
inorganics

Article

Metal-Catalyzed Degradation of Cellulose in Ionic
Liquid Media

Tiina Aid * ID , Mihkel Koel, Margus Lopp and Merike Vaher

Department of Chemistry and Biotechnology, Division of Chemistry, Tallinn University of Technology,
Akadeemia tee 15, 12618 Tallinn, Estonia; mihkel.koel@ttu.ee (M.K.); margus.lopp@ttu.ee (M.L.);
merike.vaher@ttu.ee (M.V.)
* Correspondence: tiina.aid@ttu.ee

Received: 14 June 2018; Accepted: 8 August 2018; Published: 10 August 2018
����������
�������

Abstract: Biomass conversion to 5-hydroxymethylfurfural (HMF) has been widely investigated as
a sustainable alternative to petroleum-based feedstock, since it can be efficiently converted to fuel,
plastic, polyester, and other industrial chemicals. In this report, the degradation of commercial
cellulose, the isomerization of glucose to fructose, and the conversion of glucose to HMF in
1-butyl-3-methylimidazolium chloride ([BMIM]Cl]) using metal catalysts (CrCl3, ZnCl2, MgCl2)
as well as tungsten and molybdenum oxide-based polyoxometalates (POM) were investigated.
Tungsten and molybdenum oxide-based POMs in ionic liquids (IL) were able to degrade cellulose
to majority glucose and epimerize glucose to mannose (in the case of the molybdenum oxide-based
POM). A certain amount of glucose was also converted to HMF. The tungsten oxide-based POM in IL
showed good activity for cellulose degradation but the overall products yield remained 28.6% lower
than those obtained using CrCl3 as a catalyst. Lowering the cellulose loading did not significantly
influence the results and the addition of water to the reaction medium decreased the product
yields remarkably.
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1. Introduction

An efficient utilization of renewable biomass resources, particularly lignocellulosic biomass,
is important from the viewpoint of the production of industrial platform chemicals and fuels
(Figure 1) [1]. An appropriate technology would efficiently deconstruct the biomass to release cellulose
and hemicellulose and hydrolyze cellulosic components to generate oligosaccharides [2].

Of the fundamental building blocks from biorefineries, 5-hydroxymethylfurfural (HMF) is
considered a key intermediate for the development of biomass-based products, because a series
of compounds such as organic acids, polymer precursors, and biofuels derive from it [3].

Hence the selective catalytic conversion of cellulose to a platform chemical such as glucose, HMF,
sorbitol or gluconic acid under mild conditions is the most desirable route in industry [4,5]. However,
a high-yield, low-cost, energy-efficient, and direct conversion method for cellulose to HMF is still
a challenge to researchers in the field.

Ionic liquids (ILs) are being investigated as effective low-impact solvents for the conversion
of cellulose due to being relatively easy to handle, recyclable, and in possession of a negligible
vapor pressure. Moreover, ILs have an ability to solubilize low-toxicity metal catalysts for the direct
conversion of cellulose to value-added chemicals. However, most published papers focus mainly
on the advantages of ionic liquids in the separation of cellulose from lignocellulosic biomass over
traditional methods [6–9].
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From previous studies it appears that when using cellulose as a feedstock for HMF formation,
the key steps are the dissolution and depolymerisation of cellulose to glucose monomers and
not the isomerization to fructose and subsequent dehydration of fructose to HMF. Cellulose has
an abundant number of intra- and intermolecular hydrogen bonds that make it intrinsically recalcitrant
to depolymerize which is why ionic liquids as solvents can provide a solution due to their specific
ability to dissolve the compound [10]. ILs appear to be even more advantageous in overcoming these
problems as they can act as both solvents and catalysts [7]. The catalytic conversion of biomass-derived
carbohydrates to value-added chemicals is a commercially important reaction and requires the use of
both Lewis and Brønsted acids. Multifunctional ILs with both types of acidity are promising catalysts
as well as solvents for the one-pot conversion of glucose to value-added chemicals.

Until now, the production of HMF with glucose as a feedstock has efficiently used chromium
chloride catalyst together with ionic liquids. Zhao et al. [11] were the first to report an unparalleled yield
of 69% HMF catalyzed by chromium (II) chloride (CrCl2) in a medium of 1-ethyl-3-methylimidazolium
chloride ([EMIM]Cl) at 100 ◦C for 3 h. Recently, the dehydration of glucose to HMF with a yield of
about 67% was achieved in [EMIM]Cl and N,N-dimethylacetamide (DMA) by using CrCl2 or CrCl3
at 100 ◦C for 6 h [12]. Dehydration of cellulose to HMF with a yield of about 89% was achieved in
[EMIM]Cl by using CrCl2 at 120 ◦C for 6 h [13]).

The catalytic activity of a ZnCl3-containing IL was found to be highly Lewis acidic, and was the
controlling parameter for glucose conversion, resulting in yields of 13.4%, 23.8%, and 67.1% of HMF,
levulinic acid (LA) and formic acid (FA), respectively. These multifunctional chlorometallate ILs were
found to be recyclable with no loss of metal chloride from their anion [14].

Brønsted acidic ionic liquids (BAILs) showed a very good catalytic effect on the conversion of
raw biomass to C5 sugars and furfural. In water medium the remarkably high yield of C5 sugars
from bagasse, 88%, was obtained using 1-methyl-3(3-sulfopropyl)-imidazolium hydrogen sulfate
([C3SO3HMIM][HSO4]). Similarly, with this BAIL, a high yield (73%) of furfural was obtained in the
one-pot method using a water/toluene biphasic solvent system [15].

Calculations revealed the dependence of the catalytic performance of [C3SO3HMIM][HSO4] BAIL
on the acidity and nucleophilicity of its constituent ions [16].

1,1,3,3-tetramethylguanidine tetrafluoroborate ([TMG]BF4) as a solvent was confirmed to exhibit
excellent catalytic activity in the conversion of C6 carbohydrates to HMF. The HMF yields from the
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conversion of fructose, glucose, cellobiose, and microcrystalline cellulose (MCC) were 74%, 27%, 20%,
and 18%, respectively [17].

The search for effective catalysts has brought polyoxometalates–anionic metal oxides under
consideration because of their unique properties, such as strong Brønsted acidity, good oxidizing
ability, high water tolerance, low corrosiveness, and recoverability. In addition, POMs have
exhibited a promising performance in the transformation of cellulose into platform chemicals in
both homogeneous and heterogeneous systems [18].

A review by Deng et al. [19] highlights the following good catalytic properties of POMs in the
conversion of cellulose to platform chemicals:

1. strong Brønsted acidity;
2. the capability to activate oxidants such as O2 and H2O2 for selective oxidation;
3. high water tolerance;
4. tunable acidity, redox potential, and solubility in various media, which allow the rational design

of active sites on molecular and atomic scales;
5. high thermal and oxidative stability as compared with common molecular catalysts such as

organometallic complexes and enzymes;
6. ease of handling and separation, and the relatively low corrosiveness, possibly owing to the

generated corrosion-inhibiting films, which allow them to act as environmentally friendly
liquid-phase catalysts, unlike mineral acids.

Another approach is to use task-specific ionic liquids with polyoxometalates (POMs) contained
in them. Due to their high negative charge and large metal-oxide framework, POMs can react with
a variety of cationic organic groups to form novel functional ionic liquids, POMs-ILs. IL cations with
various structures and properties can provide organic blocks to modify POM catalysts, thanks to their
acidity, polarity, solubility, redox properties, and surface structures.

Polyoxomethalates-based ionic liquids (POM-IL) as solid acid catalysts have been used for the
direct conversion of fructose to HMF. The phosphotungstic acid (HPW)-derived ionic liquid shows
the highest catalytic performance (up to 99% of the yield) in the formation of HMF. In this study,
the catalyst afforded a good yield of HMF from inulin (76%) and sucrose (45%) as well [20].

In another work [21], POM-IL were synthesized and employed for the one-pot dissolution and
conversion of powdered switchgrass biomass. For comparison purposes, Avicel Cellulose was also
treated under identical conditions. The most promising for biomass conversion was found to be the
combination of phosphotungstic acid hydrate and 1-butyl-3-methylimidazolium bromide. Avicel
Cellulose was then utilized for the hydrolysis at 200 ◦C for 120 min, and as a result, approximately
31 wt % of the biomass and 13 wt % of Avicel Cellulose were converted to water-soluble products; i.e.,
sugars obtained from the deconstructed cellulose [21].

There are some other examples where heteropolyacids act as efficient catalysts for the conversion
of glucose. For example, a 98% conversion of glucose to HMF in ionic liquids and a 99% selectivity of
HMF were attained after a 3 h reaction time at 393 K by using 12-molybdophosphoric acid in a mixture
of either 1-ethyl-3-methylimidazolium or 1-butyl-3-methylimidazolium chloride with acetonitrile as
a co-solvent [22].

Analysis of ILs-containing samples where capillary electrophoresis (CE) is proposed as an effective
method for the simultaneous determination of mono-, di- and oligosaccharides, as well as HMF and
organic acids (acetic and levulinic acids can be formed during degradation of HMF), is no easy
task [23,24]. The objective of this case study was to compare molybdenum and tungsten oxide-based
POM-ILs catalytic performance with metal catalysts, such as CrCl3, ZnCl2 and MgCl2 using ILs
as solvents.
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2. Results and Discussion

The main goal was to monitor the transformation of microcrystalline cellulose to HMF via glucose
and fructose by different widely-studied catalysts and compare the results with molybdenum and
tungsten oxide-based POMs-ILs. Although the isomerization and epimerization of glucose might occur,
the formation of fructose predominated. The formation of fructose via isomerization required some
reorganization of the intermediate, whereas the formation of mannose is reported through rotation
around the C2–C3 bond [25]. One of the glucose isomerization reaction pathways is analogous to that
observed in metalloenzymes, such as D-xylose isomerase (XI), which contain two divalent Lewis acid
metal centers (Mg2+ or Mn2+) confined within a hydrophobic pocket [26,27]. The reaction pathway
includes the ring-opening of glucose and coordination with glucose O1 and O2 atoms prior to the
isomerization of the ring-opened glucose chain from position C2 to C1 (via 1,2 intramolecular hydride
shift) [28].

Table 1 (Table S1) shows, the conversion of cellulose to HMF in [BMIM]Cl at 100 ◦C for 24 h with
ZnCl2, MgCl2, CrCl3, molybdenum and tungsten oxide-based POM-ILs as catalysts. In the case of
molybdenum and tungsten oxides-based POM-ILs the main products were monosaccharides. Table 1
also contains the total product yields where all of the obtained products are summarized.

Table 1. Glucose, mannose and 5-hydroxymethylfurfural (HMF) contents in cellulose samples degraded
in [BMIM]Cl using ZnCl2, MgCl2, CrCl3, tungsten (W-POM) and molybdenum (Mo-POM) oxide-based
polyoxometalates (POMs) as catalysts. Catalyst loading was 10 wt % from cellulose and cellulose
loading was 10 wt %.

Catalyst Glucose, % Mannose, % HMF, % Total Products Yield, %

No catalyst >0.04 >0.04 >0.04 >0.04
ZnCl2 >0.04 >0.04 4.64 4.64
MgCl2 >0.04 >0.04 3.78 3.78
CrCl3 >0.04 >0.04 55.3 55.3

W-POM 33.7 >0.04 5.82 39.5
Mo-POM 4.96 2.26 2.95 10.2

As expected, the sample with no catalyst did not contain any of the investigated products.
The tungsten oxide-based POM showed good activity for cellulose degradation, however, the overall
yield of products (glucose and HMF) remained 29% lower than that obtained with CrCl3 as a catalyst.
The main product formed was glucose instead of HMF. The molybdenum oxide-based POM was the
only catalyst that was able to epimerize glucose to mannose, while the latter accounted for 22% of the
products obtained. The catalytic activity of the molybdenum oxide-based POM remained remarkably
lower and the overall product yields (glucose, mannose and HMF) were 82% less compared to CrCl3.
The catalytic ability of MgCl2 and ZnCl2 were the lowest and HMF yields were 6.8% and 8.4% of that
obtained with CrCl3, respectively.

Some metal chlorides are very effective as catalysts for the synthesis of HMF in ILs [29,30].
The isomerization of glucose into fructose is favored by the presence of Lewis acid sites [25]. Figure 2
shows the mechanism proposed by Zhou et al. for the interaction of metal chlorides with glucose in
ILs such as [BMIM]Cl. According to this mechanism, good catalytic performance of CrCl3·6H2O may
be explained by the formation of a more stable metal chloride–glucose complex due to the stronger
coordination ability of Cl− with a chromium center [29–31].

Li et al. [32] demonstrated in their study that according to density functional theory (DFT)
calculations, isomerization of glucose to fructose over tungsten oxide-based catalysts is possible
because of Lewis acid sites (W6+), terminal W-oxo groups that are Lewis basic sites, and proton
mediators, such as “structural” and physisorbed water on the oxide surface. According to their study
the key aspect of the catalytic mechanism is the proton shift from C2 → C1 that is promoted by
a synergistic action of the Lewis acid sites, which is followed by a proton-transfer [32].
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Ju et al. [33] demonstrated in their 13C NMR study that molybdenum-based POMs are active and
selective catalysts for the epimerization of aldoses. The epimerization mechanism involves electron
transfer from the aldose to the molybdenum oxide octahedra surface units of the POM followed by
an intra molecular C1→ C2 carbon shift. They also report that replacing Mo with W in the Kegging
structure POM resulted in loss of the epimerization activity, indicating that the molybdenum octahedral
located in the cagelike structure of the POM play an important role in activating the epimerization of
glucose [33].

Nguyen et al. [34] demonstrated in their 13C NMR and 1H NMR study that glucose epimerization
to mannose using Lewis acids, such as MCl3 in aqueous phase (CrCl3 was also tested), proceeds
via two parallel mechanisms: first a reverse C2 → C1 hydride transfer followed by a C1 → C2
intramolecular carbon shift. They also report that MCl3 are also able to epimerize glucose to mannose
in low yields and since fructose formation is predominant, the hydride transfer is the more dominant
pathway of glucose conversion [34].
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Figure 2. Interaction of metal chlorides with glucose to produce HMF in CnMIM/MCl4 (n = 4,
1-n-butyl-3-methylimidazolium, [BMIM]Cl; M = Cr, Al and Fe) [35].

2.1. Reaction Time for POM-IL Catalysts

Figure 3 (Tables S2 and S3) shows the effect of time on the yield of glucose, mannose and HMF from
cellulose at 100 and 120 ◦C for 72 h using tungsten and molybdenum oxide-based POMs as catalysts.
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Figure 3. Conversion of cellulose to glucose, mannose and HMF in [BMIM]Cl at 100 and 120 ◦C by
using POMs based on (a) molybdenum oxide and (b) tungsten oxide. Catalyst loading was 10 wt %
from cellulose and cellulose loading was 10 wt % from solvent.
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In the case of the molybdenum oxide-based POM, prolonging the reaction time improved the
HMF yield at 100 ◦C and the plateau in its concentration was not achieved by 72 h. The same trend
held true for the yields of glucose and mannose. At 120 ◦C, glucose and mannose were not detected
and the maximum HMF yield remained lower than the yield obtained at 100 ◦C. The maximum HMF
yield, which was achieved at 24 h, was 52% lower, and furthermore, it started to decrease with a longer
reaction time. In the case of the tungsten oxide-based POM, prolonging the reaction time at 100 ◦C
improved the glucose yield up to 24 h and then a plateau was achieved. The HMF yield increased
slowly for 72 h. Eminov et al. [7] reported that the highest HMF yield with CrCl3·6H2O as a catalyst in
[BMIM]Cl was obtained at 120 ◦C and it was 5 times higher than the yield obtained at 100 ◦C. In this
work, the temperature was also increased by 20 ◦C, yet the ability to convert glucose to HMF was
not improved. Instead, the opposite effect was observed: glucose was not present in any sample and
the maximum HMF yield was achieved at 8 h, remaining 81.4% lower than the result obtained at
100 ◦C. According to the literature the lower yield could be caused by humin formation at higher
temperatures [36]. Possible humin formation is also supported by the fact that a dark precipitate was
formed when the higher temperature was used.

2.2. Cellulose Loading and the Efficiency of POM Formation

Chidambaram and Bell [22] reported that in [BMIM]Cl at 120 ◦C 3% of glucose is converted to
humin even without using a catalyst. During the investigated process humins can be also formed due
to the oligomerization of glucose or fructose with itself as well as with HMF. However, this is inhibiting
the conversion of cellulose to shorter oligomers and glucose [36,37]. The formation of glucose and
conversion to the other products must be balanced well to avoid the formation of humins. Thereby,
cellulose loadings of 5 and 10 wt % were selected to investigate the effectivity of HMF formation at
120 ◦C.

Figure 4 (Table S4) shows the results for conversion of cellulose to HMF in [BMIM]Cl at 120 ◦C
by using tungsten and molybdenum oxide-based POMs at 5 wt % and 10 wt % substrate loading.
The HMF yield followed the same trend in spite of substrate loading for both the catalysts used. In the
case of the molybdenum oxide-based POM-IL the maximum HMF yield was achieved at 24 h and
was 52.2% of the maximum yield obtained with a 10 wt % catalyst loading. The maximum HMF
yield for the tungsten oxide-based catalyst was achieved during 8 h and made 46.8% of the yield
obtained with a 10% substrate loading. In addition, all samples obtained from 48 and 72 h experiments
contained dark colored precipitate that was most probably humin. Lowering the substrate loading did
not improve the conversion to HMF.
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Figure 5 (Tables S5 and S6) shows the cellulose degradation at 100 ◦C for 72 h to evaluate the
efficiency of POM formation in the IL medium. The catalyst (phosphotungstic acid hydrate) was added
either 20 min before or 3 h after the substrate.

The highest glucose and HMF yields were when the catalyst was added to the sample before the
substrate, with respective yields at 73.7% and 68.4% higher. These results show that the formation of
POM is more efficient when the catalyst was added before the substrate.Inorganics 2018, 6, x FOR PEER REVIEW  7 of 11 
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Figure 5. Efficiency of cellulose degradation in [BMIM]Cl at 100 ◦C by using phosphotungstic acid
hydrate added (a) 20 min before the substrate, (b) 3 h after the substrate. Catalyst loading was 10 wt %
from cellulose and cellulose loading was 10 wt % from solvent.

2.3. Effect of the Water Content of the Reaction Medium on the Conversion of Cellulose to HMF

Some data is available from the literature on metal catalysts. Zhang et al. [10] reported an increase
of HMF yield from glucose in the presence of a higher amount of water in [EMIM]Cl when CrCl2 was
used as a catalyst. From the other side, Zhao et al. [12] reported that water has no influence on reaction
yields. No data was available for POM-s. Since [BMIM]Cl is a hydroscopic ionic liquid, the influence of
water content on the reaction dynamics by using tungsten oxide-based POM as catalysts was studied
(Figure 6, Tables S7 and S8). The efficiency of HMF conversion and the influence of the reaction
medium water content on the process were evaluated at 100 ◦C for 72 h.
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Figure 6. Conversion of cellulose to glucose, mannose and HMF in [BMIM]Cl at 100 ◦C in the presence
of water (10 wt % of solvent) by using POMs based on (a) tungsten oxide, (b) molybdenum oxide.
Catalyst loading was 10 wt % from cellulose and cellulose loading was 10 wt % from solvent.

Tungsten (VI) and molybdenum (VI) are expected to form POMs with imidazolium-based ILs.
POMs are a class of anionic metal-oxygen clusters built by the connection of [MO]x polyhedral of the
early transition metals in their highest oxidation states [38].

In the case of the tungsten oxide-based POM, the highest glucose and HMF yields in the presence
of water were respectively 76.3% and 67.4% lower. The same tendency was observed with the
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molybdenum oxide-based POM-IL: the yields of glucose, mannose and HMF were correspondingly
72.7%, 59.2% and 52.8% lower in the presence of water. The experiment showed that increasing the
water content resulted in the loss of catalytic activity of both the catalysts used.

3. Materials and Methods

3.1. Catalytic Formation of HMF from Cellulose

All experiments were carried out under aerobic conditions using dried ionic liquids; however, IL
was handled and weighed as quickly as possible to prevent further absorption of water. All the catalysts
used were in their hydrated form. Catalysts CrCl3, ZnCl2, MgCl2, phosphotungstic acid hydrate,
phosphomolybdic acid hydrate and microcrystalline cellulose were obtained from Sigma-Aldrich
(Sigma-Aldrich, Steinheim, Germany) and were used as received. [BMIM]Cl was obtained from IoLiTec
(Ionic Liquids Technologies GmbH, Heilbronn, Germany) and was vacuum-dried before use. The IL
water content, which was checked by Karl–Fischer–Titration, was 0.6–0.7%. Catalyst loading was
10 wt % of the substrate in all cases, the substrate loading was 10 wt % from the solvent in most cases, if
not otherwise stated, and the sample typically contained 1 g of IL. The experiments were carried out on
a magnetic stirrer plate at 100 or 120 ◦C in open flasks with constant stirring. All the concentrations of
oligo- and monosaccharides and HMF in reaction media were determined by CE and were analyzed at
least in triplicate [23]. At first, the catalyst was dissolved in IL and after 20 min the cellulose (substrate)
was added to the reaction mixture. The samples to compare different catalysts (Table 1) were collected
at 24 h after the addition of cellulose. Unusually, a long reaction time (considering the speed of CrCl3
catalyst) was chosen because preliminary testing showed a slow conversion for molybdenum and
tungsten oxide-based POMs.

3.2. Analysis

All the samples were analyzed by capillary electrophoresis and the yields were calculated based
on calibration curves constructed using authentic standards. CE separations were performed using
an Agilent 3D instrument (Agilent Technologies, Waldbronn, Germany) equipped with a diode array
UV/Vis detector. Data acquisition and instrument control were carried out using Agilent Technologies
HP 3D Chemstation software. The separation was performed using a fused silica capillary with
an effective length of 61.5 cm (total length 70 cm) and ID of 22.5 µm (Polymicro Technologies Inc.,
Wilmington, DE, USA). Capillary walls contained a semi-permanent coating with [C14MIM]Cl that
was added to the background electrolyte (BGE). The BGE was composed of 138 mM NaOH, 40 mM
maleic acid and 5 mM [C14MIM]Cl. The samples were injected hydrodynamically under a pressure
of 50 mbar for 20 s and the separations were performed at 25 ◦C by using a voltage of −21 kV. The
detection wavelength was 210 nm in the case of carbohydrates and 270 nm for HMF. Before each run
the capillary was filled with BGE for 7 min and between the runs it was flushed with 1 M NaOH for 2
min and ultrapure water for 3 min. BGE was prepared on the first day and stored at room temperature
for one month. All these conditions were developed in our previous study [23]. Standards used to
construct calibration curves and BGE substances, namely D-(+)-glucose, D-(−)-fructose, D-(+)-mannose,
D-(+)-cellobiose, sucrose, HMF, maleic acid and NaOH, were obtained from Sigma-Aldrich and were
used as received. [C14MIM]Cl was obtained from IoLiTec and was vacuum dried before use.

4. Conclusions

It has been shown that tungsten and molybdenum oxide-based polyoxometalates were able to
decompose cellulose. The main decomposition products were carbohydrates such as glucose and
mannose. The ability of the polyoxometalates to convert glucose to 5-hydroxymethylfurfural remained
low in the mild conditions used and the overall product yields with the use of the tungsten oxide-based
polyoxometalates remained 28.6% lower compared to the yield obtained with CrCl3. It was expected
that increasing the temperature would improve the conversion of HMF but, surprisingly, increasing
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the temperature by 20 ◦C did not increase the HMF outcome. The increase of the water content of the
reaction medium, an influencing factor in fructose dehydration, resulted in the loss of catalytic activity
of tungsten and molybdenum oxide-based polyoxometalates.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/6/3/78/s1,
Table S1: Glucose, mannose and HMF contents in cellulose samples degraded in [BMIM]Cl using ZnCl2, MgCl2,
CrCl3, tungsten (W-POM) and molybdenum (Mo-POM) oxide-based POMs as catalysts, Table S2: Conversion of
cellulose to glucose, mannose and HMF in [BMIM]Cl at 100 and 120 ◦C by using POMs based on molybdenum
oxide, Table S3: Conversion of cellulose to glucose, mannose and HMF in [BMIM]Cl at 100 and 120 ◦C by using
POMs based on tungsten oxide, Table S4: Efficiency of cellulose degradation in [BMIM]Cl at 100◦C by using
phosphotungstic acid hydrate added 20 min before the substrate, Table S5: Conversion of cellulose to HMF in
[BMIM]Cl at 120◦C by using tungsten and molybdenum oxides-based POMs at 5 and 10% substrate loading,
Table S6: Efficiency of cellulose degradation in [BMIM]Cl at 100◦C by using phosphotungstic acid hydrate added
3 h after the substrate, Table S7: Conversion of cellulose to glucose, mannose and HMF in [BMIM]Cl at 100 ◦C
in the presence of water (10 wt % of solvent) by using POMs based on tungsten oxide, Table S8: Conversion of
cellulose to glucose, mannose and HMF in [BMIM]Cl at 100 ◦C in the presence of water (10 wt % of solvent) by
using POMs based on (a) tungsten oxide, (b) molybdenum oxide.
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