
inorganics

Article

Gd3Li3Te2O12:U6+,Eu3+: A Tunable Red Emitting
Garnet Showing Efficient U6+ to Eu3+ Energy Transfer
at Room Temperature

David Böhnisch * ID , Juri Rosenboom, Thomas Jansen ID and Thomas Jüstel * ID

Department of Chemical Engineering, Münster University of Applied Sciences, Stegerwaldstrasse 39,
D-48565 Steinfurt, Germany; juri.rosenboom@fh-muenster.de (J.R.); t.jansen@fh-muenster.de (T.J.)
* Correspondence: boehnisch.david@fh-muenster.de (D.B.); tj@fh-muenster.de (T.J.)

Received: 30 July 2018; Accepted: 21 August 2018; Published: 23 August 2018
����������
�������

Abstract: Since the invention of fluorescent light sources, there is strong interest in Eu3+ activated
phosphors as they are able to provide a high color rendering index (CRI) and luminous efficacy,
which will also hold for phosphor converted light emitting diodes. Due to an efficient U6+ to Eu3+

energy transfer in Gd3Li3Te2O12:U6+,Eu3+, this inorganic composition shows red photoluminescence
peaking at 611 nm. That means Eu3+ photoluminescence can be nicely sensitized via excitation into
the U6+ excitation bands. Therefore, photoluminescence properties, such as temperature dependent
emission and emission lifetime measurements, are presented. Charge transfer bands were investigated
in detail. Additionally, density functional theory calculations reveal the band structure of the pure,
i.e., non-doped host material. Obtained theoretical results were evaluated experimentally by the aid
of diffuse UV reflectance spectroscopy.

Keywords: U6+ luminescence; Eu3+ luminescence; energy transfer; tunable emission spectra;
temperature and time resolved spectroscopy

1. Introduction

In gas discharge light sources, Eu3+ activated phosphors (e.g., Y2O3:Eu3+, (Y,Gd)BO3:Eu3+,
and Y(V,P)O4:Eu3+) are widely applied to generate the red fraction of the white lamp spectrum [1,2].
Due to insufficient absorption in the blue spectral range, these phosphors are not applicable in
combination with a blue emitting (In,Ga)N light emitting dioded (LED) [3–5]. Yet, line emitting Eu3+

activated phosphors possess promising properties such as high luminous efficacy, long-term stability,
and they are capable of providing a high color-rendering index [6,7]. To improve the absorption
cross-section, sensitizers like Bi3+ and Tb3+ are often used [6,8,9]. Additionally, Blasse and Krol
reported about an energy transfer from U6+ to Eu3+ in several compounds. However, this energy
transfer only occurs in most compounds at rather low temperatures [10,11]. To further investigate the
energy transfer from U6+ to Eu3+, we examined the luminescence properties of Gd3Li3Te2O12:U6+,Eu3+.
The luminescence properties of Gd3Li3Te2O12:U6+, as well as Gd3Li3Te2O12:Eu3+, were already
described a few decades ago, but a co-doped sample has not been investigated so far [12,13].
The yttrium analogue is also well known when doped with U6+ and Eu3+, respectively [14,15].
The excitation band of the uranate group in the Y3+ garnet is located at 325 nm and thus superimposes
with the 7F0 → 5HJ transitions of Eu3+ [14]. In case of the Gd3+ garnet, the excitation band is located at
340 nm, which allows one to solely excite the uranate group. This allows for a precise investigation
of the energy transfer. Thereby, we strive for a deeper insight into the U6+ to Eu3+ energy transfer.
Furthermore, we discuss the usefulness of U6+ as a sensitizer in the UV-A range for Eu3+ activated
red-emitting phosphors.
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The authors are aware that uranium is a radioactive and toxic element, so commercial use should
not be a priority. Depleted uranium, which consists mainly of U238 isotopes, shows an alpha decay for
the most part. With LED encapsulation, the alpha particles would not be emitted into the atmosphere,
but are captured by the encapsulation. Consequently, the radiation exposure will be almost zero.
Depleted uranium, however, is used as a ballast in space technology. No radiological and chemical
toxicities were detected there [16]. Recent calculations demonstrated that the theoretically used
amounts of uranium in LEDs would not even exceed the limits of German laws for 10 L of drinking
water. Therefore, from our point of view, it is reasonable to investigate U6+ as a sensitizer for Eu3+

phosphors [17].

2. Method of Calculation and Electronic Properties

The Cambridge Serial Total Energy Package (CASTEP) Module of Materials Studio 8.0
(Devoloped by Accelrys) was applied to execute DFT calculations. A non-local sX-LDA functional
(local density approximation, abbrv. LDA, with exchange contribution replaced by screeened exchange,
abbrv. sX) was applied to the Gd3Li3Te2O12 host structure [18–20]. The entire calculation process used a
plane-wave basis, linear response functions, norm-conserving pseudo potentials, Pulay density mixing
schemes, and fine interpolation methods. If density mixing was not applicable, all bands/ensemble
density functional theory (EDFT) was used. For a description of the interaction between the ionic
cores and the valence electrons, the norm-conserving pseudopotentials were applied. The following
electronic configurations were set in the calculations: Gd: [Xe] 4f75d16s2; Te: [Kr] 4d105s25p4;
Li: [He]2s1; O: [He] 2s22p4. The Monkhorst-Pack k-points were set to 10 × 10 × 10. The calculations
were performed for a cubic cell. The energy convergence parameter was 5 × 10−6.

The obtained band structure of Gd3Te2Li3O12 is depicted in Figure 1. The following direct band
gap was derived from the calculations and determined to be ≈5 eV. This allowed us to classify this
compound as a wide band-gap dielectric. Commonly, the usual LDA method underestimates the
real band gap. The mean variation goes up to 40% [20,21]. More accurate band gap values are more
likely to be expected with the sX-LDA approach. Therefore, we have selected the sX-LDA method for
the calculations. An approach using UV reflectance spectroscopy described by Jüstel et al. to derive
the optical band gap (Figure 2) served for a Kubelka-Muk transformed Tauc absorption spectrum.
These experimental results were compared with the theoretical values [22–25].
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Figure 1. The calculated band structure of Gd3Li3Te2O12. sX-LDA calculated electronic bands are
shown. The Fermi level is set to zero.

As demonstrated by the absorption spectrum (inset of Figure 2), the optical band gap amounts
to ≈5 eV, which is in good accordance with the calculated value obtained from the sX-LDA method.
The sX-LDA calculated density of states (DOS) diagrams are depicted in Figure 3. The conduction
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band mainly consisted of the Te 5s and 5p, as well as the Li 2s states. The valence band (VB) had
a width of ≈7 eV and exhibited several narrow sub-bands. The VB was dominated by O 2p states.
In addition, the Gd 4f states showed a noteworthy contribution to the VB. In between, the Te 4p states
had a major influence on the VB at around ≈6 eV. The wide band gap of the host, taken together with
the experimental excitation spectra of U6+ in Gd3Te2Li3O12, allowed for the conclusion that the energy
levels of the U6+ ion were located in the band gap.
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3. Results and Discussion

The recorded XRD patterns as depicted in Figure 4 indicate the formation of cubic Gd3Li3Te2O12

and Eu3Li3Te2O12 in the space group Ia3d [15,26]. As in a typical garnet structure, Li atoms occupied the
tetrahedral sites, and Te and Gd atoms were coordinated in octahedral and square antiprism geometry,
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respectively. Due to the coinciding ionic radii of Gd3+ (105 pm) and Eu3+ (106 pm) in eightfold
coordination, no changes in the structure could be observed upon substituting Gd3+ with Eu3+ [27].
The refined cell parameters of Gd3Li3Te2O12 with 1% U6+ were a = 1.2386 nm and V = 1.9003 nm3,
and for Eu3Li3Te2O12 with 1% U6+, a = 1.2423 nm and V = 1.9176 nm3, which nicely fit with literature
data published before [26]. The intermediate samples with different Eu3+ content showed a linear
behavior of the cell parameters. The critical U6+ concentration amounted to 1 mol % for the [TeO6]6−

site [14].
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and (Gd1−xEux)3Li3(Te0.99U0.01)2O12 with x = 0 . . . 1, as well as calculated reference pattern for Cu
Kα radiation.

SEM micrographs of the sample (Gd0.8Eu0.2)3Li3(Te0.99U0.01)2O12, as shown in Figure 5, reveal a
particle size of ≈1 µm, which form bigger agglomerates with a diameter of ≈20 µm. Samples doped
with U6+ had a beige body color under natural light, indicating an absorption in the blue spectral
range. Samples in the absence of U6+ exhibited a white body color.
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The body color could be derived from the reflectance spectra in Figure 6. Gd3Li3Te2O12 showed
one strong absorption band at 250 nm. This could be assigned to the O2− to Te6+ charge transfer
(CT) in the [TeO6]6− octahedron [13,28]. In addition, at 276 and 313 nm, Gd3+ transitions from the
ground state 8S7/2 to the 6IJ and 6PJ levels were observed. Incorporation of Eu3+ created an additional
band at 260 nm representing the CT from O2− to Eu3+. The typical 4f→ 4f transitions of Eu3+ were
also correspondingly present. U6+ doped samples exhibited several absorption bands in the UV and
blue–green spectral range. The precise assignment turned out to be difficult. Bands located in the
UV range could tentatively be assigned to parity-allowed CT transitions involving the 6d level of
U6+, whereas parity-forbidden transitions involving the 5f level generated the absorption bands in the
visible region [14,29].
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Figure 6. Diffuse reflectance spectra of Gd3Li3Te2O12 (orange line), Gd3Li3(Te0.99U0.01)2O12 (red line),
(Gd0.8Eu0.2)3Li3Te2O12 (black line), and (Gd0.8Eu0.2)3Li3(Te0.99U0.01)2O12 (dark red line).

The excitation and emission spectra of the single and co-doped samples are plotted in Figure 7.
Gd3Li3(Te0.99U0.01)2O12 showed parity-forbidden U6+ emission in the octahedral coordination,
peaking at 550 nm. At 3 K, a fine structure of the emission could be observed, revealing a zero-phonon
line at 18,498 cm−1 with a high intensity due to the low site symmetry of the Te6+ site (S6). Additionally,
vibronic modes coupled with the CT transition could be identified. It was possible to assign
some internal vibrational modes in the [UO6]6− octahedron. Other than with the UO2

2+ emission,
the coupling took place with more than one mode [14]. In addition, the ungerade vibrational modes
dominated the coupling mechanism [30]. For ν6 (T2u), ν4 (T1u), and ν3 (T1u), we found energy values
of 196, 299, and 576 cm−1, respectively. The basic nature of the U6+ emission process is still not
known. However, it was assumed that a charge-transfer transition between the O 2p and U 5f states
led to the green emission [31]. In addition, coupling with ungerade vibrational modes indicated a
parity-forbidden transition [32]. The emission spectra of the co-doped sample, as well as the Eu3+

doped sample, was dominated by the 5D0 → 7F2 transition resulting from a low symmetry of the
Gd3+ site (D2). The excitation spectrum of the co-doped sample was evidence for the U6+ to Eu3+

energy transfer. While monitoring the 5D0 → 7F2 transition of Eu3+, the parity-allowed CTs of U6+

were observed. In addition, the Gd3+ to U6+ energy transfer, as described earlier by Smit and Blasse,
was present [12]. Additionally, two excitation bands in the visible spectral range around 400 and
470 nm with rather low intensity could be observed, which match well with the diffuse reflectance
spectra. In order to reveal the energetic positions of the CT bands, excitation spectra at 3 K were
disentangled with the aid of Gaussian peak fitting. Figure 8a demonstrates that U6+ could be excited
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via three different U6+ CT bands, peaking at 30,821, 29,303, and 35,435 cm−1, as well as via the Te6+

CT band at 38,846 cm−1. The Eu3+ emission could be excited through the Te6+ CT band and the Eu3+

CT band located at 37,202 cm−1. The co-doped sample contained too many parameters, thus many
possibilities were available to fit with Gaussian components. Hence, here the U6+ CT band was shifted
from 35,435 towards 34,722 cm−1.Inorganics 2018, 6, x FOR PEER REVIEW  6 of 13 
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Emission spectra of the solid solution according to (Gd1−xEux)3Li3(Te0.99U0.01)2O12 with 0 ≤ x ≤ 1
are depicted in Figure 9 and unveil that a Eu3+ concentration of 20% yielded the highest emission
integral for the emission at 611 nm. With an increasing Eu3+ content, the emission integral of U6+

emission decreased, highlighting the energy transfer. In other words, after the excitation of the uranate
group, the absorbed energy was transferred to Eu3+. Therefore, the U6+ emission was hardly visible
at a Eu3+ concentration higher than 10%. The samples were thus capable of generating green to red
light under 338 nm excitation governed by the Eu3+ concentration. Color coordinates, as well as
the luminous efficacies and the external quantum efficiencies, of each sample are listed in Table 1.
We define the external quantum efficiency as the ratio of absorbed and emitted photons. The luminous
efficacy decreased with increasing Eu3+ content as the emission was shifted from the green to the red
spectral range, where the human eye is much less sensitive. The highest external quantum efficiency
was reached at 10% Eu3+ and amounted to 42%. The quantum efficiency was thus rather low due to
quenching of the U6+ CT process already at room temperature as well as some re-absorption in the red
region as visible in the diffuse reflectance spectra [12]. In addition, due to the synthesis, the uranate
group could show some mixed valence states, i.e., U5+/U6+. The resulting metal-to-metal charge
transfer would decrease the external quantum efficiency as well as explain the slightly brownish
body color. The quantum efficiency further decreased with increasing Eu3+ content. We thus suggest
that the introduction of Eu3+ generated traps in the host compound and thus increased the overall
defect concentration. Moreover, Eu3+ tends to show concentration quenching in some compounds,
which further reduces the external quantum efficiency at higher Eu3+ concentrations [4,6,9,33]. At first,
the traps were capable of inhibiting the quenching mechanism as we will discuss later. However,
at higher Eu3+ concentrations, the number of defects was too advanced.
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Table 1. External quantum efficiencies, color coordinates, and luminous efficacy of
(Gd1−xEux)3Li3(Te0.99U0.01)2O12 with 0 ≤ x ≤ 1 upon 338 nm excitation.

Eu3+ Conc. EQE CIE1931 Color Coordinate Luminous Efficacy
% (λEx = 338 nm) x y [lm/Wopt]

0 32 0.3812 0.6119 632
1 39 0.4194 0.5748 576
3 39 0.4655 0.5297 511
5 41 0.5031 0.4931 464

10 42 0.5514 0.4459 405
20 38 0.5921 0.4061 357
40 16 0.5933 0.4048 352
70 2 0.5747 0.4224 364
100 <1 0.6079 0.3855 271
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Fluorescence lifetime measurements monitoring the U6+ emission at 550 nm of co-doped
(Gd1−xEux)3Li3(Te0.99U0.01)2O12 with 0 ≤ x ≤ 0.2 were conducted and plotted in Figure 10.
The obtained decay curves with x > 0 could be well-fitted with a bi-exponential fitting function.
The bi-exponential curve shape reflected the energy transfer from U6+ to Eu3+. The single-doped
sample exhibited only a mono-exponential behavior. Therefore, co-doping with Eu3+ led to a second
mechanism in which manner the excited U6+ state could abate. The averaged fluorescence lifetimes τ
of the U6+ emissions are listed in Table 2. With increasing Eu3+ content, the fluorescence lifetimes of the
U6+ emission decrease. As energy transfer processes were often much faster than radiative transitions,
this proved the presence of an energy transfer from U6+ to Eu3+ [34].
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Table 2. Fluorescence lifetimes τ1 and τ2, as well as averaged lifetimes τ, of the U6+ emission in
(Gd1−xEux)3Li3(Te0.99U0.01)2O12.

Sample Fraction 1 τ1 Fraction 2 τ2 τ

(x) (%) (µs) (%) (µs) (µs)

0 100 127.5
1 78 107.8 22 186.8 125.2
3 58 88.8 42 163.7 120.2
5 43 71.0 57 146.1 113.7

10 40 61.6 60 144.0 111.0
20 36 52.4 64 138.7 108.1

The decay time of U6+ at 3 K was found to be ≈250 µs and was shorter than in other compounds,
e.g., ordered perovskites (300 µs), indicating a more allowed transition. Generally, the U6+ decay time
strongly depended on the site symmetry, which became shorter when inversion symmetry was no
longer present [31,32]. While U6+ was tentatively occupying the Te6+ site, it exhibited a local symmetry
of S6, which has no inversion center.

Emission spectra of U6+ at various temperatures are shown in Figure 11. At higher temperatures,
the typical spectral broadening was observed. Already at 150 K, distinct phonon coupled transitions
were visible. The determined emission integrals, as well as the emission lifetimes at different
temperatures of single-doped Gd3Li3(Te0.99U0.01)2O12, are depicted in Figure 12. The decrease
of the decay time over increasing temperature was probably due to an increase of the transition
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probability [33]. Due to orbital mixing, the parity-forbidden character was likely weakened, leading to
shorter decay times. The deviation from the sigmoidal shape at higher temperatures was tentatively
caused by another excited state, as presumed by Bleijenberg [35,36]. At higher temperatures,
another excited level was populated, which exhibited a different decay time. The thermal quenching
temperature T1/2 of the emission intensity depends on the energy difference between the position of
the excitation and emission band. With a difference of 11,825 cm−1, the quenching temperature should
be between 450 and 500 K, and thus lower than in Y3Li3Te2O12 (T1/2 = 540 K) due to longer Te–O bond
lengths in Gd3Li3Te2O12 [31]. The experimental results indicated a quenching temperature of around
475 K. Blasse also suggested that the process of temperature quenching occurs via three quenching
states in the configurational-coordinate diagram since the low energy gap between the ground state
and the emitting state would lead to a much lower quenching temperature [31]. Already at low
temperatures, quenching sets in, which might be defect related since the external quantum efficiencies
were rather low.
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Figure 13 shows the temperature dependence of the emission intensity of Eu3+ excited
by 338 nm radiation as well as emission lifetimes monitored at 611 nm of co-doped
(Gd0.8Eu0.2)3Li3(Te0.99U0.01)2O12. The sample shows the typical quenching behavior with a thermal
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quenching temperature of about 550 K. The quenching of the U6+ centered photoluminescence seemed
to not affect the energy transfer from U6+ to Eu3+. Thus, the energy transfer was a competitive process
for the quenching mechanism. When the temperature-dependent U6+ emission of the same sample
was investigated (Figure 14), it turned out that the quenching mechanism was somewhat hampered.
The emission integrals started to decrease faster than the single-doped sample, but changed over to a
plateau above 250 K. At higher temperatures, an increase could be observed. The decay measurements
could only be fitted with a tri-exponential fit, emphasizing that several energy levels were present.
The averaged decay lifetimes showed a similar behavior as the emission integrals. Due to orbital
mixing, which weakened the parity regulation, the averaged emission lifetimes exhibited a more rapid
decrease. At around 325 K, the lifetimes started to increase again, indicating that another energy level
was populated. This phenomenon was more strongly pronounced than in the single-doped sample.
The emission intensity, as well as the emission lifetimes, started to quench at around 475 K. Co-doping
the sample with Eu3+ might have introduced some traps that prevented the reach of the cross-over
point, which led to a relaxation into the ground-state level.
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4. Experimental Section

A solid solution series of (Gd1−xEux)3Li3Te2O12:U6+ was prepared using a conventional solid
state reaction. The U6+ concentration was set to 1 at % relative to the Te site to avoid possible
concentration quenching [14]. High purity reagents Gd2O3 (Treibacher, Althofen, Austria, 99.99%),
Li2CO3 (Alfa Aesar, Ward Hill, MA, USA, 99%), TeO2 (Alfa Aesar, 99.99%), Eu2O3 (Treibacher, 99.99%),
and UO2(NO3)2·6H2O (made of uranium metal, Merck KGaA, Darmstadt, Germany, 99.99%) were
weighed in stoichiometric amounts and rigorously mixed with hexane in an agate mortar. The dried
blends were transferred to corundum crucibles and fired at 900 ◦C for 10 h under flowing oxygen.
All samples containing U6+ exhibited a beige body color. The non-doped sample and the sample doped
only with Eu3+ showed a white body color.

Phase purity of the synthesized samples was controlled using powder X-ray diffraction (XRD).
All XRD patterns were recorded on a Panalytical (Almelo, The Netherlands) X’Pert PRO MPD
diffractometer working in Bragg-Brentano geometry using Cu Kα radiation.

Photoluminescence (PL) and photoluminescence excitation (PLE) spectra were recorded on an
Edinburgh Instruments (Livingston, UK) FLS980 spectrometer equipped with a Xe arc lamp (450 W)
and a Peltier cooled (−20 ◦C) single-photon counting photomultiplier (Hamamatsu (Hamamatsu,
Japan), R2658P). The emission spectra were corrected by applying a correction file obtained from a
tungsten incandescent lamp certified by the National Physical Laboratory UK.

For time resolved spectroscopy, a micro-second pulsed Xe lamp (Heraeus (Hanau, Germany)
µF920H) was used.

Temperature dependent PL spectra measurements from 77 to 500 K were performed using an
Oxford Instruments (Abingdon, UK) cryostat MicrostatN2. Liquid nitrogen was used as a cooling
agent. The temperature stabilization time was set to 30 s with a tolerance of ±3 K. Measurements
below 77 K were performed using an Oxford Instruments Optistat AC-V 12 closed cycle He-cryostat.

Diffuse reflectance spectra (DRS) were recorded on an Edinburgh Instruments FS920 spectrometer
equipped with a Xe arc lamp (450 W), a Peltier cooled (−20 ◦C) single-photon counting photomultiplier
(Hamamatsu R928), and a Spectralon (Labsphere, North Sutton, NH, USA) integration sphere.
BaSO4 (99.998%, Sigma Aldrich, St. Louis, MO, USA) was used as a reflectance standard.
External quantum efficiencies (eQE) were determined using the approach of Kawamura et al. [37].

Scanning electron microscopy (SEM) micrographs were recorded on a Zeiss (Oberkochen,
Germany) EVO MA10 equipped with a secondary electron detector. SEM was operated in high
vacuum mode (P = 10−7 Pa).

5. Conclusions

Solid solutions according to the formula (Gd1−xEux)3Li3(Te0.99U0.01)2O12 with x = 0 . . . 1 were
successfully synthesized via a conventional solid-state reaction. Diffuse UV reflectance spectroscopy,
as well as DFT calculations, revealed the band structure of the host. The band gap was determined to
be about 5 eV, both from theory and from experiment. Photoluminescence measurements revealed
that Gd3Li3Te2O12:U6+,Eu3+ was capable of generating green band and red line emission peaking at
550 and 611 nm, respectively. At low temperatures, vibronic modes coupled to U6+ emission became
visible, allowing the assignment of the energy of some ungerade vibrations. A distinct zero-phonon
line was observed at 540.60 nm. Several excitation bands could be assigned to CT transitions from O2-

to Te6+, U6+, and Eu3+, demonstrating the presence of efficient energy transfer from U6+ to Eu3+ even
at high temperatures. Temperature-resolved photoluminescence and emission lifetime measurements
confirmed the assumptions of Blasse and Bleijenberg concerning the energy level structure of U6+.
The thermal quenching temperature of the 4f–4f intraconfigurational transitions of Eu3+ was found to
be at 550 K, which was independent of the U6+ quenching mechanism. Finally, it turned out that the
introduction of Eu3+ into the host structure generated traps, which hampered the quenching of U6+.
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