 contributions in the magnetic anisotropy of transition metal
single molecule magnets, as they will be always present and could be beneficial or detrimental for
magnetization relaxation properties.

In this article, we investigate the effect of S→S − 1 contributions to the magnetic anisotropy of
high spin Fe(II) and Co(II) mononuclear complexes in various model geometries. The choice of these
two ions is justified by the existence of a considerable number of single molecule magnets based on
these metal centers [14,39–51]. Idealized structures of aquo complexes were built with the following
coordination geometries: linear, trigonal planar, square planar, tetrahedral, trigonal bipyramidal,
square pyramidal, and octahedral. Energies and wave functions for all models were obtained by
CASSCF calculations, including the effect of SOC. Zero-field splitting parameters were decomposed
in contributions from S→S and S→S − 1 excited states. For non-degenerate ground states, S→S and
S→S − 1 contributions were of the same sign, and lower multiplicity states were responsible for 5–10%
of the total magnetic anisotropy. This trend was observed for several coordination geometries and can
be related to fundamental expressions for D. Then, the observed enhancement of magnetic anisotropy
due to lower energy excited states should be encountered in real systems. In the case of degenerate
ground states, the effect of S − 1 excited states in the value of D is minor (<2%).

2. Results and Discussion

2.1. d-Orbital Splitting

As mentioned earlier, several studies have established connections between molecular structure
and magnetic anisotropy in mononuclear complexes based on transition metal ions. Thus, it is
reasonable to consider the d-orbital splitting as the starting point for the discussion. Figure 1 shows
the energy splitting of all of the studied geometries based on ab initio ligand field theory (AILFT) [19]
energies for the d-orbitals (see Materials and Methods section for further information). Figure 2
presents molecular geometries for model complexes.

It is important to stress that zero-field splitting parameters are obtained by a perturbative
treatment of ground state interaction with excited levels due to the spin-orbit coupling operator.
In this way, the ground state must be energetically isolated to allow for the treatment. For orbitally
degenerate ground states, D is undefined and ad hoc spin Hamiltonians must be developed for the
case of interest.

In a strict sense, molecular complexes with high symmetry are scarce, as they require very simple
ligands (monoatomic/linear) and the absence of distortions such as Jahn–Teller or crystal packing
effects. In practice, complexes are described by reference shapes (e.g., square planar, octahedral) based
on a similarity criterium for the metal center and donor atom positions. In most cases, many of the
symmetry operations of the reference geometry are not present in the real compound. For the presented
models, we always have a lower degree of symmetry due to the hydrogen atoms of the aquo ligands.
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A second set of geometries was constructed to analyze the effect of Jahn–Teller distortions. In some
models, orbital degeneracy of the ground state is broken substantially by the geometric distortions,
permitting the use of zero-field splitting parameters. Other examples develop a small energy splitting,
which is insufficient for a perturbative treatment, and D cannot be used as a valid parameter.Inorganics 2016, 6, x FOR PEER REVIEW  3 of 14 

 

 
Figure 1. Ab initio ligand field theory (AILFT)-based d-orbital energy splitting (cm−1) for complete 
active space self-consistent field (CASSCF) (n,5) and N-electron valence state perturbation theory 
(NEVPT2) for all Fe(II) (CASSCF: blue; NEVPT2: red) and Co(II) (CASSCF: black; NEVPT2: green) 
model structures. Calculations considered all highest multiplicity roots. Geometries are labeled using 
the code: 2-L (linear); 3-TP (trigonal planar); 4-SP (square planar); 4-Td (tetrahedral); 5-SPY (square 
pyramid); 5-TBP (trigonal bipyramid); 6-Oh (octahedral).  

 
Figure 2. Molecular geometries for Co(II) model complexes. Structures are labeled using the code: 2-
L (linear); 3-TP (trigonal planar); 4-SP (square planar); 4-Td (tetrahedral); 5-SPY (square pyramid); 5-
TBP (trigonal bipyramid); 6-Oh (octahedral). Atom color code: Co (blue); O (red); H (white). 
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Figure 1. Ab initio ligand field theory (AILFT)-based d-orbital energy splitting (cm−1) for complete
active space self-consistent field (CASSCF) (n,5) and N-electron valence state perturbation theory
(NEVPT2) for all Fe(II) (CASSCF: blue; NEVPT2: red) and Co(II) (CASSCF: black; NEVPT2: green)
model structures. Calculations considered all highest multiplicity roots. Geometries are labeled
using the code: 2-L (linear); 3-TP (trigonal planar); 4-SP (square planar); 4-Td (tetrahedral); 5-SPY
(square pyramid); 5-TBP (trigonal bipyramid); 6-Oh (octahedral).
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Figure 2. Molecular geometries for Co(II) model complexes. Structures are labeled using the code: 2-L
(linear); 3-TP (trigonal planar); 4-SP (square planar); 4-Td (tetrahedral); 5-SPY (square pyramid); 5-TBP
(trigonal bipyramid); 6-Oh (octahedral). Atom color code: Co (blue); O (red); H (white).

Models with a unique metal-oxygen distance are analyzed first. In the case of linear coordination,
d-orbitals order in three blocks as expected. The most stable orbitals are dxy and dx2−y2 , which are
separated by less than 20 cm−1 in all cases. The next block includes dxz and dyz, which are significantly
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split by the lower symmetry due to hydrogen positions of the water ligands (ca. 1000–1500 cm−1).
The highest energy is associated to the dz2 orbital. CASSCF energies indicate both Fe(II) and Co(II)
models present degenerate ground states. Thus, their low energy spectrum cannot be described by the
standard zero-field splitting parameters. In the case of Fe(II), the d-orbital splitting is consistent with
the observed degeneracy, as the d2
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most stable. In the case of Co(II), the interplay of interelectronic repulsion and ligand field splitting
yields a doubly degenerate ground state, which wave functions present significant contributions from
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Trigonal planar geometry leads again to three orbital blocks: (dz2), (dxz, dyz), (dxy, dx2−y2).
The first three orbitals are close in energy. In the case of Fe(II), dz2 is the most stable where for
Co(II) dxz and dyz are lower in energy. CASSCF energies show that the Fe(II) ground state is close to
triply degenerate while the Co(II) first excited state appears at 1408.2 cm−1 (CASSCF). In this way,
the Fe(II) low energy spectrum cannot de described by D and E while Co(II) is probably suitable
for this kind of description. Formally, the ground state of Co(II) in a trigonal planar environment is
orbitally degenerate, but the symmetry lowering due to hydrogen positions of aquo ligands breaks
this symmetry.

Square planar geometry follows the text book ordering, with (dxz, dyz) as the lowest to orbitals,
followed by dz2 , dxy and dx2−y2 . The existence of two d-orbitals with the lowest energy leads again
to a degenerate ground state for Fe(II), given its d6 configuration, as the first excited state has
an energy of 70 cm−1. For Co(II), the first excited state is at 1000–1200 cm−1. Thus, the ground
state is non-degenerate, but there are low energy excited states. In this regime, zero-field splitting
parameters are expected to be qualitatively able to describe magnetic anisotropy, but their values will
be dependent of the method of choice (second-order perturbation theory or effective Hamiltonian)
and largely sensitive to small changes in state energies (for instance, by N-electron valence state
perturbation theory (NEVPT2) correction). Thus, we are in a borderline situation where D values can
be informative but must be analyzed with caution.

Tetrahedral coordination shows the characteristic e, t2 splitting, with some splitting inside each
block due to hydrogen positions. The splitting of the t2 block is larger than the energy separation for
the e levels, due to the antibonding nature of the t2 orbitals. As mentioned earlier, having a set of two
d-orbitals as the most stable will lead to a degenerate ground state for high spin d6 (Fe(II)), but not for
d7 (Co(II)). In this way, the first excited state for the iron model is at ca. 200 cm−1, while Co(II) presents
an energy gap over 2000 cm−1, allowing the use of D to describe its magnetic anisotropy.

Square pyramid coordination shows a slightly differing behavior, according to AILFT orbitals.
In the case of Fe(II), dxy, dxz and dyz appear close in energy and significantly mixed. For Co(II),
the splitting between these orbitals is larger. In both cases, highest energy orbitals are dz2 and dx2−y2 .
As three d-orbitals are close to be the lowest in energy, several configurations can be stabilized
and several CASSCF states appear close to the ground state, although the ground state is still
non-degenerate for both ions. First excitation energies are 526.2 cm−1 (Fe(II), CASSCF) and 664.5 cm−1

(Co(II), CASSCF). NEVPT2 results are qualitatively similar and are presented in Table S1. Under such
small energy gap, the ability of D values to represent the low energy spectrum of the system is limited,
and other spin Hamiltonian parameters such as effective g-values of each Kramers’ doublet can be
especially useful for the description of the system.

Trigonal bipyramid spitting leads to three blocks of orbitals. The most stable orbitals are (dxz, dyz),
followed by (dxy, dx2−y2) and finally dz2 . Both (dxz, dyz) and (dxy, dx2−y2) are significantly split by
symmetry lowering from hydrogen atoms (between 400–600 cm−1). Low energy excitations are in the
same range as the observed for 5-SPY geometry. For instance, first excited states for CASSCF appear at
638.0 cm−1 for Fe(II) and 588.4 cm−1 for Co(II). Similar to the case of square pyramid coordination,
D will be in an intermediate range between the perturbative regime and a degenerate ground state.

Finally, octahedral geometry shows the typical t2g, eg splitting. In the case of Co(II), orbital blocks
are essentially degenerate while Fe(II) shows a larger splitting. As expected when three d-orbitals
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are close to be the lowest in energy, both models will present low excitation energies consistent with
a degenerate ground state. From CASSCF energies, Fe(II) has a state at 299.3 cm−1 and Co(II) at
4.2 cm−1. Therefore, D will not be suitable to describe these systems.

2.2. Effect of Jahn–Teller Distortion

In the development of single molecule magnets, Jahn–Teller distortions are often an unwanted
effect, since they lift orbital degeneracies which favor the development of unquenched orbital
angular momentum in the ground state, associated with magnetic anisotropy. To obtain a set of
models including Jahn–Teller distortion, we repeated all optimizations, allowing for the relaxation
of metal-oxygen distances, but constraining O–M–O angles to remain representative of the
reference geometry.

Orbital splitting was affected to a varying degree by the inclusion of Jahn–Teller distortion.
Of course, linear systems remain unaffected, although a small energy difference is observed due to the
change in metal-oxygen distances. In terms of CASSCF energies, it is clear how first excitation energies
are raised due to Jahn–Teller distortion (See Table 1). Thus, zero-field splitting parameters for these
geometries will be closer to the perturbational regime than undistorted models.

Table 1. First excitation energy (cm−1) for CASSCF calculations, including all roots for all multiplicities
stemming from for d6 (FeII) and d7 (CoII) configurations. Geometries including and excluding
Jahn–Teller distortion are labeled as “JT” and “noJT”, respectively. Geometries with fixed (noJT)
and relaxed (JT) metal-oxygen distances are presented as Supporting Information.

Geometry
Fe(II) Co(II)

noJT JT noJT JT

2-L 8.9 26.3 7.3 3.8
3-TP 63.7 609 1408.2 2217.8
4-SP 68.8 565.1 1000.5 1195.9
4-Td 203.4 304.3 2268.5 3016.5

5-SPY 526.2 970.9 664.5 1155.2
5-TBP 638 913.8 588.4 2196.3
6-Oh 299.3 461.6 4.2 394.7

2.3. Adequacy of Zero-Field Splitting Parameters

As discussed earlier, D and E parameters are adequate to describe magnetic anisotropy as long as
the ground state is isolated enough in energy. When the ground state is degenerate or exhibits low
energy excited states, D is not a sensible parameter anymore and ad hoc spin Hamiltonians should be
constructed for each case. Expectedly, calculated D values under these circumstances are not robust,
yielding unphysical values which are strongly sensitive to the method and source energies (CASSCF
or NEVPT2). Table 2 presents D values obtained for all model systems employing the second-order
perturbation theory and effective Hamiltonian approaches. All roots of all multiplicities were included.
It is clear that robust results are obtained only when the ground state is isolated enough to permit the
perturbative regime defining the zero-field splitting parameters.

In the case of Co(II), zero-field splitting parameters are clearly unsuitable for linear and octahedral
geometry, as evidenced by the unphysical values obtained by second-order perturbation theory
(2PT) and the strongly dissimilar values provided by the effective Hamiltonian (Heff) approach.
For the remaining geometries, DHeff values tend to be significantly smaller than D2PT results, although
E/D parameters are generally consistent between both approaches. This shows the existence of
a regime where the ground state is non-degenerate but there are important low energy excited states.
As expected, Jahn–Teller distorted geometries show smaller changes between D2PT and DHeff.

For Fe(II), reasonable geometries to analyze D are 5-SPY and 5-TBP. The sign change of D observed
for 5-SPY geometry may suggest that this coordination is not fulfilling the requirements for the
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calculation of D. However, the high rhombic component of the system dilutes the meaning of the sign
of D (considering CASSCF results, E/D is 0.28 and 0.31 for 2PT and Heff methods, respectively). In the
case of Jahn–Teller distorted geometries, we find that most geometries (except linear) show similar
values for D2PT and DHeff.

Table 2. D (cm−1) and E/D parameters calculated for all models using second-order perturbation
theory (2PT) and effective Hamiltonian (Heff) approaches. CASSCF calculation including all roots for
every possible multiplicity stemming from d-orbital configurations.

Fe(II) Co(II)

D2PT DHeff E/D2PT E/DHeff D2PT DHeff E/D2PT E/DHeff

noJT 2-L −4799.7 −83.1 0.00 0.01 −36459.3 −239.8 0.00 0.00
3-TP 475.9 21.4 0.05 0.02 133.8 79.1 0.02 0.02
4-SP −438.4 −37.7 0.03 0.26 160.2 87.0 0.00 0.00
4-Td −10.1 −4.9 0.10 0.06 −18.6 −14.6 0.25 0.24

5-SPY −22.1 18.0 0.28 0.31 −185.3 −117.9 0.17 0.21
5-TBP −11.1 −10.1 0.24 0.15 83.7 62.7 0.02 0.15
6-Oh −33.0 25.8 0.23 0.24 15175.6 175.0 0.03 0.02

JT 2-L −1602.8 −82.5 0.00 0.00 −64329.6 −236.0 0.00 0.00
3-TP −49.0 −33.4 0.09 0.00 86.6 64.5 0.00 0.00
4-SP −54.6 −38.0 0.02 0.04 134.5 82.9 0.00 0.00
4-Td −8.1 −5.0 0.02 0.09 −15.7 −13.4 0.24 0.24

5-SPY −7.5 −6.1 0.30 0.27 −82.2 −66.6 0.26 0.26
5-TBP 7.8 −6.7 0.29 0.32 50.7 42.0 0.02 0.02
6-Oh 22.1 21.9 0.28 0.16 143.5 116.4 0.01 0.00

As the objective of this article is to study the contributions of the same and different spin excitations
to magnetic anisotropy, we want to keep as many cases as possible to draw the most general conclusions.
In this way, only strongly differing cases in terms of D2PT and DHeff will be discarded due to the
inapplicability of zero-field splitting parameters in orbitally degenerate ground states. To give a clear
selection criterium, we chose DHeff/D2PT > 0.5 as the condition to accept a geometry. Of course, if the
ratio between both D values is close to 0.5, predictions about energy splitting and magnetic anisotropy
will be significantly dependent on the method chosen to calculate the zero-field splitting parameters
and conclusions should be drawn carefully.

2.4. Inclusion of Lower Multiplicity Roots

The effect of lower multiplicity roots in magnetic anisotropy will be analyzed for the geometries
with non-degenerate ground states. In the next section, cases with degenerate ground states will
be analyzed separately. Table 3 presents the values for D and E/D, considering only the highest
multiplicity roots or all roots in the CASSCF calculation. We only show results for the second-order
perturbation theory method. Effective Hamiltonian values are presented in Table S2.

In general, the inclusion of all roots resulted in a rise in the magnitude of D. For CASSCF
calculations, the majority of cases clustered around 5% to 10%. There are some exceptions, such as
Fe(II)-5-TBP (noJT), where DAll is slightly lower than DHS. Three models presented a rise exceeding
10%. In most cases, NEVPT2 calculations also show a rise in D upon the inclusion of roots from all
multiplicities, with a broader range for the DAll/DHS ratio. This change is not related to differences in
the orbital optimization from the CASSCF calculation, as D and E/D values are not changing when
the configuration interaction is performed with the orbitals optimized for all roots or only the highest
multiplicity roots (see Table S3).
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Table 3. D (cm−1) and E/D values for selected models of Fe(II) and Co(II). Parameters correspond to
CASSCF (n,5) calculations including highest multiplicity roots (HS index) or all roots for every possible
multiplicity stemming from d-orbital configurations (All index).

CASSCF NEVPT2

DAll E/DAll DHS E/DHS DAll E/DAll DHS E/DHS

Fe(II) noJT 5-SPY −22.1 0.28 −21.0 0.29 −19.9 0.25 −19.0 0.27
noJT 5-TBP −11.1 0.24 −11.5 0.14 −8.8 0.27 −9.4 0.15

JT 3-TP −49.0 0.09 −48.1 0.09 −44.6 0.07 −32.5 0.01
JT 4-SP −54.6 0.02 −53.1 0.02 −54.2 0.00 −36.5 0.02
JT 4-Td −8.1 0.02 −6.2 0.15 −7.7 0.04 −3.8 0.06
JT 5-SPY −7.5 0.30 −6.2 0.29 7.0 0.32 −5.6 0.22
JT 5-TBP 7.8 0.29 −7.3 0.25 6.7 0.26 −7.1 0.19
JT 6-Oh 22.1 0.28 21.6 0.23 18.1 0.32 21.8 0.13

Co(II) noJT 3-TP 133.8 0.02 125.9 0.02 108.3 0.03 102.9 0.03
noJT 4-SP 160.2 0.00 151.4 0.00 135.5 0.00 127.3 0.00
noJT 4-Td −18.6 0.25 −17.4 0.24 −14.8 0.27 −13.9 0.27
noJT 5-SPY −185.3 0.17 −177.8 0.15 −147.7 0.17 −145.9 0.15
noJT 5-TBP 83.7 0.02 76.4 0.02 69.4 0.01 63.4 0.01

JT 3-TP 86.6 0.00 78.4 0.00 73.3 0.00 58.2 0.00
JT 4-SP 134.5 0.00 124.7 0.00 109.3 0.00 77.1 0.00
JT 4-Td −15.7 0.24 −14.4 0.23 −13.1 0.25 −12.3 0.23
JT 5-SPY −82.2 0.26 −78.9 0.23 −62.0 0.28 −64.4 0.24
JT 5-TBP 50.7 0.02 43.5 0.02 42.3 0.02 36.2 0.02

Table 4 shows the decomposition of the zero-field splitting parameter (DAll) in contributions from
the highest multiplicity (DHigh) and lower multiplicity roots (DLow). These values are compared to
the calculation including only the highest multiplicity roots (named “DHS” in Table 4). In general,
DHS tends to be closer to DHigh than DAll, indicating that the contribution from same spin excitation
remains similar, independent of the roots included in the CASSCF. In this way, the differences between
DHS and DAll can be mainly attributed to excitations between states of different multiplicities. It is
interesting to see that DHigh and DLow are of the same sign in all studied cases, and their relative
weight is in many cases in the range between 5–10%. There are some cases where the contributions of
DLow represent a larger fraction of DAll, such as in Co(II)-5-TBP (JT), Fe(II)-4-Td, 5-SPY, and 5-TBP (JT).

The contribution of lower multiplicity roots to zero-field splitting parameters was always of the
same sign of the total value. Moreover, it always led to a rise in magnetic anisotropy. As mentioned,
the contribution of different-spin excitations to D was of a similar order in most cases, around 5–10%
of the total value. To understand this behavior, it is instructive to recall the expression for the zero-field
splitting parameter for excitations between states of the same spin (DSOC−(0)

KL ) and when the spin is

lowered by one unit (DSOC−(−1)
KL ) [52,53].
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KL = − 1
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where S is the spin, K, L are cartesian components (x, y or z). ∆−1
J′ is the reciprocal of the energy

difference between the ground state (ΨSS
0 ) and the excited state of interest (ΨSS

J′ ). ẑL(i) is part of the
spin-orbit coupling operator ẑL(i)ŝL(i) for electron i, with respect to the L cartesian component. ŝ0,±1(i)
are the components of the spin vector operator.

To simplify the problem, we will assume that states can be expressed in terms of single
determinants. Thus, ẑL(i) is decomposed in the product of an effective SOC constant (ξe f f ) and
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the corresponding angular momentum operator (l̂K,ba(i)), connecting the initial (db) and final (da)
orbitals describing the excited electron. The matrix elements appearing in Equations (1) and (2) will be
expressed as:

ξe f f 〈da,i|∑
i

l̂K,ba(i)ŝm(i)
∣∣db,i

〉
(3)

where m = −1, 0, 1. Considering l̂K,ba(i) is imaginary and l̂K,ba(i) = −l̂K,ab(i), it is easy to see that

DSOC−(0)
KK will be negative and DSOC−(−1)

KK will be positive. As DHigh and DLow tended to show the
same sign, the largest component in absolute value for DHigh must be the smallest for DLow. This is
indeed corroborated in CASSCF calculations (see Table S4). This relation will only hold for xx, yy, and
zz components D. Mixed components for DSOC−(−1)

KL can be positive or negative, potentially leading to
a different behavior. At least in our models, diagonal elements of the D tensor tended to dominate
over non-diagonal values, yielding overall positive contributions to DSOC−(−1).

Table 4. D (cm−1) for selected geometries under different choices of the multiplicity of included roots.
D values in the “All” section correspond to CASSCF calculations including all roots. DAll is the total
value, which is decomposed in contributions from highest multiplicity (DHigh) and lower multiplicity
roots (DLow). The calculation considering only higher multiplicity roots is in the section HS. Results
for the second-order perturbation theory method for the calculation of zero-field splitting parameters
are presented.

CASSCF NEVPT2

DAll DHigh DLow DHS DAll DHigh DLow DHS

Fe(II) noJT 5-SPY −22.1 −20.3 −1.8 −21.0 −19.9 −18.0 −1.9 −19.0
noJT 5-TBP −11.1 −11.1 0.0 −11.5 −8.8 −8.6 −0.2 −9.4

JT 3-TP −49.0 −46.9 −2.1 −48.1 −44.6 −42.4 −2.2 −32.5
JT 4-SP −54.6 −52.1 −2.6 −53.1 −54.2 −51.4 −2.8 −36.5
JT 4-Td −8.1 −6.2 −1.9 −6.2 −7.7 −5.8 −1.9 −3.8
JT 5-SPY −7.5 −5.8 −1.8 −6.2 7.0 5.3 1.7 −5.6
JT 5-TBP 7.8 6.3 1.5 −7.3 6.7 5.1 1.6 −7.1
JT 6-Oh 22.1 21.2 1.0 21.6 18.1 17.1 1.0 21.8

Co(II) noJT 3-TP 133.8 125.2 8.6 125.9 108.3 99.5 8.8 102.9
noJT 4-SP 160.2 149.9 10.3 151.4 135.5 123.8 11.7 127.3
noJT 4-Td −18.6 −17.5 −1.2 −17.4 −14.8 −13.6 −1.2 −13.9
noJT 5-SPY −185.3 −180.0 −5.4 −177.8 −147.7 −142.1 −5.7 −145.9
noJT 5-TBP 83.7 76.1 7.6 76.4 69.4 61.5 7.9 63.4

JT 3-TP 86.6 77.8 8.8 78.4 73.3 64.3 9.0 58.2
JT 4-SP 134.5 123.1 11.4 124.7 109.3 95.6 13.7 77.1
JT 4-Td −15.7 −14.4 −1.3 −14.4 −13.1 −11.7 −1.3 −12.3
JT 5-SPY −82.2 −79.2 −3.1 −78.9 −62.0 −58.6 −3.4 −64.4
JT 5-TBP 50.7 43.2 7.5 43.5 42.3 34.5 7.8 36.2

The d6 system is taken as example. For a negative value of D, Dzz < 1/2(Dxx + Dyy). Then,
the most important contribution to D is associated with orbitals connected by the z component of the
angular momentum operator. For DSOC−(0)

KK , the excitation will correspond to the promotion of the
only beta electron from the doubly occupied orbital in the ground state to a singly occupied orbital.
Initial and final orbitals will be called ‘1’ and ‘2’, and the matrix element will be lz,12. In the case of

DSOC−(−1)
KK , the electron must promote to an excited d-orbital and spin flip. Thus, the final orbital must

be initially empty in order to accommodate the electron. For each S = S’ excitation (e.g., 21111→ 12111),
there will be three lower multiplicity determinants contributing to DSOC−(−1)

KL (i.e., 22110, 22101, 22011).
The relevant matrix elements will be lK,23, lK,24 and lK,25. If “1” and “2” are already connected by the z
component, it is likely that “2” is connected to “3”, “4”, and “5” by the x or y components. In this way,
DSOC−(−1)

zz will be smaller than DSOC−(−1)
xx and DSOC−(−1)

yy , in accordance with calculations.
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2.5. Degenerate Ground States

As zero-field splitting parameters are not directly applicable for these systems, the influence of
lower multiplicity roots will be analyzed in terms of state energies after the inclusion of spin-orbit
coupling. Table 5 presents the lowest energy levels for the geometries not considered in the previous
section. As one of the key properties in single molecule magnet research is the excitation energy to
overcome the top of the energy barrier produced by the splitting of the Ms components of the ground
state, we consider this energy as the parameter to evaluate the effect of the inclusion of excitations
to lower multiplicity states. In the case of Fe(II), it corresponds to the fifth state, and for Co(II) it is
the second Kramers’ doublet. In the majority of cases, energy barrier energies are modified less than
2% upon the inclusion of lower multiplicity roots. This is significantly smaller than the observed
changes in D parameters and is expected since the dominant contribution for magnetic anisotropy in
degenerate systems comes from the interaction within the ground state levels. Thus, contributions
from higher excited states will be of minor importance. The exception from this behavior is Fe(II)-4-Td,
which exhibits a very low energy barrier (c.a. 20 cm−1), and small changes in energy give large
percentage modifications.

Table 5. State energies (cm−1) after the inclusion of spin-orbit coupling effects (QDPT) for selected
geometries (CASSCF calculations). Due to Kramers’ degeneracy, all states are doubly degenerate for
Co(II), so we only show each energy once.

All HS All HS

Fe(II) 2-L (noJT) 0.0 0.0 4-Td (noJT) 0.0 0.0
0.0 0.0 1.2 0.7

193.8 190.9 14.8 10.2
193.8 190.9 15.7 14.0
388.0 385.1 20.5 16.0

3-TP (noJT) 0.0 0.0 6-Oh (noJT) 0.0 0.0
19.0 18.7 5.9 6.3
21.0 21.2 39.8 37.7
84.8 84.7 101.9 101.2
84.8 84.8 110.6 108.9

4-SP (noJT) 0.0 0.0 2-L (JT) 0.0 0.0
0.6 0.6 0.0 0.0

104.5 102.3 195.8 192.9
113.7 111.5 196.0 193.0
195.5 194.1 381.5 379.3

Co(II) 2-L (noJT) 0.0 0.0 2-L (JT) 0.0 0.0
479.6 470.9 472.0 464.2
960.9 954.7 941.7 937.5

1444.5 1451.2 1423.3 1433.3

6-Oh (noJT) 0.0 0.0 6-Oh (JT) 0.0 0.0
350.3 350.1 232.9 234.4
353.0 352.8 512.5 512.2
933.8 947.7 960.8 969.7

3. Materials and Methods

Computational Details

All calculations were performed using the ORCA 4.0.1.2 software package [54]. Model structures
were constructed using ideal geometries for the MOn fragment, while hydrogen positions were fully
optimized for all cases. Metal-oxygen distances were set to the average of unconstrained optimizations
for high spin hexa-aquo complexes of iron(II) (2.151 Å) and cobalt(II) (2.113 Å). To discuss the effect
of Jahn–Teller bond elongation/compression, a second set of molecules was optimized without
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restrictions on metal-oxygen bond distances. The BP86 density functional [55,56] and the Def2-TZVP
basis set [57,58] were employed in all geometry optimizations. We considered a CASSCF [59]
active space involving the five 3d orbitals, following common practice in single-molecule magnet
research. N-electron valence state perturbation theory (NEVPT2) [60,61] energy correction was also
included. Converged CASSCF wave functions served as a basis to build the state interaction matrix
of the spin-orbit coupling (SOC) operator (quasi degenerate perturbation theory (QDPT) approach).
Zero-field splitting parameters (D and E) obtained by second-order perturbation theory and effective
Hamiltonian approaches were compared, and d-orbital splitting was analyzed in terms of ab initio
ligand field theory (AILFT) [19]. In all cases, CASSCF and NEVPT2 ground states corresponded to the
highest multiplicity computed (quintet for Fe(II) and quartet for Co(II)).

4. Conclusions

The effect of lower multiplicity roots in zero-field splitting parameters was evaluated for model
structures of d6 (Fe(II)) and d7 (Co(II)) complexes. When the ground state was energetically isolated,
lower multiplicity states increased the total D value by ca. 5–10% in most cases. This trend should
be observed in general and is related to the sign of the contributions of same spin and different spin
excitations. In the case of degenerate ground states, the effect of high energy roots was less important,
with contributions under 2%. This behavior is expected since spin-orbit coupling between levels of the
ground state will greatly dominate the magnetic anisotropy. Conclusions drawn for model systems are
expected to hold in real molecular systems given the correspondence of the observed trend with the
basic equations describing zero-field splitting parameters.

Supplementary Materials: Tables S1–S4 and Cartesian coordinates of all calculated models are available online at
ww.mdpi/2304-6740/6/1/24/s1. Table S1: First non-relativistic excitation energies for all models, Table S2: D
values obtained by effective Hamiltonian method, Table S3: D values with differently optimized orbitals, Table S4:
D-tensors for S→S and S→S − 1 contributions
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