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Abstract: Reaction of the o-[(o-hydroxyphenyl)methylideneamino]benzenesulfonic acid (H2L) (1)
with CuCl2·2H2O in the presence of pyridine (py) leads to [Cu(L)(py)(EtOH)] (2) which, upon further
reaction with 2,2’-bipyridine (bipy), pyrazine (pyr), or piperazine (pip), forms [Cu(L)(bipy)]·MeOH
(3), [Cu2(L)2(µ-pyr)(MeOH)2] (4), or [Cu2(L)2(µ-pip)(MeOH)2] (5), respectively. The Schiff base
(1) and the metal complexes (2–5) are stabilized by a number of non-covalent interactions to form
interesting H-bonded multidimensional polymeric networks (except 3), such as zigzag 1D chain
(in 1), linear 1D chain (in 2), hacksaw double chain 1D (in 4) and 2D motifs (in 5). These copper(II)
complexes (2–5) catalyze the peroxidative oxidation of cyclic hydrocarbons (cyclooctane, cyclohexane,
and cyclohexene) to the corresponding products (alcohol and ketone from alkane; alcohols, ketone,
and epoxide from alkene), under mild conditions. For the oxidation of cyclooctane with hydrogen
peroxide as oxidant, used as a model reaction, the best yields were generally achieved for complex 3
in the absence of any promoter (20%) or in the presence of py or HNO3 (26% or 30%, respectively),
whereas 2 displayed the highest catalytic activity in the presence of HNO3 (35%). While the
catalytic reactions were significantly faster with py, the best product yields were achieved with
the acidic additive.

Keywords: sulfonated Schiff base; copper(II) compounds; pyridine; 2,2’-bipyridine; pyrazine;
piperazine; hydrocarbon oxidation

1. Introduction

Over the past decades, there has been a marked development in the coordination chemistry of
Schiff base metal complexes [1–29], encouraged by the variety of their solid-state structures [1–3],
as well as magnetic [4–9], fluorescence [10–12], and catalytic [1,13–15] properties. Though a large
number of Schiff bases of various types, including those containing the carboxylic acid group, has been
reported [1–18], sulfonic acid containing Schiff bases are rare and only a few metal complexes have
been investigated [19–29]. Moreover, intra- and intermolecular interactions via sulfonate oxygens
could generate interesting multinuclear copper complexes [19,20,22,28] which may be useful for further
catalytic application.

In fact, sulfonated Schiff bases display versatile complex formation abilities leading, for
example, to mono-, di-, or polymeric structures [19–29]. In an earlier study, we reported that
the Schiff base 2-[(2-hydroxyphenyl)methylideneamino]benzenesulfonic acid (H2L) can form
solvatomorphs which have identical basic structures but with different non-coordinated solvents [22].
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We also obtained a bis(µ4-(ae)-cyclohexane-1,4-dicarboxylato-O,O′,O”,O′ ′ ′ ′)-tetracopper [19,23],
two carboxylate-sulfonated copper polymers [28], and three pseudohalide-bridged copper
complexes [20] containing 2-(2-pyridylmethyleneamino)benzenesulfonate. The tetranuclear [19,23]
and polymeric copper complexes were efficient catalysts [28] for the cyclohexane
oxidation in both conventional (CH3CN/H2O) [19,28] and non-conventional (ionic liquid)
solvents [23,28], whereas the pseudohalide complexes [20] were found to catalyze the Henry
reaction in aqueous medium. Recently, we reported another new sulfonated Schiff base,
2-[(2-hydroxy-3-methoxyphenyl)methylideneamino]benzenesulfonic acid, which was utilized
to synthesize a few mono- and dicopper complexes [24,27]. Interestingly, the dimeric complexes were
found to be highly efficient catalysts for the microwave-assisted oxidation of 1-phenylethanol under
mild conditions and in the absence of any additive [24].

The curious molecular structures and catalytic properties of such compounds [19–29] inspired us
(i) to synthesize other copper complexes of the sulfonated Schiff base ligand L2− and (ii) to apply them
in alkane oxidation studies.

Saturated hydrocarbons are rarely used as starting materials in the chemical industry due to
their low reactivity, despite being the most abundant and least expensive potential carbon sources
for the organic synthesis of functionalized valuable products [30–43]. Peroxidative oxidation [30–67]
of alkanes is a promising approach for the synthesis of the corresponding alcohols and ketones.
In particular, oxidation with environmentally friendly oxidants, such as hydrogen peroxide
(H2O2) [30–67] or dioxygen [68–71], is a topic of great interest, and the use of copper complexes
as catalysts [19,28,44,45,47,48] is particularly promising. However, the catalytic efficiency has still to
be improved, which accounts for another aim of the current study.

Moreover, in view of the multi-copper nature of particulate methane monooxygenase (pMMO),
an enzyme that catalyzes the oxidation of alkanes to alcohols, particular attention [47–50,72–75] should
be paid to multinuclear copper catalysts, a topic which also concerns this work.

Hence, due to the above considerations, and also inspired by our previous successful catalytic
application of a tetracopper(II) complex containing a mixed ligand (carboxylate and sulfonate)
in the peroxidative oxidation of cyclohexane [19] and by the fact that N-heterocyclic bases
can promote the reaction [30–67], we anticipated that copper(II) complexes bearing a mixed
ligand system of sulfonate and a N-heterocyclic base could be also particularly active for alkane
oxidation. Thus, in the present study, we investigate the reactions of the sulfonated Schiff base
2-[(2-hydroxyphenyl)methylideneamino]benzenesulfonic acid (H2L, 1) [21,22] with CuCl2·2H2O and a
N-heterocyclic base, such as pyridine (py), 2,2’-bipyrdine (bipy), pyrazine (pyr), or piperazine (pip)
(Scheme 1). Herein, we report the syntheses, structures, and hydrocarbon oxidation properties of
the two new mononuclear complexes [Cu(L)(py)(EtOH)] (2) and [Cu(L)(bipy)]·MeOH (3) and the
two new dinuclear compounds [Cu2(L)2(µ-pyr)(MeOH)2] (4) and [Cu2(L)2(µ-pip)(MeOH)2] (5) with
such ligands.
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Scheme 1. Syntheses of 2–5 from 1.

2. Results and Discussion

2.1. Syntheses and Characterization

The [1+1] condensation of salicylaldehyde and 2-aminobenzenesulfonic acid in aqueous methanol
(1:2) leads to the formation of the Schiff base H2L (1) [21,22] which, upon reaction with CuCl2·2H2O
in ethanol and in the presence of pyridine (py), produces the mononuclear copper(II) complex
[Cu(L)(py)(EtOH)] (2) (Scheme 1). Furthermore, the replacement of the pyridine moiety of 2 with
2,2’-bipyridine (bipy), pyrazine (pyr), and piperazine (pip) in methanol produces the corresponding
complexes [Cu(L)(bipy)]·MeOH (3), [Cu2(L)2(µ-pyr)(MeOH)2] (4), and [Cu2(L)2(µ-pip)(MeOH)2]
(5), which were characterized by elemental microanalysis, IR spectroscopy, and single crystal X-ray
diffraction study. The Schiff base H2L (1) was characterized by both NMR and single crystal X-ray
diffraction analyses. All the compounds including the Schiff base were isolated in very good yields
(92–78%).

The IR spectrum of the Schiff base H2L (1) exhibits the expected bands at 1638 cm−1 and 1376 cm−1,
which are indicative of the C=N bond and the sulfonate group, respectively. In the IR spectra of the
metal complexes (2–5), the ν(C=N) bands are observed in the range of 1606–1613 cm−1, whereas the
sulfonate groups are evidenced by the medium intense bands at the 1382–1386 cm−1 range.

2.2. Description of Crystal Structures of 1–5

2.2.1. Crystal Structure of H2L (1)

The asymmetric unit of H2L (1) (Figure 1) contains two symmetry-independent molecules of
the Schiff base with relative positions slightly shifted from perpendicular as evidenced by the angle
of 80.46◦ between the least-square planes of the two units. The two molecules superimpose quite
well only with a slight discrepancy in the angle between the least-square planes of the aromatic rings,
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which assume values of 8.41◦ for one molecule and 10.98◦ for the other (Table 1). The azomethine
linkages in 1 are evident from the N–C bond lengths (1.299(4) and 1.294(4) Å (Table 1). The molecules
are stabilized by intramolecular hydrogen bonds involving the imino nitrogen atoms (as donors)
and both the phenolic and sulfonate oxygen atoms (as acceptors) (Figure 1; Table S1, Supplementary
Materials). The crystal structure is stabilized by intermolecular H-contacts involving the phenolic
oxygen atoms (as donor) of one molecule and the sulfonate oxygen atoms (as acceptor) of another
molecule (Figure 1).Inorganics 2019, 7, x FOR PEER REVIEW  4 of 19 
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Figure 1. Ball and stick presentation of the crystal structure of 1. All H-atoms except those participating
in H-bonding are omitted for clarity. Symmetry: −x, 1−y, −z.

Table 1. Comparison of some selected features of Schiff base 1 and complexes 2–5. Distances in (Å)
and angles in (◦).

1 2 3 4 5

In the Organic Moiety H2L (or L2−)

C−Nimino
1.299(4)
1.294(4) 1.303(4) 1.292(3) 1.301(3) 1.309(5)

Caromatic−Nimino
1.433(4)
1.438(4) 1.429(4) 1.434(3) 1.426(3) 1.429(5)

Coplanarity of aromatic rings
(◦)

8.41
10.98 58.19 62.01 51.04 51.81

Surrounding the Copper Atom

Cu−Nimino - 1.976(2) 1.9837(19) 1.9769(17) 1.975(3)

Cu−Osulfonato - 2.014(2) 2.3789(18) 1.9733(16) 2.019(3)

Cu−Ophenoxido - 1.898(2) 1.8942(18) 1.8770(16) 1.900(3)

Cu−Ncoligand - 2.015(3) 2.009(2)
2.061(2) 2.0709(17) 2.004(3)

Cu−Ocoligand - 2.290(2) - 2.3760(18) 2.303(3)

∠N−Cu−N - 177.98(10)
79.71(8)

102.71(8)
170.85(8)

174.06(7) 177.57(14)

∠Osulfonato−Cu−
Ophenoxido

- 157.30(9) 113.95(8) 158.97(8) 151.07(14)

Cu coordination environment - N2O3 N3O2 N2O3 N2O3

τ5 - 0.35 0.27 0.25 0.44

Cu···Cu (minimum) - 7.541 8.110 6.919 6.782
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2.2.2. Crystal Structures of 2–5

The crystal structures of [Cu(L)(py)(EtOH)] (2), [Cu(L)(bipy)]·MeOH (3),
[Cu2(L)2(µ-pyr)(MeOH)2] (4), and [Cu2(L)2(µ-pip)(MeOH)2] (5) are shown in Figure 2. The single
crystal X-ray diffraction analyses show that 2 and 3 are mononuclear copper(II) complexes, whereas 4
and 5 are dicopper(II) compounds bridged by pyrazine and piperazine, respectively. In all cases, the
metal center adopts distorted square pyramid geometries (τ5 parameter in the 0.25–0.44 range, Table 1)
and the L2− ligand acts as an O,N,O-chelator by means of the phenolic O-, the imine N-, and one
sulfonate O-atoms. The coordination sphere of copper is then fulfilled either by another chelating
molecule (3) leading to a N3O2 metal environment, or by a solvent and one more organic moiety (2, 4,
and 5) and forming N2O3 settings (Table 1). Probably as a result of the chelating mode of bipyridine,
compound 3 is the only one in which the L2− ligand occupies both equatorial (Ophenoxido and Nimino

atoms) and apical (Osulfonato) sites, thus contrasting with the other complexes (2, 4, and 5) in which it
occupies three of the equatorial positions.
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Figure 2. Idealized ball and stick presentation of the crystal structures of 2–5. All H-atoms except those
participating in H-bonding are omitted for clarity. Symmetry: x, y, −1+z (in 3), 1−x, −y, 1−z (in 4),
and 2−x, −y, −z (in 5).

The Cu–Nimino bond distances in the structures of all complexes lie in the 1.975(3)–1.9837(19) Å
range (Table 1) and are slightly shorter than those involving the metal and the other N-ligands
(2.004(3)–2.0709(17) Å). Concerning the copper–oxygen lengths, the Cu–Ophenoxido distances
(1.8770(16)–1.900(3) Å) are considerably shorter than the Cu−Osulfonato ones whose minimum value is
1.9733(16) Å. In this respect, the longest value of 2.3789(18) Å found for 3 relates with the metal–oxygen
distances for the axial sites (i.e., Cu−Ocoligand lengths, Table 1) and is due to the Jahn–Teller effect.

2.2.3. Oxidation of Hydrocarbons

The catalytic properties of the copper(II) complexes (2–5) in the peroxidative oxidation of
hydrocarbons (cyclooctane, cyclohexane, and cyclohexene) to the corresponding alcohols, ketone,
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and epoxide, under mild conditions, were evaluated. Inspired by our previous findings [19,53],
we chose as a model system the reaction of peroxidative oxidation of cyclooctane using hydrogen
peroxide as oxidant. The catalytic procedure ran at 60 ◦C in acetonitrile and the reactions were
monitored by GC with a typical catalyst loading (per copper) of approximately 1 × 10−3 M (Scheme 2).Inorganics 2019, 7, x FOR PEER REVIEW  6 of 19 
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Scheme 2. Peroxidative oxidation of hydrocarbons [(a) cyclohexane (n = 1) or cyclooctane (n = 3)
and (b) cyclohexene] to the corresponding products, with aqueous H2O2, catalyzed by the copper(II)
complexes 2–5, in the presence or absence of any additive, under typical mild reaction conditions of
this work.

Among all the catalysts studied in this reaction, the mononuclear complex 3 was the most effective
one. In fact, after 1 h of reaction time and in the absence of any additive, it led to an overall turnover
number (TON) up to 50 moles of products per mole of catalyst (Table 2, entry 11) and an overall yield
of approximately 20% based on cyclooctane. Compound 5 exhibited a lower activity, followed by
compounds 2 and 4 that were the least active ones under these conditions (Table 3, entry 15; Table 4,
entry 14; Table 5, entry 14; respectively). The yield accumulation of the oxygenates (cyclooctanol and
cyclooctanone) over the reaction time of 2–5 in the model system is shown in Figure 3.
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Table 2. Effect of the presence of an additive in the oxidation of cyclooctane catalyzed by 3 a.

No Additive py HNO3

Entry Time
(min)

Yield
b (%)

Selectivity
c TON d Yield

b (%)
Selectivity

c TON d Yield
b (%)

Selectivity
c TON d

1 0 0 - 0 0 - 0 0 - 0

2 1 3 0:100 8

3 3 9 1:99 23

4 4 3 1:99 8 14 4:96 35 13 1:99 31

5 5.5 23 7:93 58

6 7 26 11:89 65

7 9 8 3:97 20 26 14:86 65

8 10 26 21:79 65 14 2:98 35

9 15 14 5:95 35 26 24:76 65

10 30 18 6:94 45 26 28:72 65 17 3:97 42

11 60 20 10:90 50 26 27:73 65

12 90 20 17:83 50 26 29:71 65 19 5:95 47

13 2 × 60 20 20:80 50 26 34:66 65 20 7:93 50

14 4 × 60 20 23:77 50 26 37:63 65 22 10:90 56

15 5.5 ×
60 23 10:90 58

16 8 × 60 20 27:73 51 26 39:61 65 25 11:89 63

17 10 ×
60 27 11:89 68

18 16 ×
60 30 13:87 74

19 21.5 ×
60 26 20:80 65

20 24 ×
60 20 31:69 50 26 53:47 65 25 20:80 62

21 29.5 ×
60 20 23:77 50

22 32 ×
60 20 36:64 51 26 54:46 65 18 25:75 46

a Reaction conditions: cyclooctane (0.25 M), complex 3 (10−3 M), additive (0.072 M), H2O2 (1.2 M) in acetonitrile at 60
◦C; total volume of reaction mixture is 10 mL. b Amounts of cyclooctanone and cyclooctanol were determined after
reduction of the aliquots with solid PPh3 (for this method, see references [61–65]). c Cyclooctanone/cyclooctanol
ratio. d Turnover number of the catalyst (sum of moles of all products per mole of 3).

Blank experiments confirmed that no cyclooctanol or cyclooctanone are formed appreciably in the
absence of the complexes (2–5). The Schiff base H2L (1) is inactive (Table S2, Supplementary Materials)
toward the cyclooctane oxidation, whereas CuCl2 produces insignificant amounts of products, that is,
<3% of total yield can be detected.

The peroxidative oxidation of hydrocarbons catalyzed, for example, by some copper complexes
can proceed more efficiently in the presence of a suitable additive [53], and thus we tested pyridine
(py) and HNO3 as a basic and an acid promoter, respectively.

For all the complexes 2–5, the presence of such additives resulted, in general, in an enhancement
of the maximum yield and TON values, mainly in the case of HNO3 (Tables 2–5). Changes in selectivity
were also observed.

All the catalysts 2–5 exhibit comparable overall yields (Tables 2–5) in the presence of pyridine
after a sufficiently long reaction time (e.g., 24 h). However, the differences in reaction rates are clearly
observed in the first 15 min-period (Figure 4).
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Table 3. Effect of the presence of an additive in the oxidation of cyclooctane catalyzed by 5 a.

No Additive py HNO3

Entry Time(min) Yield
b (%)

Selectivity
c TON d Yield

b (%)
Selectivity

c TON d Yield
b (%)

Selectivity
c TON d

1 0 0 - 0 0 - 0 0 - 0

2 1 1 0:100 3

3 3 5 3:97 13

4 4 7 4:96 17

5 6 13 5:95 33

6 8 18 7:93 45

7 10 23 8:92 58

8 15 23 16:84 58 3 0:100 8

9 30 6 2:98 15 23 21:79 58 6 0:100 15

10 60 7 3:97 18 23 26:74 58 8 1:98 19

11 90 23 27:73 58 10 1:98 25

12 2 × 60 9 3:97 23 23 29:71 58 12 2:98 31

13 3 × 60 19 47

14 4 × 60 11 9:91 28 23 34:66 58 30 3:97 76

15 8 × 60 13 23:77 32 23 40:60 58 26 23:77 64

16 10 × 60 13 28:72 31

17 24 × 60 13 34:66 32 23 56:44 58 15 34:66 37

18 32 × 60 13 39:61 31 23 61:39 58 13 39:61 32
a Reaction conditions: cyclooctane (0.25 M), complex 5 (10−3 M per copper), additive (0.072 M), H2O2 (1.2 M) in
acetonitrile at 60 ◦C; total volume of reaction mixture is 10 mL. b Amounts of cyclooctanone and cyclooctanol
were determined after reduction of the aliquots with solid PPh3 (for this method, see references [61–65]). c

Cyclooctanone/cyclooctanol ratio. d Turnover number of the catalyst (sum of moles of all products per mole of 5).

Table 4. Effect of the presence of an additive in the oxidation of cyclooctane catalyzed by 2 a.

No Additive py HNO3

Entry Time(h) Yield
b (%)

Selectivity
c TON d Yield

b (%)
Selectivity

c TON d Yield
b (%)

Selectivity
c TON d

1 0 0 - 0 0 - 0 0 - 0

2 1 3 0:100 8

3 3 9 3:97 23

4 4 15 12:88 38

5 5.5 19 20:80 48

6 7 21 22:78 53

7 9 23 25:75 58

8 10 24 26:74 60

9 15 24 27:73 60 3 0:100 7.5

10 30 24 29:71 60 8 0:100 20

11 60 24 30:70 60 16 0:100 40

12 90 22 1:98 55

13 2 × 60 6 0:100 16 24 32:68 60 31 2:98 78

14 4 × 60 8 2:98 20 24 34:66 60 35 2:98 88

15 8 × 60 8 4:96 21 24 39:61 60 26 5:95 65

16 24 × 60 8 32:68 21 24 49:51 60 20 38:62 50

17 32 × 60 8 36:64 21 24 52:48 60 17 33:67 43
a Reaction conditions: cyclooctane (0.25 M), complex 2 (10−3 M), additive (0.072 M), H2O2 (1.2 M) in acetonitrile at 60
◦C; total volume of reaction mixture is 10 mL. b Amounts of cyclooctanone and cyclooctanol were determined after
reduction of the aliquots with solid PPh3 (for this method, see references [61–65]). c Cyclooctanone/cyclooctanol
ratio. d Turnover number of the catalyst (sum of moles of all products per mole of 2).
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Table 5. Effect of the presence of an additive in the oxidation of cyclooctane catalyzed by 4 a.

No Additive py HNO3

Entry Time(min) Yield
b (%)

Selectivity
c TON d Yield

b (%)
Selectivity

c TON d Yield
b (%)

Selectivity
c TON d

1 0 0 - 0 0 - 0 0 - 0

2 1 1 0:100 3

3 3 5 0:100 13

4 4 9 1:99 23

5 5.5 13 8:92 33

6 7 17 12:88 43

7 9 20 15:85 50

8 10 21 17:83 53

9 15 23 19:81 58

10 30 23 26:74 58

11 60 23 28:72 58 7 0:100 19

12 90 23 30:70 58

13 2 × 60 4 0:100 11 23 31:69 58 14 2:98 36

14 4 × 60 7 2:98 17 23 36:64 58 27 2:98 68

15 8 × 60 7 3:97 18 23 43:57 58 23 4:96 57

16 10 × 60 24 6:94 59

17 24 × 60 7 26:74 17 23 53:47 58 13 32:68 32

18 32 × 60 7 33:67 18 23 53:47 58 14 37:63 35
a Reaction conditions: cyclooctane (0.25 M), complex 4 (10−3 M per copper), additive (0.072 M), H2O2 (1.2 M) in
acetonitrile at 60 ◦C; total volume of reaction mixture is 10 mL. b Amounts of cyclooctanone and cyclooctanol
were determined after reduction of the aliquots with solid PPh3 (for this method, see references [61–65]). c

Cyclooctanone/cyclooctanol ratio. d Turnover number of the catalyst (sum of moles of all products per mole of 4).
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Figure 4. Comparison of the accumulation of oxygenates with time (0–15 min) in the cyclooctane (initial
concentration 0.25 M) oxidation with H2O2 (1.2 M), in the presence of pyridine (0.072 M), catalyzed by
2–5 (10−3 M) in acetonitrile at 60 ◦C.

In fact, for example, compound 2 in comparison with 4 leads to a higher initial rate of cyclooctane
oxidation (Figure 4) and a slightly lower ketone:alcohol selectivity, but a convergence of their
behaviors occurs over time in the presence of pyridine, suggesting the eventual conversion of 4
into 2, upon reaction with this base (Tables 4 and 5).

Compound 5 also leads to lower initial rate than 2, but displays a higher selectivity toward the
alcohol, comparable to that of 3.
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The use of compound 3 (Table 2) results in the highest rate (Figure 4), the highest product yield,
and the highest selectivity (comparable to 5) toward the formation of the alcohol product.

In all the cases, at the maximum product yield, a higher selectivity toward the alcohol is observed,
but it decreases over time and eventually reverses. For example, when the maximum yields are
accomplished in the reactions with 3 and 5, the cyclooctanol:cyclooctanone molar ratio is approximately
90:10, but at 24 h of reaction time the inversion of the ketone:alcohol ratio has already occurred (Tables 2
and 3).

The application of HNO3 as a promoter, instead of pyridine, in the peroxidative oxidation of
cyclooctane resulted in a considerable yield promotion (by approximately 10% for reactions using 2
and 5 and by approximately 5% in the case of 3 and 4) in comparison to the best yields in the reactions
in the presence of pyridine. In acidic conditions, the best yield (35%) is obtained with the mononuclear
2 (Figure 5) (curiously, in the presence of pyridine, the best catalyst, 3, is also mononuclear).
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Figure 5. Comparison of the accumulation of oxygenates with time (0–32 h) in the cyclooctane (initial
concentration 0.25 M) oxidation with H2O2 (1.2 M) in the presence of HNO3 (0.072 M), catalyzed by
2–5 (10−3 M) in acetonitrile at 60 ◦C.

The drawback of the acidic additive is the slower reactivity when compared to the much faster
reactions in the presence of pyridine. In fact, the maximum yield of the cyclooctane oxidation was
achieved within a few minutes when pyridine was used as a promoter, whereas when this was replaced
by HNO3, the reaction time to achieve the maximum yield increased to 4 h, in the cases of compounds
2, 4, and 5, and to 16 h for 3 (Figure 5).

Contrary to what happens in the reactions in the presence of pyridine, those with HNO3 do not
follow a clear pattern (Figure 5).

The cyclooctanol/cyclooctanone ratio in acidic conditions, when the maximum yield is achieved,
is better (for 2, 4, and 5) or comparable (in the case of 3) to that observed when pyridine is used as
additive. As in the case of the basic promoter, the highest yield corresponds to a marked alcohol
predominance over the ketone (approximately 98:2 ratio for 2, 4, and 5) but over the reaction time this
selectivity decreases (as the overall yield does) although without reversing, thus also attesting to the
better selectivity toward the alcohol for compounds 2–5 using the HNO3 promoter.

In order to get an insight into the reaction mechanism, we selected the overall best (with
and without additives) catalyst, 3, and studied the effect of the addition of Ph2NH, an oxygen
radical trap [37], and the effect of the addition of CBrCl3, a carbon radical trap [37], on the
cyclooctane oxidation.
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The addition of either Ph2NH or CBrCl3, in a stoichometric amount relative to H2O2 or cyclooctane,
respectively, leads to approximately 5–8%, 29–32%, and 54% suppression of the products formation for
4, 9, and 120 min reaction time, respectively (Tables S4 and S5, Supplementary Materials, entries 2–4).
Thus, the cyclooctane oxidation reaction appears to proceed mainly via a non-free radical pathway for
short reaction times, although over time a free radical mechanism becomes more pronounced.

This is also consistent with the high selectivity toward the alcohol at short reaction times,
which decreases during the reaction. For shorter reaction times, such a behavior supports the
predominance of a non-free radical pathway conceivably associated with a metal-centered oxidant
instead of a free HO• radical [58]. Various mechanistic possibilities can be postulated [47,48,57,58].

For the free radical mechanism, a plausible pathway can be suggested [31,32,44,46,57,58] to
involve the metal-assisted decomposition of H2O2 into the hydroxyl radical HO• which then abstracts
H• from RH to give the alkyl radical R•. The formation of HO• from H2O2 involves proton-transfer
steps among H2O2, hydroperoxo-, peroxo-, and oxo-metal species [34,47–50].

As presented in Scheme 3, R• either reacts with molecular oxygen producing ROO• (which
upon H-abstraction, for example, from H2O2 or the derived H2O• radical, forms alkylhydroperoxide
ROOH) or reacts with a possible metal-hydroperoxo intermediate species [Cu]–OOH producing
ROOH. This organoperoxide then undergoes metal-promoted decomposition to form O-centered
organo radicals, RO• (upon O–O bond cleavage), and ROO• (upon O–H bond rupture). While the
H-abstraction from RH by RO• leads to the formation of ROH, the decomposition of ROO• produces
ROH and the corresponding ketone R(–H)=O.
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Scheme 3. Radical mechanism of the peroxidative oxidation of hydrocarbons with H2O2.

In agreement with such mechanistic considerations, the good catalytic activity of 2–5 can be
associated with the hydrophilicity of the sulfonate groups. This can activate the water molecule toward
its important role as a promoter/catalyst for proton-shift steps involved in the formation of hydroxyl
radicals from hydrogen peroxide [50], with a key role in the mechanism of the alkane oxidation.

The participation of the alkylhydroperoxide ROOH species was proved [59–65] by the increase in
the amount of ROH and consequent decrease of R(–H)=O when the final reaction solution was treated
with PPh3 prior to the GC analysis (Table S3, Supplementary Materials).

Moreover, the promoting effect of pyridine can result from the assistance on the proton-transfer
steps involved in the formation of the hydroxyl radical [50,59–63] from H2O2, whereas the role of the
acid additive can be associated with the activation of the metal center by further unsaturation upon
ligand protonation, the enhancement of oxidative properties of metal complexes, the stabilization of
oxidants, and the promotion of peroxo (or hydroperoxo)-complex formation as indicated in previous
cases [37,48,76,77].

For further screening of the hydrocarbon substrates and the scope of our system, the most
promising catalyst 3 without any additive was used. Cyclohexane and cyclohexene were successfully
transformed employing our catalytic system, thus showing its versatility. The obtained results are
summarized in Table 6.
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Table 6. Scope of the peroxidative hydrocarbon oxidation employing catalyst 3 a.

Entry Time (h) Substrate Yield b, % Selectivity c TON d

1 2

Cyclohexane

20 22:78 50

2 4 20 24:76 50

3 8 20 27:73 50

4 24 20 32:68 50

5 32 20 33:67 50

6 2

Cyclohexene

15 8:36:44:4:8 50

7 4 15 7:40:39:5:9 50

8 8 15 6:45:36:5:8 50

9 24 15 1:49:34:8:8 50

10 32 15 0:48:32:10:9 50
a Reaction conditions: substrate (0.25 M), complex 3 (10−3 M), H2O2 (1.2 M) in acetonitrile at 60 ◦C; total
volume of reaction mixture is 10 mL. b Amounts of oxygenate products were determined after reduction of the
aliquots with solid PPh3 (for this method, see references [61–65]). c Cyclohexanone:cyclohexanol and cyclohexene
oxide:2-cyclohexen-1-one:2-cyclohexen-1-ol:cis-1,2-cyclohexanediol:trans-1,2-cyclohexanediol ratio (for reactions
with cyclohexane and cyclohexene, respectively). d Turnover number of the catalyst (sum of moles of all products
per mole of 3).

In the peroxidative oxidation of cyclohexane, compound 3 leads to a 20% yield, based on the
substrate, after 2 h of reaction time with a ketone/alcohol ratio of approximately 20:80 (Table 6, entry 1).
As it was observed when cyclooctane was used without any additive, longer reaction times resulted in
yield preservation, but a loss on the selectivity until approximately 30:70, after 32 h of reaction time
(Table 6).

Overall product yield decreased in the peroxidative oxidation of the alkene (15% based on
cyclohexene, after 2 h of reaction time). At 2 h of reaction time, the ratios of cyclohexene
oxide:2-cyclohexen-1-one:2-cyclohexen-1-ol:cis-1,2-cyclohexanediol:trans-1,2-cyclohexanediol were
7:36:44:5:8 (Table 6, entry 6). As in the previous cases, the reaction followed the same trend, not only in
terms of yield but also in selectivity, over the reaction time.

3. Materials and Methods

All the reagents and solvents were purchased from commercial sources and used as received.
The water used for all preparations and analyses was double-distilled and deionized. Elemental
analyses were performed by the Microanalytical Service of the Instituto Superior Técnico (Lisbon,
Portugal). FT-IR spectra were recorded in the 400–4000 cm−1 region on a Bruker Vertex 70
spectrophotometer (Bruker Optik GmbH, Ettlingen, Germany) with samples as KBr discs. The 1H
NMR spectra were recorded at room temperature on a Bruker Avance II + 300 (UltraShield™ Magnet)
spectrometer (Bruker BioSpin AG, Fällanden, Switzerland). Chromatographic measurements were
carried out in a Perkin-Elmer Clarus 500 gas chromatograph (PerkinElmer Inc., Shelton, CT, USA)
with a BP-20 capillary column (SGE). The parameters of the column are 30 m × 0.32 mm × 25 µm and
Helium was used as the carrier gas (1 mL per minute constant flow).

3.1. Synthesis of H2L (1)

To a hot and stirred water solution (10 mL) of 2-aminobenzenesulfonic acid (0.692 g, 4.0 mmol)
was added dropwise a methanol solution (20 mL) of salicylaldehyde (0.488 g, 4.0 mmol). The resulting
yellow solution was filtered and kept at room temperature overnight. After one day, yellow crystals
suitable for X-ray diffraction analysis formed and the crystals were collected by filtration and washed
with methanol. Yield 1.022 g (92%). Anal. calcd. for C13H11NO4S (277.29): C 56.31, H 4.00, N 5.05;
found: C 56.21, H 4.03, N 5.08. FT-IR (cm−1, KBr): ν(OH), 3445br; ν(N–H), 2919br; ν(C=N), 1638s;
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ν(C–O), 1233s; ν(sulfonate), 1376s, 1171s, 763m. 1H NMR (300 MHz, DMSO-d6) δ values (ppm): 10.69
(br, N–H); 10.26 (s, CH=N); 6.91–7.92 (m, 8-Ar-H). 13C NMR (75.468 MHz) in DMSO-d6, internal TMS,
δ (ppm): 116.8 (Ar-H), 120.1 (Ar-H), 127.6 (Ar-C), 129.0 (Ar-C), 130.8 (Ar-C), 135.4 (Ar-C), 136.5 (Ar-C),
137.4 (Ar-C), 139.4 (Ar-C), 140.1 (Ar-C–SO3), 162.2 (Ar-C–OH), 164.1 (N=C).

3.2. Synthesis of [Cu(L)(py)(EtOH)] (2)

To a hot and stirred ethanol suspension (10 mL) of H2L (1) (0.277 g, 1.0 mmol) was added dropwise
an ethanol solution (5 mL) of pyridine (0.316 g, 4.0 mmol) affording a clear orange solution. Then,
an ethanol solution (5 mL) of CuCl2·2H2O (0.170 g, 1.0 mmol) was added dropwise to obtain a dark
green solution. The solution was filtered and kept at room temperature. After two days, green crystals
suitable for X-ray diffraction analysis formed and the crystals were collected by filtration and washed
with ethanol. Yield: 0.362 g (78%). Anal. calcd. for C20H20CuN2O5S (463.98): C 51.77, H 4.34, N 6.04;
found C 51.75, H 4.26, N 6.07. FT-IR (cm−1, KBr): ν(C=N), 1606; ν(C–O), 1283s; ν(sulfonate), 1383m,
1174s, 764m.

3.3. Synthesis of [Cu(L)(bipy)]·MeOH (3)

To a methanol solution (40 mL) of 2 (0.232 g, 0.5 mmol) was added dropwise a methanol solution
(10 mL) of 2,2’-bipyridine (0.156 g, 1.0 mmol) affording a dark green solution. After a few hours,
a dark green crystalline compound suitable for X-ray diffraction analysis formed and was collected by
filtration and washed with methanol. Yield: 0.235 g (89%). Anal. calcd. for C24H21CuN3O5S (527.04):
C 54.69, H 4.02, N 7.97; found C 54.80, H 4.06, N 7.91. FT-IR (cm−1, KBr): ν(C=N), 1611; ν(C–O), 1294m;
ν(sulfonate), 1386m, 1181s, 769m.

3.4. Synthesis of [Cu2(L)2(µ-pyr)(MeOH)2] (4)

To a methanol solution (15 mL) of 2 (0.232 g, 0.5 mmol) was added dropwise a methanol solution
(5 mL) of pyrazine (0.080 g, 1.0 mmol) affording a dark green solution. After one day, a dark green
crystalline compound suitable for X-ray diffraction analysis formed and was collected by filtration
and washed with methanol. Yield: 0.177g (86%). Anal. calcd. for C32H30Cu2N4O10S2 (821.80): C
46.77, H 3.68, N 6.82; found C 46.87, H 3.76, N 6.75. FT-IR (cm−1, KBr): ν(C=N), 1613s; ν(C–O), 1264m;
ν(sulfonate), 1382m, 1160s, 770m.

3.5. Synthesis of [Cu2(L)2(µ-pip)(MeOH)2] (5)

To a methanol solution (40 mL) of 2 (0.232 g, 0.5 mmol) was added dropwise a methanol solution
(10 mL) of piperazine (0.086 g, 1.0 mmol) affording a dark green solution. After a few hours, a dark
green crystalline compound suitable for X-ray diffraction analysis formed and was collected by
filtration and washed with methanol. Yield: 0.176 g (85%). Anal. calcd. for C32H36Cu2N4O10S2

(827.85): C 46.43, H 4.38, N 6.77; found C 46.55, H 4.28, N 6.73. FT-IR (cm−1, KBr): ν(C=N), 1612s;
ν(C–O), 1248m; ν(sulfonate), 1385m, 1176s, 756m.

3.6. Crystal Structure Determinations

X-ray quality crystals of all compounds were immersed in cryo-oil, mounted in a Nylon loop,
and measured at a temperature of 150 K (1, 2, and 5) or 296 K (3 and 4). Intensity data were collected
using a Bruker AXS-KAPPA APEX II or a Bruker APEX-II PHOTON 100 diffractometer (Bruker AXS
GmbH, Karlsruhe, Germany) with graphite monochromated Mo-Kα (λ 0.71073) radiation. Data were
collected using omega scans of 0.5◦ per frame and a full sphere of data was obtained. Cell parameters
were retrieved using Bruker SMART software and refined using Bruker SAINT [78] on all the observed
reflections. Absorption corrections were applied using SADABS [78]. Structures were solved by direct
methods using the SHELXS-97 package [79,80] and refined with SHELXL-97 [79,80]. Calculations were
performed using the WinGX System, Version 1.80.03 [81]. The hydrogen atoms attached to carbon
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atoms and to nitrogen atoms were inserted at geometrically calculated positions and included in the
refinement using the riding-model approximation; Uiso(H) were defined as 1.2 Ueq of the parent
nitrogen atoms or the carbon atoms for phenyl and methylene residues and 1.5 Ueq of the parent
carbon atoms for the methyl groups. The hydrogen atoms of the hydroxide (in all structures but 5)
were located from the final difference Fourier map, and the isotropic thermal parameters were set at 1.5
times the average thermal parameters of the belonging oxygen atoms. Least-square refinements with
anisotropic thermal motion parameters for all the non-hydrogen atoms and isotropic for the remaining
atoms were employed. Crystallographic data are summarized in Table S4 (Supplementary Materials).

3.7. Hydrocarbon Oxidation Studies

The catalytic oxidation reactions of hydrocarbons were carried out in MeCN solvent (total volume
of 10.0 mL) in thermostated Pyrex round-bottom vessels and in open atmosphere, at 60 ◦C. The catalyst
was used and introduced into the reaction mixture in the form of a stock solution in acetonitrile
prepared by dissolving the catalyst (2–5) in acetonitrile. The substrate and promoter (if any) were then
added in this order and the reaction started with the addition of 50% aqueous hydrogen peroxide in a
portion. (CAUTION: the combination of air or molecular oxygen and H2O2 with organic compounds
at elevated temperatures may be explosive!) The initial concentrations of hydrocarbon, catalyst, H2O2,
and promoter (if used) were 0.25 M, 10−3 M per copper, 1.2 M, and 0.072 M, respectively. Solutions
were analyzed by GC after the addition of nitromethane, as a standard compound, and the attribution
of peaks was made by comparison with chromatograms of authentic samples.

GC analyses in the presence and in the absence of PPh3 were carried out, and it was found that the
oxygenation of cycloalkanes resulted in the formation of the corresponding cycloalkyl hydroperoxides
as the main primary products as expected, according to the method developed by Shul’pin [59–65].
For a precise determination of the product concentrations, only data obtained after the reduction of the
reaction sample with PPh3 were typically used, taking into account that the original reaction mixture
contained the three products: cycloalkxyl hydroperoxide (as the primary product), ketone, and alcohol.
When used, the oxygen radical trap [37] diphenylamine (Ph2NH) and the carbon radical trap [37]
bromotrichloromethane (CBrCl3) were applied in a stoichiometric amount relatively to the oxidant
and substrate, respectively.

4. Conclusions

By taking advantage of the chelating capacity of the acyclic Schiff base
o-[(o-hydroxyphenyl)methylideneamino]benzenesulfonic acid H2L (1), as well as of the H-bonding
formation ability of the non-coordinating sulfonate group and in the presence of an N-heterocyclic base,
namely, pyridine (py), 2,2’-bipyridine (bipy), pyrazine (pyr), or piperazine (pip), four new copper(II)
complexes, that is, [Cu(L)(py)(EtOH)] (2), [Cu(L)(bipy)]·MeOH (3), [Cu2(L)2(µ-pyr)(MeOH)2] (4),
and [Cu2(L)2(µ-pip)(MeOH)2] (5) were synthesized. The crystal lattices of all compounds, with the
exception of 3, were stabilized by a number of non-covalent H-bonding interactions and generated
interesting H-bonded polymeric networks, namely, a zigzag 1D chain (in 1), a linear 1D (in 2),
a hacksaw double chain 1D (in 4), and a 2D motif (in 5). Double coordination of 2,2-bipyridine
diminished the possibility of solvent coordination and no dimensionality was formed in the crystal
lattice of 3.

These copper(II) complexes (2–5) catalyzed the peroxidative hydrocarbon (cycloalkane and
cycloalkene) oxidation under mild conditions either in the absence or presence of an additive. As a
model system, we used cyclooctane and hydrogen peroxide as substrate and oxidant, respectively.
The presence of a basic or an acid promoter usually enhanced the catalytic activity.

The best activity was exhibited, in general, by the mononuclear compounds, where 3 was the
most effective one, either without any promoter (20% max. yield) or in the presence of pyridine (26%
max. yield), whereas 2 displayed the highest activity in the presence of HNO3 (35% max. yield).
For each complex, although the reactions were significantly faster with pyridine, the best product
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yields were achieved with the acid additive. Other substrates, namely, cyclohexane and cyclohexene,
were also oxidized catalytically with complex 3 into the oxidized products in overall 20% and 15%
yields, respectively, without any additive, attesting to the versatility of our catalytic system.

Our studies with diphenylamine and bromotrichloromethane showed that the cyclooctane
oxidation reaction appears to proceed mainly via a non-free radical pathway for short reaction times,
although over time a free radical mechanism involving oxygen- and carbon-centered radicals becomes
relevant. Such a curious behavior does not seem to have been recognized earlier and deserves to be
tested not only in already known catalytic systems but also in novel ones.

The synthetic methodologies based on the addition (for the synthesis of 2) or substitution of
pyridine for a N-heterocyclic base (2,2’-bipyridine, pyrazine, or piperazine for the synthesis of 3–5) to
produce mono- and dinuclear copper systems in alcoholic medium provide easy synthetic procedures
in comparison with other approaches for the syntheses of copper(II) complexes which are active for
catalytic alkane oxidation [44,45,47,48,51,52].

In summary, a simple protocol for the synthesis of four effective catalysts is presented. However,
detailed mechanistic studies—which include the kinetics of H2O2 decomposition, the influence of the
O2 atmosphere in the catalytic activity, electron paramagnetic resonance (EPR) measurements, the use
of dimethylsulfoxide as selective hydroxyl radical scavenger, and (Density Functional Theory) DFT
calculations to disclose the active species and understand the mechanism—are under progress and
should be the subject of a further publication.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/7/2/17/s1,
H-Bonded networks in 1–5, Figure S1: Idealized capped stick presentation of the H-bonds in 1 with partially atom
labelling scheme, Figure S2: Idealized capped stick presentation of the H-bonded zigzag 1D chain in 1, Figure
S3: Idealized capped stick presentations of the H-bonded linear 1D in 2, double chain 1D in 4, and 2D motif in 5,
Table S1: Geometries (distances in (Å) and angles in (◦)) of the H-bonds in 1–5, Table S2: Tests concerning the
oxidation of cyclooctane in the presence of H2L (1) and in the absence of any metal catalyst (blank tests), Table
S3: Results obtained before the reduction with PPh3 of the aliquots of the oxidation of cyclooctane catalyzed by
3, Table S4: Crystallographic data for 1–5, Table S5: Effect of the presence of diphenylamine on the oxidation
of cyclooctane catalyzed by 3, Table S6: Effect of the presence of bromotrichloromethane on the oxidation of
cyclooctane catalyzed by 3. CCDC 958691–958695 for 1–5, respectively, contain the supplementary crystallographic
data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre at
http://www.ccdc.cam.ac.uk/data_request/cif or from the Cambridge Crystallographic Data Centre, 12 Union
Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223 336 033; or e-mail: deposit@ccdc.cam.ac.uk.
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