Supplementary data to accompany:

The versatile SALSAC approach to heteroleptic copper(I) dye assembly in dye-sensitized solar cells

Frederik J. Malzner, Catherine E. Housecroft and Edwin C. Constable*

Department of Chemistry, University of Basel, Building 1096, Mattenstrasse 24a CH-4058 Basel, Switzerland

Figure S1. NOESY spectrum ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of 4. Chemical shifts in δ / ppm.

Figure S2. J-V curves for duplicate DSSCs with photoanodes assembled using the three dipping methods (ligand exchange, 1:1 mixture and sequential) described in the Materials and Methods section compared to a DSSC sensitized wth N719.

Table S1. EQE maxima for DSSCs (cell 2 in each case, see Table 3) with photoanodes assembled using the three assembly protocols described in the Materials and Methods section.

Dye	Dipping procedure	On the day of DSSC fabrication	
		$\lambda_{\text {max }} / \mathrm{nm}$	EQEmax $^{\text {/ \% }}$
$[\mathrm{Cu}(3)(4)]^{+}$	Ligand exchange	480	31.9
$[\mathrm{Cu}(3)(4)]^{+}$	1:1	470	49.1
$[\mathrm{Cu}(3)(4)]^{+}$	Sequential	480	51.7
N719		540	68.5
Dye	Dipping procedure	3 days after DSSC fabrication	
		$\lambda_{\text {max }} / \mathrm{nm}$	EQEmax / \%
$[\mathrm{Cu}(3)(4)]^{+}$	Ligand exchange	470	23.9
$[\mathrm{Cu}(3)(4)]^{+}$	1:1	470	47.8
$[\mathrm{Cu}(3)(4)]^{+}$	Sequential	480	53.4
N719		530	67.6
Dye	Dipping procedure	7 days after DSSC fabrication	
		$\lambda_{\text {max }} / \mathrm{nm}$	EQEmax / \%
$[\mathrm{Cu}(3)(4)]^{+}$	Ligand exchange	470	24.1
$[\mathrm{Cu}(3)(4)]^{+}$	1:1	470	48.1
$[\mathrm{Cu}(3)(4)]^{+}$	Sequential	470	52.2
N719		540	66.6

Figure S3. J- V curves of a DSSC in which the $\mathrm{FTO} / \mathrm{TiO}_{2}$ working electrode was immersed in a DMSO solution of anchor 3 (one day) following by immersion in a MeCN solution of $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{PF}_{6}\right]$ (one day). No ancillary ligand was used.

Figure S4. EQE spectrum of a DSSC in which the $\mathrm{FTO} / \mathrm{TiO}_{2}$ working electrode was immersed in a DMSO solution of anchor 3 (one day) followed by immersion in a MeCN solution of $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{PF}_{6}\right]$ (one day). No ancillary ligand was used.

Figure S5. Solution absorption spectrum of compound $4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \times 10^{-5} \mathrm{~mol}\right.$ dm^{-3}).

