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Abstract: o-Quinones are both well-studied and promising redox-active chelating ligands. There are
plenty of interesting effects to be found on o-quinone-derived metallocomplexes, such as
photo-thermo mechanical effect in solid phase and in solution, luminescence, SMM properties
and so on. A combination o-quinone function with an additional coordination site or redox active
fragment in the same molecule might sufficiently extend an assembling as well as functional capability
of such ligand in complexes. In this paper, the authors focus on o-quinones decorated with additional
non-dioxolene chelating coordination site or with electron donor redox active annelated fragments.

Keywords: o-quinone; bifunctional ligands; redox amphoteric ligands; molecular devices

1. Introduction

o-Quinones and their redox forms catecholates and semiquinonates have been continuously
studied for many decades (Scheme 1). A rich synthetic chemistry of o-quinones provides a nice
opportunity for preparation of o-quinone-based biologically active compounds for pharmaceutical
applications as well as for the construction of novel redox-active ligands for coordination chemistry.
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Scheme 1. Redox transformations of o-quinone.

The redox nature of o-quinone species is a key property that determines their activity
in biological systems. o-Quinones are involved in oxygen transfer chains in live organisms.
In coordination chemistry a redox activity of o-quinone ligands is led to relevant applications in
material sciences and catalysis. Redox isomerism of metallocomplexes in solid state and solution as
well as reversible bending of crystals of Rh and Co semiquinonate complexes are also the result of
redox transformations within o-quinone ligand [1–3].

From a coordination chemistry point of view o-quinones have some useful features: they
form stable complexes with almost all metals; moreover they can change formal oxidation state,
directly being coordinated to the metal ion. Manipulation of the oxidation state of the o-quinone
ligand can be realized in different ways, e.g., by optical or thermo-activation, by addition/
displacement/removal of auxiliary ligand in the coordination sphere of the metal ion and so on.
A concept of an electron reservoir is typically attributed to o-quinone ligands: ligand-centered redox
processes provide catalytic activity for o-quinone complexes with non-transition metals [4].
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Due to these peculiarities, o-quinones are promising building blocks for the construction of
molecular devices and functional materials. From this point of view a topology of ligand that
provides an opportunity for synthesis of coordination polymers or an ordering of the molecules
in the crystal phase may be very useful. o-Quinone itself might be a bridging ligand in case of
binding of metal ions both by dioxolene site and by π-complexation with diene system [5–10].
The chemistry of o-quinones is immensely rich and diverse, so there are many ways to functionalize
an o-quinone molecule. An extension of coordination and functional capabilities of an o-quinone
molecule by means of introduction of an additional chelating site (i.e., redox-active) is a very
promising way. There are several recent papers that describe the synthesis, coordination modes
and important properties of bridging di-o-quinones (OO~OO) and their isoelectronic analogues
di-o-iminoquinones (NO~NO) and di-o-diimines (NN~NN) [4,11–13]. In this review, we focus on
the chemistry and coordination capabilities of bifunctional o-quinones decorated with additional
alternative chelating coordination sites (NN~OO, SS~OO systems) as well as on annulated di-o-quinone
assemblies containing an additional redox-active unit.

2. OO~NN Systems

2.1. Coordination Properties of 1,10-Phenanthroline-5,6-dione

One of the first reported examples of such bifunctional ligands is 1,10-phenanthroline-5,6-dione
(pdon). This compound was synthesized in 1947 as a byproduct of nitration of 1,10-phenanthroline [14].
Now there is a simple, effective procedure for the preparation of 1,10-phenanthroline-5,6-dione
(Scheme 2) [15].
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Scheme 2. Synthesis of 1,10-phenanthroline-5,6-dione.

Pdon combines two coordination centers. The dioxolene coordination site exhibits typical
o-quinone properties. A diimine chelating function at the backbone behaves as a 2,2′-bipyridine-like
unit. Numerous papers describe diimine coordination mode of pdon ligand only [16–18]. Concerning
to bifunctional ligands bearing two different coordination centers, the crucial problem is a separate
manipulation by binding of the metal ions with each chelating site.

The coordination bifunctionality of 1,10-phenanthroline-5,6-dione was first shown by Balch in
1975 [19]. Depending on the nature of attacking metal fragment, the resulting product will be NN-
or OO-coordinated (Scheme 3). Oxidative addition of the low-valent Pt(PPh3)4, to the dioxolene site
yields to formation of catecholate complex 2, while (MeCN)2PdCl2 selectively reacts towards the
N-donor center with generation of 3.

Both mononuclear complexes 2 and 3 bear vacant coordination sites, and could be regarded as
either “benzoquinone equivalent” (for complexes (N,N′-pdon) MLn) or “bipyridine equivalent” (for
complexes (O,O′-pdon) MLn), respectively. Binuclear complex 4 containing both occupied diimine and
dioxolene coordination site was described later (Scheme 4) [20].
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Scheme 4. Binuclear complex 4.

X-ray crystallography study showed that both metal centers (Pd(II) at diimine site and Pt(II)
at dioxolene site, respectively) are in almost square-planar surrounding, which is typical for such
complexes. A stacking motif was found for this complex in the crystal lattice: the molecules in
stack are parallel to each other, and interplanar distance is 3.29 Å. Moreover, the fragments are
rotated relative to each other by approximately 90◦ in order to provide a short distance between
donor and acceptor regions of the adjacent molecules as well as to reduce a steric contact between
PPh3 ligands (Figure 1). The stacking motif in a crystal phase was not observed in case of
(PPh3)2Pt(O,O′-pdon-N,N′)Ru(PPh3)2Cl2 binuclear complex where a bulkier metallofragment is
coordinated at the diimine site.
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A reaction of “bipyridine equivalent” (O,O′-pdon)Pt(PPh3)2 (2) with Pt2dba3 (dba—
dibenzylideneacetone) results in coordination of the platinum (0) at the diimine site to give binuclear
complex 5 (Scheme 5).Inorganics 2018, 6, x FOR PEER REVIEW  4 of 25 
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Scheme 5. Platinum complex 5.

In the reactions with o-quinones this binuclear adduct behaves similar to (bpy)Pt(dba) giving
corresponding catecholate complexes [20]. Thus, an interaction of 5 with 3,5-di-tert-butyl-o-
benzoquinone yields to catecholate adduct 6 (Scheme 6).
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Scheme 6. Binuclear complex 6.

Electrochemical study of 1,10-phenanthroline-5,6-dione and its complexes showed that
introduction of the diimine function made the o-quinone unit a more powerful oxidant.
Two one-electron peaks corresponding to the o-quinone-o-semiquinone and o-semiquinone-catecholate
transformations are observed in acetonitrile at −0.45 V and −1.25 V vs. SCE, respectively [21]. At the
same conditions 9,10-phenanthrenequinone reduces at −0.64 V and −1.22 V. Moreover, coordination
of a metal ion at the diimine site also significantly affects the electrochemical properties of the
o-quinone unit, increasing the oxidation ability. In a range of complexes [M(N,N′-pdon)3](PF6)2

(M = Co, Ru, Fe), the values of the first reduction potential are shifted from−0.45 V to−0.11 V,−0.13 V
and−0.18 V, respectively. Very similar results were observed by Winpenny et al. for [M(N,N′-pdon)]Cl2
(M = Pd, Pt): the dioxolene site reduction processes were found to move to more positive potentials
on coordination to a metal center to achieve −0.16 V and −0.12 V for Pd and Pt derivatives
respectively [22]. The reduction process at the diimine site in pdon was not observed up to −2.0 V.

Besides of catecholate coordination, there is a possibility of dicarbonyl binding of dioxolene site
of pdon at the metal ion. In this case, the dioxolene site exists in an o-quinone form as a neutral
chelating ligand. Since the Lewis basicity of the diimine site is greater than that of dioxolene site,
the Lewis acids in a ratio 1:1 with pdon form mononuclear diimine adducts at the first stage. Dioxolene
site becomes involved in binding only when an excess of the Lewis acid is present in the reaction
mixture (Scheme 7) [23].
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It was established that the basicity of the diimine unit in pdon is significantly enlarged when
a metal is coordinated to the dioxolene site. This is due to the electron donation from the catecholate
unit being occupied with a metal ion [24]. Any modification of the surrounding at one coordination
site on the bifunctional ligand affects the properties of the remote coordination site. So that the
order of priority in the binding of different coordination sites at such bifunctional ligands is essential.
When employing the proper synthetic strategy, one can manipulate the selectivity for direction of the
metal ion coordination and therefore to avoid undesirable products.

Reduced form of pdon 1,10-phenanthroline-5,6-diol (pdol, 9) can also act as a precursor for metal
complexes. The reaction of 9 with the corresponding metal halide in presence of base was used for
synthesis of (tbbpy)Pt(O,O′-pdon) (10, tbbpy-di-tert-butylbipyridine) (Scheme 8) [25].
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Scheme 8. Synthesis of complex 10.

Combination of two dissimilar coordination sites in one molecule provides an opportunity to
use this ligand as a building block in the construction of chain-like or network structures. A series of
polynuclear complexes of platinum, as well as heteronuclear Pt-Ru derivatives, were obtained using
the step-by-step assembly strategy starting from catecholate (tbbpy)Pt(O,O′-pdon) [25]. The initial
complex 10, being a “bipyridine equivalent”, interacts with Pt(PhCN)2Cl2 and then with pdol.
The resulting adduct 12 is treated with Ru(tbbpy)2Cl2 to give trinuclear species 13 (Scheme 9).

Pampaloni et al. also reported the design of multinuclear systems using the pdon ligand as
a building block. A reactivity of the dioxolene and diimine coordination sites towards binding of
transition metal ions was studied [23,26–28].

It was shown that, depending on the nature of the metallofragment Cp2M(CO)2, the reaction with
pdon proceeds towards the dioxolene site to give semiquinonate (M = Ti) or catecholate (M = Zr, V)
species. The oxidation state of the metal ion in Cp2M(O,O′-SQ-pdon) was described as +3 in case of Ti
and +4 for Zr and V, respectively (Scheme 10) [23].
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Scheme 10. Oxidative addition of Ti, Zr and V metallofragments to o-quinone site.

Cr(CO)6 and Mo(CO)6 react with pdon towards the dioxolene site to give corresponding
tris(o-semiquinonate) complexes [27]. Reaction of pdon with bis(arene)titanium and vanadium
complexes also proceeds as an oxidative addition to the dioxolene site. The mixed-valent complexes
MIV(O,O′-SQ-pdon)2(O,O’-pdon) (M = V (17), Ti (18)) were formed at stoichiometry 1:3 of the initial
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reagents (Scheme 11) [26]. A comparison of these complexes with 9,10-phenanthrenequinone (phen-Q)
structure analogues is worth mentioning: the titanium derivatives indicate a mixed-valent redox
state of the dioxolene ligands both in case of pdon and phen-Q, whereas vanadium adduct with
phen-Q exhibits semiquinonate state for all three dioxolene ligands. These data correlate well with the
electrochemical properties of pdon and phen-Q: the oxidation capacity of 1,10-phenanthroline-5,6-dione
is higher than that of 9,10-phenanthrenequinone.
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Chromium tris-(pdon) semiquinonate derivative 19 was used as a starting reagent for the
syntheses of heteropolynuclear metal complexes. Free diimine unit in 19 interacts with the Lewis
acids (TiCl2(THF)2, TiCl4, ZrCl4, HfCl4, FeCl2(THF)1.5, CoCl2 and NiBr2(DME)) leading to the
corresponding tetranuclear species [24,28]. Step-by-step assembling of dendrimer-like structure
from Cr(O,O′-SQ-pdon)3 consistently treated with FeCl2(THF)1.5 and pdon were also reported
(Scheme 12) [27].

It seems fascinating that the preparation of such heteronuclear species was realized, since it
shows the coordination capabilities of the ligand. However, it should be noted that the evidence
for the formation of these compounds is insufficient, since the authors rely only on the data of
spectroscopic studies.

There are also some examples of lanthanide ions coordination on pdon. It was shown that
tris-(β-diketonate) lanthanide (III) complexes attack the diimine site to give corresponding eight-
coordinated species. Some of them exhibit luminescent properties. The use of 1,10-phenanthroline-5,
6-dione as a neutral ligand in such systems is efficient for several reasons: (i) polynuclear aromatic
structure is a chromophore unit, so it can be used as an organic antenna for the sensitization of specific
luminescence on lanthanide ion; (ii) coordination of d-metals on the dioxolene center makes possible
tuning of the parameters of sensitization.

The complexes Pt(O,O′-pdon-N,N′)Ln(tta)3 (tta—thenoyltrifluoroacetonate, Ln = La (21), Gd (22),
Nd (23), Er (24), Yb (25)) were obtained (Scheme 13) [29,30].

Excitation of 23–25 at 520 nm leads to luminescence in the near-IR region both in solution and in
the solid state. The platinum metal center at a ligand backbone was found to be photosensitive at this
wavelength, so it acts as “antenna” [29,30].
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2.2. Bifunctional Catechols, Containing Schiff-Bases

A series of bifunctional redox-active chelating ligands were derived from diaminocatechols.
Bifunctional catechols, containing Schiff-bases, were synthesized via condensation of diaminocatechols
with 2-pyridinecarboxaldehyde, salicylic aldehyde etc.

In 1993, Coucouvanis et al. proposed a concept of “metal complexes as ligands” [31].
Catechol H4ETC, annelated with tetraazacyclotetradeca-7,12-dienyl macrocycle, comprises the
redox-active catecholate site and N4-tetradentate coordination center. Several synthetic approaches
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resulting in metallocatecholates have been developed. The most versatile one is the condensation
of 4,5-diaminoveratrol with 2,2′-(ethane-1,2-diyl-imino)bis(5-methyl-benzaldehyde) in presence of
M(OAc)2 (M = Ni (26), Co (27)) followed by deprotection of catechol function (Scheme 14) [31].
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Scheme 14. Synthesis of complexes 26 and 27.

Dioxolene site of complex could be oxidized to 28 by the ferricinium cation [31]. Crystallography
study of the resulting protonated semiquinonate species 28 shows a dimer structure due to hydrogen
bonding (Scheme 15).
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Temperature dependence study of the magnetic susceptibility of this dimer reveals
antiferromagnetic exchange interactions: the effective magnetic moment is 2.08 µB at 300 K. In contrast,
solutions of 28 in DMF and DMSO are diamagnetic and display a narrow 1H-NMR spectrum.
It was explained by an electron-proton exchange dynamics in solution leading to formation of
catechol-quinone pair.

Treatment of 26 and 27 with tBu4NOH or KOMe in presence of [(DMF)3Mo2O2S2–(S2)] results
in heterometallic compounds 29 and 30. Dimer species 31 and 32 containing Mo–Mo bridge were
obtained in the reaction of 26 or 27 with [(DMF)3Mo2O2S2(DMF)3] (Scheme 16) [32].

Jonasdottir et al. reported the synthesis of trinuclear complex 33 where two NiETC moieties are
bridged by copper (II) ion (Scheme 17) [33].
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A family of OO~NN ligands is also presented by bifunctional SALPHEN–catechols that are
synthesized by the condensation of 4,5-diaminocatechol with salicylic aldehydes (Scheme 18) [34,35].
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Malinak et al. developed the procedure for selective preparation of the dimer catecholate adduct
(Bu4N)2[Mo2O5[H2(EtO)2SALPHEN–(O)2]2 34 (Scheme 19) [34]. Treatment of its vacant SALPHEN
sites with M(OAc)2 yields to the corresponding heteronuclear complexes (M = Cu (35), Ni (36), Co (37),
Fe (38), Mn (39)).
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Tetranuclear complexes 35 and 36 were characterized structurally; their molecules have
a pocket-like structure so that the SALPHEN ligand planes in dimer are almost parallel to each
other (Figure 2).
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Figure 2. ORTEP plot of complex 36 anion. Reprinted with permission from Inorg. Chem. 1996, 35,
4810–4811. Copyright (1996) American Chemical Society.

A curious feature of pocket-opening was found for complex 35. The Cu–Cu bond length in dimer
35 is 4.110 A. This distance can be changed by adding a mixture of pyridine and pyridinium cation into
solution: the neutral pyridine molecule coordinates on the molybdenum ion, while pyridinium cation
forms hydrogen bonds with the vacant electron pairs of catecholate oxygen. Due to the rearrangement
of coordination spheres, valence angle Mo–O–Mo as well as the distances Mo–Mo and Cu–Cu increase,
and the pocket between the SALPHEN fragments of 35 is opened (Scheme 20) [34].
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Another interesting effect was found for iron complex 38. It was shown that the dimer
SALPHEN–complexes of iron (II) interact with dioxygen or sulfur to form inner Fe–X–Fe (X = O, S)
bonds, so that a SALPHEN pocket becomes locked. Complexes with bridging oxygen (40) and sulfur
(41) atoms were isolated (Scheme 21) [35].
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The more sterically hindered (tBu)4SALPHEN–(OH)2 forms mixed-ligand catecholate complexes
43–46. SALPHEN–catechol replaces only one catecholate fragment (3,5DBCat) in adduct 42 (Scheme 22).
The formation of a homoligand dimer adduct is unfavorable due to the steric reasons [35].
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Weber et al. reported OO~NN ligand that was prepared via condensation reaction of
4,5-diaminocatechol with keto-enol-ether [37–39]. A series of Fe (II) complexes 54–60 bound at the
diimine site of this ligand were studied (Scheme 24). Some interesting effects including an influence
of intramolecular hydrogen bonding on the magnetic behavior of these complexes were found.
There are also very promising results concerning to construction of 1D polymeric chains using bidentate
pyridine auxiliary ligands as a bridge. Some of these coordination polymers were found to exhibit
spin-crossover phenomena.
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Scheme 24. A series of Fe (II) complexes with keto–enol–ether bifunctional ligand.

Trinuclear complexes [Cu3L2](Bu4N) (61) and [V(O)Cu2L2](Bu4N) (62) have been studied in
order to understand the mechanisms of exchange interactions between magnetic centers in a planar
linear coordination polymeric chain (Scheme 25). It was shown that depending on the symmetry of
the orbitals of the central metal ion exchange interactions between terminal Cu(II) centers may be
antiferromagnetic or ferromagnetic as for 61 and 62, respectively [40].
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Scheme 25. Trinuclear complexes with keto–enol–ether bifunctional ligand.

Investigation of complexes containing NN~OO bifunctional chelating ligands indicates their
potential for future technological applications. Two different coordination sites facilitate construction
of ordered structures. A redox activity of the dioxolene site is useful in managing the geometry or other
parameters of complexes. At the same time, redox transformations at diimine site in such bifunctional
ligands are not accessible at ordinary conditions. Introduction of dithiolene site instead of diimine one
provides an opportunity for the interplay between redox abilities of two sites.

3. SS~OO Systems

There are a limited number of redox-active benzenoid ligands combining dioxolene and dithiolene
sites. A synthetic procedure for the preparation of the 4,5-dimercaptocatechol 63 was first reported by
Coucouvanis et al. (Scheme 26) [41].
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Scheme 26. Synthesis of 4,5-dimercaptocatechol.

All reported complexes containing this ligand reveal a dithiolene mode of coordination of the
metal ion. A series of bis(dithiolate) complexes were synthesized. According to the structural
parameters the metal ion in [M(DtCat2)−] [Ph4P+] adopts M3+ state both in case of M = Cu (64)
and M = Ni (65) (Scheme 27).
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Scheme 27. Bis(dithiolate) derivatives of 4,5-dimercaptocatechol [M(DtCat2)−] [Ph4P+].

Hydroxyl groups in 64 and 65 could be selectively oxidized by the molecular oxygen leading
to the corresponding bis(dithiolates) 66 and 67, those contain non-coordinated o-quinone sites at the
termini (Scheme 28).
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Scheme 28. Bis(dithiolates) with non-coordinated o-quinone moiety.

Unfortunately, the reactivity of metal ions towards binding at dioxolene site of the molecule has
not been studied yet.

Recently, we reported the substituted analogue of SS~OO bifunctional redox active
chelating ligand. It was found that the decarbonylation of 4,7-di-tert-butyl-1,3-benzodithiole-2,5,6-
trione yields the sterically-hindered o-quinone, annelated with dithiete (68) (Scheme 29) [42].
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It is a unique bifunctional ligand, containing two different redox-active chelating chalcogen
coordination centers. Since dithiete is an electronic analogue of 1,2-dithiocarbonyl function,
the dithiolene and dioxolene sites in the ligand are in the same oxidation state. The different properties
of sulfur and oxygen create an opportunity for manipulation of the direction of metal ion binding
during the reaction of oxidative addition. This species presents a unique chance to compare an activity
of dithiolene and dioxolene sites being in the same steric surrounding and under the same conditions
in different reactions with metals.

It was shown that the direction of an oxidative addition depends on the nature of metallofragment.
Treatment of the ligand with one-electron reducing agents such as Li, Na, K, Tl, Cu (in presence of PPh3),
Mn2(CO)10 yields in o-semiquinonate species. Alkali metal o-semiquinonates can undergo further
reduction to give corresponding catecholates. According to the EPR spectroscopy data vacant dithiolate
site in the manganese semiquinonate adduct 69 can be also involved into the oxidative addition process.
Interaction of 68 with an excess of Mn2(CO)10 results in subsequent formation of semiquinonate 69
and then the trinuclear species 70 (Scheme 30) [42]. Mononuclear semiquinonate 69 has a sextet lines
EPR spectrum in toluene due to splitting of the unpaired electron on the 55Mn nucleus (Figure 3a).
A multiplet spectrum that arises upon further reduction of 69 with Mn2(CO)10 was attributed to the
trinuclear species 70. The unpaired electron in 70 interacts with one manganese nucleus at the dioxolene
site and with two equivalent manganese nuclei at the dithiolene unit (Figure 3c). The hyperfine splitting
(HFS) constant values are 6.80 G and 1.39 G respectively.
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Scheme 30. The formation of trinuclear species 70.
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Figure 3. Evolution of the EPR spectrum of the mixture of o-quinone 68 and Mn2(CO)10 in toluene
upon irradiation with halogen lamp. (a) 30 s later, the signal corresponds to the mononuclear adduct 69;
(b) 10 min later, the observed signal is a superposition of signals from paramagnetic species 69 and 70;
(c) 20 min later, the signal is attributed to the trinuclear adduct 70.

Reaction of 68 with two-electron reducing agents results in catecholate or dithiolate derivatives
depending on the Lewis acidity of the metal ion. Binding at the dithiolate coordination site is preferable
for the soft Lewis acids and vice versa. Group 10 zero-valent metal tetrakis (triphenylphosphine)
complexes M(PPh3)4 (M = Pd, Pt) selectively react towards dithiolene site of the ligand 68 with
formation of 71 and 72 mononuclear adducts (Scheme 31) [43].
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Scheme 31. Regioselective oxidative addition of M(PPh3)4 (M = Pd, Pt) towards dithiolene site.
(Reproduced from Dalton Trans. 2016, 45, 7400–7405. Copyright (2006) Royal Society of Chemistry).

According to the cyclic voltammetry data, coordination of a metal fragment on the dithiolene
site significantly decreases the first reduction potential of free dioxolene site from −0.42 V (68) to
−0.90 V (71) and −0.80 V (72). Nevertheless, such mononuclear complex still might be regarded
as an o-quinone equivalent and can be reduced by many one-electron agents to give corresponding
heterobimetallic complexes (Scheme 32) [43].
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Scheme 32. Heterobimetallic semiquinonate adducts.

A diversity in the oxidation addition of a metal to the ligand 68 was found in case of Pd(dppe)
metallofragment. Both dithiolate 73 and catecholate 74 isomers were isolated and characterized
by NMR, IR-spectroscopy and X-ray analysis (Scheme 33) [44].
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Scheme 33. The formation of two regioisomers 73 and 74. Reproduced from Dalton Trans. 2017, 46,
16783–16786. Copyright (2017) Royal Society of Chemistry.

According to DFT calculations the difference in energy between these isomers is rather small.
This is the main reason for the diversity in the oxidative addition. The ratio of isomer products in
the reaction mixture depends on the method of preparation, solvent polarity, temperature and so on.
Nevertheless, the catecholate species 74 is more stable, so that in solution it slowly isomerizes into the
dithiolate one (Scheme 34). This is the first example of regioisomerism in coordination chemistry [44].
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Scheme 34. Isomerization of 74 to 73. Reproduced from Dalton Trans. 2017, 46, 16783–16786. Copyright
(2017) Royal Society of Chemistry.

Indeed, the isomers 73 and 74 possess different chemical properties. Mononuclear dithiolate
complex 73 as an o-quinone equivalent is capable to form heterobinuclear semiquinonates being reduced
with alkali metals or other one-electron reducing agents. Catecholate isomer 74 could be oxidized in
solution into the corresponding semiquinonate species. The parameters of EPR spectrum of this adduct
are highly consistent with those reported for (PPh3)2Pd(3,6-t-Bu-o-benzosemiquinonate) [45].

Understanding the mechanisms that regulate the direction of catecholate or dithiolate mode of
binding of the metal ion in case of ligand 68 could be useful from the viewpoint of potential application
in the stepwise assembling of ordered structures. Such binucleating constructions might be applied as
molecular devices. Moreover, the SS~OO system can be regarded as a junction between the bulk metal
electrode and a key part of the molecular device, due to affinity of sulfur to noble metals (Scheme 35).
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4. Di-o-Quinones Containing Acceptor-Donor-Acceptor Systems

The energy gap between the lowest unoccupied and highest occupied electronic level is
an important parameter determining the redox, electronic, optical, and conductive properties
of a material. Multistage organic amphoteric redox systems with a small HOMO/LUMO gap
(<0.5 eV), are of considerable interest due to their potential applications in molecular electronics and
optoelectronics. Consequently, research efforts focused on the design and synthesis of molecular
systems composed of strong electron donor (D) and acceptor (A) units. The main principles
for constructing low band-gap organic fused compounds were generalized by Perepichka et al.
They include (i) tailoring the aromatic/quinoid character of a conjugated system; (ii) its rigidification
into a planar conformation; (iii) the alternation of π-donor and π-acceptor fragments in the polymer
chain [46]. Decoration of such amphoteric redox systems with chelating coordination sites provides
multiple opportunities for construction of ordered structures in a crystal phase using metal ions
as nodes.

4.1. Amphoteric Redox Triad Consisting of Two o-Quinone Units Linked by TTF Bridge

An effort to combine in one molecule the units bearing both high-lying HOMO and low-lying
LUMO levels resulted in an A-D-A triad system consisting of fused strong donor (TTF) and powerful
acceptor (o-quinone) moieties [47]. In contrast to many other A-D-A triads the chelating o-quinone
moieties at the termini of the Q-TTF-Q molecule 75 are capable of binding metal ions (Scheme 36).
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Scheme 36. Redox triad A-D-A consisting of annelated o-quinone and TTF units.

The molecule of Q-TTF-Q was assembled from three moieties. Central TTF unit originates
from disodium tetrathiooxalate molecule which was linked by an exchange reaction to 3,6-di-tert-
butyl-4-chloro-o-benzoquinone followed by cyclization (Scheme 37).
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Scheme 37. Synthesis of Q-TTF-Q. Reproduced with permission from Tetrahedron 2010, 66, 7605–7611.
Copyright (2010) Elsevier.

This method was first reported in 2010 and its main advantage is highly effective one-stage
process, the only by-product is S-bridged di-o-quinone (76) (Scheme 38) [47]. The overall preparative
yield of Q-TTF-Q is 67%.
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Scheme 38. Sulfur bridged di-o-quinone 76.

X-Ray diffraction study reveals a rigid planar structure for A-D-A triad 75. Despite a fused
construction of the molecule, the structural parameters of the constituent units in the triad are typical
for o-quinone and TTF, respectively. Both o-quinone and TTF moieties might be regarded as relatively
independent, and, as a consequence, should retain their characteristic properties. A conjugation
of donor and acceptor units in one molecule leads to an efficient intramolecular charge transfer.
For Q-TTF-Q it manifests in a wide intensive band in the electronic spectrum with a maximum at
564 nm (Figure 4).
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Figure 4. UV/vis spectra of 84 (solid line, c = 2.5×10−5 M, 1 cm quartz cell) and 75 (dashed line,
c = 1.7×10−5 M, 1 cm quartz cell) CH2Cl2.

By means of π–π interactions between the adjacent molecules the triad 75 forms stacks in
a crystal phase. Each next molecule in the stack is shifted relatively previous one by 5.57 Å in
order to provide a short contact between the oxygen atoms of one molecule and sulfur atoms from the
adjacent one (Figure 5).
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Figure 5. Stacking motif in crystals of Q-TTF-Q. Reproduced with permission from Tetrahedron 2010,
66, 7605–7611. Copyright (2010) Elsevier.

Q-TTF-Q as a ligand displays various coordination modes. Depending on the intrinsic redox
state of the triad as well as a nature of metal ion Q-TTF-Q ligand could be bridging or terminating
(Table 1). Both terminating and bridging coordination modes were observed in case of dianion form of
the ligand [48,49].
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Table 1. Bridging and terminating coordination modes for Q-TTF-Q in different oxidation states.

Redox State
Coordination Mode

Bridging Terminating

0
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According to DFT calculations, performed by Gaussian 03 at the B3LYP/6-31G* level of theory,
HOMO in 75 is presumably localized at the TTF unit, whereas LUMO is situated at o-quinone moieties.
The HOMO–LUMO gap in 75 was estimated to be 2.41 eV. This value is in a good agreement with the
electrochemical and spectroscopic data [47].

Electrochemical study showed four one-electron reduction processes for Q-TTF-Q at −0.4, −0.61,
−1.04 and −2.56 V, respectively. They were attributed to stepwise reduction of o-quinone sites at the
termini of the molecule. Electrochemical oxidation of Q-TTF-Q at 1.40 V seems to be two-electron and
irreversible (Scheme 39).
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EPR spectroscopy investigation indicated very similar behavior upon chemical reduction of the
Q-TTF-Q. Being treated with alkali metal, the Q-TTF-Q undergoes four reduction steps, the adducts
at first and the third ones are paramagnetic. In contract to the electrochemistry data, an oxidation of
Q-TTF-Q with TCNQ indicates an availability of radical-cation state for the Q-TTF-Q. The existence of
this species was confirmed by the EPR spectroscopy data [48].

As bis-chelating ligand, Q-TTF-Q can be used for the construction of assembled structures.
Chain-like ordering was found for the mononuclear Q-TTF-SQTl(Me)2 77 adduct in the crystal lattice.
Dimetylthallium anion acts as a node linking the ligands into the chain (Figure 6). Notably, the ligand’s
planes in the chain are parallel to each other. The equatorial positions of each Tl octahedron are
occupied with semiquinonate oxygens from one ligand molecule and with o-quinone oxygens owned
by the adjacent ligand unit. The methyl groups are situated in the apical positions, respectively. All the
coordination polymeric chains in the crystal are stretched along one direction [49].
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Figure 6. 1 Dimension ordering of 77 species. Reproduced with permission from Zeitschrift für
anorganische und allgemeine Chemie 2011, 637, 232–241. Copyright (2010) John Wiley and Sons.

Magnetic measurements reveal the value of µeff = 1.74 µB at 300 K for 77. This is very close
to the expected value of 1.73 µB for the spin system with S = 1/2 (doublet state). Such behavior is
typical for ordinary mono-o-semiquinonato complexes containing one unpaired electron. Below 50 K,
the magnetic moment falls probably due to an intermolecular antiferromagnetic exchange.

All studied binuclear metallocomplexes with the Q-TTF-Q ligand in the redox state −2 display
a strong antiferromagnetic intraligand exchange. This manifests that the planar TTF linker provides
an effective channel for electronic communication between semiquinonate units at the termini.
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Q-TTF-Q was found capable of forming binuclear complexes with lanthanides (III) β-diketonates
as a neutral ligand. Treatment of Ln(hfac)3·2H2O (hfac—hexafluoroacetylacetonate) with Q-TTF-Q in
the ratio 2:1 results in binuclear species Ln2(hfac)6L (Scheme 40) [50,51].
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Complex 78 with D3h symmetry at the Dy ion behaves as a SMM. This behavior is attributed to
a single-ion feature. Obviously, the binuclear complex is regarded as two single-ion magnets linked by
an electro-active A-D-A bridge [50].

Highly promising luminescent properties were found for the Yb binuclear complex 82.
The excitation-induced line-shape emissions in the near-infrared spectral range have been assigned
to the ytterbium-centered transition. It was established that the antenna-effect sensitization process
is favored and proceeds by energy transfer from the singlet CT state of the Q-TTF-Q chromophore.
Remarkable that the energy of the charge-transfer donating state is estimated to be 13,585 cm−1, that is,
the longest wavelength reported for Yb (III) sensitization [51].

4.2. p-Phenylene Extended Amphoteric Redox Triad

Q-TTF-Q showed promising results concerning to luminescent and magnetic properties.
An assembling potential due to the chelating dioxolene functions at the termini also favors continuation
of studies of this species as a ligand. Its main disadvantage is relatively high HOMO–LUMO energy
separation. There are two opportunities to make it narrower. The first one is to use more withdrawing
o-quinone in order to reduce the LUMO level. Another one is an introduction of a more donor linker
instead of TTF bridge. Among them, the second strategy seems to be more appropriate.

The p-phenylene insertion was introduced into the TTF unit in order to decrease the
HOMO–LUMO gap in the triad, since the addition of p-phenylene spacer in TTF molecule moves first
oxidation potential from 0.32 V to −0.05V [52].

The synthesis of the Q-exTTF-Q was performed using a similar approach as that was used for
the Q-TTF-Q preparation. Interaction of 4-chloro-3,6-di-tert-butyl-1,2-benzoquinone with sodium
tetrathioterephtalate resulted in formation of adduct with extended TTF bridge [53].

The triad Q-exTTF-Q was isolated as the diprotonated direduced species 83. It could be oxidized
into the di-o-quinone form 84 (Scheme 41). The di-o-quinone form was characterized in solution only,
all attempts of crystallization failed. Nevertheless, it was shown that the triad Q-exTTF-Q in
di-o-quinone form is quite stable in dilute solutions, so that being freshly prepared could be used as
a starting reagent for further synthesis of complexes.

X-ray diffraction study of the direduced diprotonated form of Q-exTTF-Q 83 reveals a rigid planar
structure for the molecule. The geometry parameters surely correspond to zwitter-ionic structure of
the molecule. DFT study showed that the singlet biradical is a ground state for the 83.

Like Q-TTF-Q, the extended triad 83 forms stacks in the crystal lattice (Figure 7). The packing
motif is similar: Carbonyl oxygens are located in the immediate vicinity of the sulfur atoms of the
adjacent molecule. Minimal distances between sulfur and oxygen atoms in the stack are 3.316 and
3.393 A. These values are comparable with the sum of the van-der-Waals radii (3.32 A).

Indeed, introduction of the p-phenylene spacer caused a decrease of the HOMO–LUMO energy
separation (1.69 eV), so as to compare with the Q-TTF-Q (2.41 eV). This fact is in a good agreement
with the UV–vis spectroscopy data. In electronic spectrum of 84 in CH2Cl2 the band attributed to the
intramolecular charge transfer is centered at 757 nm (Figure 4).
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Redox properties of the di-o-quinone 84 were evaluated in reduction reactions with alkali metals.
The chemical behavior of the ligand is identical to that of Q-TTF-Q: reduction of 84 proceeds
in four one-electron steps: “di-o-quinone”—“o-quinone—o-semiquinone”—“di-o-semiquinone”—“
o-semiquinone—catecholate” and “dicatecholate” [54]. Reduction of the diprotonated form 83 with
copper in presence of 1,2-bis(diphenylphosphino)ethane leads to formation of solvent-separated radical
ion pair 85: Cu(dppe)2

+ and ligand in anion-radical state (Scheme 42) [55].
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Scheme 42. Reduction of 83 with metal copper.

This species allows estimating the contribution of extended TTF spacer in the mechanism
of the electronic communications between semiquinonate rings at the termini of the molecule.
EPR spectroscopy reveals for 86 fully symmetric distribution of spin density along the Q-exTTF-Q
ligand that indicates the system belongs to class III of Robin–Day classification of mixed valence
systems [56], so that, the exTTF linker acts as an effective channel for the electronic communications.

While much remains to be done, we believe that the Q-exTTF-Q is very perspective building block
to be used in search of systems exhibiting luminescence and molecular magnetism phenomena.
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5. Conclusions

In this review, we have discussed the major advances that have recently been achieved in fields of
synthesis and applications of o-quinones decorated with additional chelating coordination sites as well
as redox-active functions. The authors of this brief review did not grasp the immensity and describe
all classes of bifunctional chelating ligands.

We tried to show that coordination capabilities of o-quinone-based bifunctional chelating ligands
provide good opportunities for the assembling of coordination polymers. In combination with redox
activity, this is a very useful perspective from the viewpoint of construction of the molecular devices.

The fragility of many organic-based molecular devices still stands as a major limitation toward
their application in real-world electronic devices. From this point of view, o-quinone derivatives exhibit
quite high stability. Further synthetic attempts will discover more novelty in the future.
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