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Abstract: Ceria-based materials, and particularly CeO2–ZrO2 (CZ) solid solutions are key ingredient
in catalyst formulations for several applications due to the ability of ceria to easily cycling its oxidation
state between Ce4+ and Ce3+. Ceria-based catalysts have a great soot oxidation potential and the
mechanism deeply relies on the degree of contact between CeO2 and carbon. In this study, carbon soot
has been used as solid reductant to better understand the oxygen transfer ability of ceria–zirconia at
low temperatures; the effect of different atmosphere and contact conditions has been investigated.
The difference in the contact morphology between carbon soot and CZ particles is shown to strongly
affect the oxygen transfer ability of ceria; in particular, increasing the carbon–ceria interfacial area,
the reactivity of CZ lattice oxygen is significantly improved. In addition, with a higher degree of
contact, the soot oxidation is less affected by the presence of NOx. The NO oxidation over CZ in the
presence of soot has also been analyzed. The existence of a core/shell structure strongly enhances
reactivity of interfacial oxygen species while affecting negatively NO oxidation characteristics.
These findings are significant in the understanding of the redox chemistry of substituted ceria and
help determining the role of active species in soot oxidation reaction as a function of the degree of
contact between ceria and carbon.
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1. Introduction

Ceria-based materials, and particularly CeO2–ZrO2 (CZ) solid solutions are key ingredient in
catalyst formulations for several applications due to the ability of ceria to easily cycling its oxidation
state between Ce4+ and Ce3+ [1–3]. Undoubtedly, its major technological application is the depollution
of noxious compounds from internal combustion engines [4,5]. The wide success of ceria-based
materials is strictly correlated to its oxygen storage capacity (OSC). Ceria based catalysts are able to
modulate the available oxygen releasing it under reducing conditions and taking up oxygen under
oxidizing conditions [1,2,5–7]. The removal/uptake of oxygen from the fluorite lattice is of fundamental
importance in several catalytic applications. The redox/oxygen storage properties of ceria are at the
origin for its widely application in formulations for diesel soot oxidation [8,9] and many studies
investigate the role of ceria-based catalyst in carbon soot oxidation [10–20]. Specifically, the production
of “active oxygen species” is believed to be among the most important features and several authors
focused on the reaction mechanism in order to better elucidate the formation and the role of “active
oxygen” [21–26]. We pointed out that two different mechanisms coexist during soot oxidation [21],
one related to the amount of surface available oxygen and one associated to the amount of bulk oxygen;
their relative significance on the overall reaction is dependent over ceria-soot interface and to the
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accessibility of O2 gas phase. Machida et al. [27] focused on the generation of “active oxygen” in the
form of superoxide (O2

−) ions upon interaction of the O2 gas phase with surface oxygen vacancies
of reduced ceria. The mechanism is associated to the availability of adsorbed active oxygen species
(peroxide and superoxide), which spill over onto the soot surface resulting in the formation of vacant
sites, which are then filled with gas-phase O2. The mechanism is strictly affected by the degree of contact
between soot and the ceria-based catalyst [28] and the temperature of soot oxidation dramatically
decreases when an intimate contact is used. Recently, we observed that the interface between soot
and ceria at a nanoscale level could dramatically influence the transfer of active oxygen from ceria to
carbon boosting soot oxidation activity [28–30].

In this study carbon soot has been used as reductant to investigate the oxygen transfer of ceria at
low temperature and obtain further insight on its oxygen storage properties and on the role of the
carbon–ceria interface in oxygen exchange. For this purpose, a sample of ceria–zirconia particles of
composition Ce0.8Zr0.2O2 was mixed with carbon soot to obtain different degrees of contact between
carbon and catalyst. In addition to loose and tight contact carbon and ceria–zirconia were mixed in
a high-energy mill to promote the formation of a core of oxide particles wrapped in a thin carbon
envelope, which strongly improves contact (supertight contact) and contributes to lower soot oxidation
temperatures [28]. Here, the effect of various oxidation atmospheres (O2, NO+O2 and NO2+O2) has
been investigated at different contact conditions. The presence of a core/shell carbon/ceria structure
strongly enhances the reactivity of interfacial oxygen species while affecting negatively NO oxidation
characteristics. This is due to the carbon envelope, which hinders NO interaction with ceria–zirconia
while promoting vacancy formation at the interface with successive generation of active oxygen species.
These findings are significant in the understanding of the redox chemistry of ceria and doped ceria
based materials.

2. Results and Discussion

2.1. Textural and Structural Characterization

A sample of ceria–zirconia particles of nominal composition Ce0.8Zr0.2O2 was mixed with soot
using different approaches in order to obtain a carbon/catalyst composite with varying degrees of
contact between the two components. Conventional catalyst/soot mixtures were obtained in tight and
loose contact mode by mixing the appropriate amount of ceria–zirconia with soot (Printex U by Degussa)
in an agate mortar for 10 min or mixing with a spatula for 2 min, respectively. Improved contact
(supertight contact) was achieved in a high-energy Spex mill equipped with zirconia balls and jar. In a
typical experiment ceria–zirconia particles were milled with soot for 8 h [28].

Composition, BET surface area and apparent density of materials are reported in Table 1.
While mixing soot in the loose and tight mode did not affect surface area, the high energy milling
process induced a significant surface area loss (from 79 to 29 m2/g) that was typically observed upon
milling of a high-surface-area powder that is presumably due to adhesion of fine particles on the
surfaces of larger agglomerates [5,31]. Similarly, an increase in the apparent density of the powder was
observed due to the milling process (from 1.45 to 1.65 g/mL).

XRD peaks for CZ, CZ(l) and CZ(t) were broad and the values of the crystallite size obtained
according to the Scherrer equation [32] was about 6 nm; after milling, peaks became more intense,
clear and well defined (Figure 1), with an increase of crystallite size to 14 nm together with a drop in
surface area. The milling process induces contamination of the CZ sample with a small amount of free
ZrO2 originating from the milling media, as evidenced by XRD profiles (Figure 1), while no reaction
between CZ and carbon was highlighted. Rietveld refinement of XRD profiles revealed also a zirconia
enrichment of ceria–zirconia solid solution with a decrease of cell parameter in agreement with the
introduction of the smaller Zr4+ in the lattice.
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Table 1. Characteristics of the materials.

Sample Name SA
(m2/g)

Apparent
Density (g/mL)

Crystallite
Size (nm) a

Cell Parameter
b (nm)

Molar
Composition b

Free ZrO2
c

(%)

Ce0.8Zr0.2O2 CZ 79 1.45 6 5.3590(4) Ce0.82Zr0.18O2 /
Ce0.8Zr0.2O2/C loose CZ(l) 79 1.44 6 5.3586(4) Ce0.82Zr0.18O2 /
Ce0.8Zr0.2O2/C tight CZ(t) 78 1.45 6 5.3588(4) Ce0.82Zr0.18O2 /

Ce0.8Zr0.2O2/C milled CZ(m) 29 1.65 14 5.3487(2) Ce0.78Zr0.22O2 10
a calculated with Scherrer formula from X-ray diffraction patterns. b from Rietveld refinement. c amount of free
ZrO2 originating from abrasion during milling obtained from Rietveld refinement.
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Figure 1. XRD profile for ceria–zirconia before and after high energy milling.

2.2. Catalytic Activity

In the present study the effect of a different atmosphere and contact conditions on soot combustion
over the Ce0.8Zr0.2O2 catalyst was studied to better understand the oxygen transfer ability of
ceria–zirconia at low temperatures. Soot combustion at different contact conditions in oxidizing
(air) and in inert (N2) atmosphere was investigated by means of thermogravimetry experiments
(Figure 2). Under oxidizing conditions, a complete soot combustion was achieved for all samples
independent of the degree of contact. However, the type of contact dramatically affected the activity
and increasing the soot/catalyst contact, a large decrease in the temperature of 50% soot conversion
(T50) was observed with CZ(m) already removing 50% of carbon at temperature lower than 268 ◦C,
compared to 364 ◦C and 534 ◦C, for CZ(t) and CZ(l) respectively. This behavior originates from the
different morphology of the ceria–zirconia/carbon interface that in the case of the loose and tight
contact mode was characterized by the presence of carbon on ceria–zirconia surface in the form of large
particle aggregates with a modest degree of contact, while after high energy milling, soot aggregates
progressively disappeared and carbon could be observed prevalently as a thin shell over the CZ
crystallites [28–30]. This morphology favors the redox mechanism and activates the transfer of the
surface/bulk oxygen of ceria–zirconia to carbon, strongly affecting soot oxidation activity. As previously
reported, this enhancement is observed only by milling simultaneously ceria–zirconia and carbon
soot [28]; the individual and separate milling of ceria–zirconia and carbon did not affect the material
and did not change/promote the redox/oxidation behavior. A similar promotion of the soot oxidation
behavior was found when combustion was carried out without gas phase oxygen, as reported in
Figure 2 (dotted lines), which shows the weight loss of CZ/soot mixture against temperature in nitrogen
atmosphere. In this case oxidation was driven exclusively by oxygen originating from ceria–zirconia
and weight-loss accounted not only for the removal of carbon due to oxidation but also from oxygen
loss from the lattice to give CO/CO2.
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Figure 2. (a) Weight loss profile analysis of CZ/carbon mixtures in air (solid line) and in N2 (dashed
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Selectivity to CO2 for each kind of contact could be obtained by a separate temperature programmed
experiment carried out in N2 atmosphere and monitoring CO/CO2 evolution. As a first approximation
CO2 selectivity obtained can be used for estimating the amount of soot oxidized in TGA (Table 2).
The results reported in Figure 2 and Table 2 indicate that the degree of contact strongly influenced
oxidation also under inert atmosphere. In loose contact, due to the poorer distribution of soot over
ceria, soot was oxidized more slowly (compare slope of the weight loss curves in Figure 2) and in
smaller quantities. As the degree of contact increased, the exchange of the lattice oxygen of CZ with
carbon was facilitated and much faster, leading to an overall calculated weight loss of 1.65% due
to carbon and 3.95% due to oxygen for CZ(m). Although this value was lower than that observed
under air (where complete carbon removal was observed with ca. 5.1% weight loss due to carbon),
it indicates that transfer of oxygen from ceria to carbon played a key role in soot oxidation and was a
strong function of the contact conditions.

Table 2. Summary of results for soot oxidation under inert conditions.

Sample Total Weight
Loss a (%)

Selectivity from TP
Experiment b CO/CO2

Calculated Weight
Loss % (Carbon) c

Calculated Weight
Loss % (Oxygen) c

CZ(l) 2.4 5/95 0.67 1.73
CZ(t) 4.6 10/90 1.32 3.28

CZ(m) 5.6 14/86 1.65 3.95
a total weight loss under inert atmosphere as measured from TGA experiment from 150 to 800 ◦C. b CO/CO2
selectivity as measured in a temperature programmed oxidation experiment carried out from 150 to 800 ◦C under
nitrogen atmosphere. c contribution of carbon and oxygen in total TGA weight loss calculated assuming selectivity
measured in a TP experiment.

To further investigate the mechanism of oxygen transfer over different type of contact, the soot
oxidation activity has been measured by running temperature programmed oxidation (TPO)
experiments and using peak temperatures (Tp) as a measure of activity. As shown in Figure 3,
by increasing the soot ceria contact, the oxidation temperature in O2/N2 significantly decreased (from
554 to 285 ◦C for loose and milled sample respectively), in agreement with T50 obtained from TGA.
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Figure 3. Temperature programmed oxidation (TPO) profiles of (a) CO2 and (b) CO evolved from
CZ/C mixtures at different mixing condition: CZ(l) (blue), CZ(t) (green) and CZ(m) (red).

Figure 3b shows the concentration of CO evolved during soot combustion. CO concentration
was very low compared to CO2, indicating higher selectivity for carbon dioxide, mainly due to the
capability of ceria-zirconia catalyst to oxidize CO to CO2 [17]. Contact conditions had a minor influence
on the selectivity to CO2, which changed from 99% under tight conditions to 97% for the loose and
supertight contact mode.

The effect of the oxidation atmosphere (O2/N2, NO/O2/N2 and NO2/O2/N2) in soot oxidation over
the different catalyst/soot morphologies was investigated using TPO. The results are summarized in
Table 3 and Figure 4. When the catalyst was in the loose contact mode, the use of a more oxidant
mixture containing NOx contributes to lower soot oxidation temperature by several degrees (from
554 to 515/516 ◦C) while, when CZ/soot was mixed in tight contact, less significant differences were
found, in the range 378–383 ◦C. As expected, the presence of NOx contributes to lower soot oxidation
temperature by several degrees when the catalyst is in loose contact [18–20]. This is due to the oxidation
of NO to NO2 catalyzed by CZ and the subsequent carbon oxidation due to gas-phase NO2, which is a
more efficient oxidant than gas-phase O2 [9]. With tight contact a very small positive contribution of
NOx atmosphere can be observed and the temperature of oxidation of carbon over NOx/N2 is only
a few degrees lower compared to reaction in O2/N2 (378 vs. 383 ◦C). On the contrary, the presence
of NO does not induce any promotion when more efficient contact is achieved using milled samples.
The increased interfacial area between CZ and soot promotes active oxygen species formation at
temperatures lower than that of the transformation of NO to NO2 operated by ceria–zirconia. This does
not allow formation of NO2 before soot is already oxidized by oxygen, thus making ineffective the
addition of NO. Looking at the details of peak temperatures, in the milled sample, the presence of NOx

in the gas phase slightly lowers the soot oxidation activity with a Tp increasing from 285 ◦C in O2/N2

to 294 ◦C in NO/N2, indicating a general behavior in which soot oxidation for CZ(m) is favored under
O2/N2. The creation of a thin layer of soot distributed on the catalyst with a high degree of contact
at the nanoscale overcomes the limitation due to the poor mobility of active oxygen and boosts its
oxidation potential.
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Table 3. Activity and selectivity results from TGA and TPO experiments.

O2/N2
a NO/O2/N2 NO2/O2/N2

Sample T50 (◦C) Tp (◦C) SCO2 (%) Tp (◦C) SCO2 (%) Tp (◦C) SCO2 (%)

CZ(l) 534 554 97 515 91 516 92
CZ(t) 364 383 99 378 95 377 96

CZ(m) 268 285 97 294 95 293 94
a TGA 21% O2 in N2; TPO 10% O2 in N2. 500 ppm NO/10% O2 in N2. 250 ppm NO2/10% O2 in N2.
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Figure 4. (A) CO2 evolution and (B) CO evolution from temperature programmed oxidation (TPO)
profiles for CZ/C mixtures at different mixing condition and different atmosphere: O2 (blue), NO+O2

(red) and NO2+O2 (green).

Selectivity to CO2 was always higher than 90% and slightly dependent on the composition of the
gas stream (Table 3), with values close to 100% when only O2 was present as an oxidant in the gas phase,
independently on the type of contact. When NOx species were added to the gas stream a lowering in
CO2 selectivity was observed, which is in agreement with data reported by García-García et al. [33,34].
Soot oxidation over ceria-based catalyst was connected with the formation of surface oxygenated
species C(O) that act as intermediates in the formation of CO and CO2 from thermal decomposition
and/or reaction of C(O) with “active oxygen” species [7,8,10,12,26,35]. When NOx is present in the gas
stream, two different reactions, NO adsorption and C(O) oxidation, compete over ceria active sites,
both contributing to soot oxidation, but with NO adsorption competing with CO oxidation to CO2 and
consequently increasing CO production.

To further investigate the NO/NO2 interaction with ceria–zirconia/soot mixtures, the NO oxidation
profile over the CeZrO2 oxide in the presence of soot was analyzed. Figure 5 shows the NO2

concentration profile resulting from oxidation of NO. In general, formation of NO2 started at a low
temperature and was kinetically controlled. On increasing temperature (T > 500 ◦C) the opposite
reaction predominated and the concentration of NO2 decreased at values close to equilibrium.
For samples in loose and tight contact, the onset of NO oxidation was at lower temperatures compared
to milled samples (270 ◦C vs. 300 ◦C) indicating a higher NO oxidation rate and the overall NO2 profile
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strongly differed from that observed in the CZ(m) sample. A decrease in NO2 concentration (see circles
in Figure 5) could be found in the range 490–560 ◦C and 340–390 ◦C, respectively for CZ(l) and CZ(t)
mixtures. The decrease of NO conversion to NO2 in these two samples was correlated to the decrease
of oxygen concentration in these temperature ranges, as O2 was consumed in carbon oxidation that
peaks in the above temperature range, as indicated in Figure 5. This behavior was not observed in the
case of CZ(m) because soot oxidation occurred at a temperature much lower to that of NO2 production
and NO2 production occurred only after carbon was removed. This explains the onset of NO oxidation
at higher temperatures for CZ(m); the presence of a thin carbon shell around ceria–zirconia particles,
hindered NO oxidation to NO2, delaying NO2 formation at higher temperatures, when the carbon
envelope was completely oxidized by active oxygen species making accessible the ceria–zirconia
catalyst surface to gas phase NO (Figure 6).
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Summarizing, this study investigated the influence of nanoscale surface arrangements of the
soot/catalyst mixture on the redox behavior of ceria–zirconia mixed oxide and on the reactivity of
active surface oxygen species. The difference in the contact morphology between carbon soot and CZ
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particles strongly affected the oxygen transfer ability of ceria; in particular, increasing the carbon–ceria
interfacial area, the reactivity of CZ lattice oxygen significantly improved. In addition, with a higher
degree of contact, the soot oxidation was not affected by the presence of NOx. Moreover, the existence
of a core/shell structure strongly enhanced reactivity of interfacial oxygen species while affecting
negatively NO oxidation characteristics.

3. Materials and Methods

Ceria–zirconia sample was prepared by coprecipitation of appropriate amount of ceria and zirconia
precursors (cerium nitrate, Ce(NO3)3·6H2O and zirconium nitrate, Zr(NO3)2·5H2O, Treibacher Industrie
AG, Althofen, Austria) with NH4OH in the presence of H2O2. The precipitate was dried overnight
at 100 ◦C and calcined in air at 500 ◦C for 3 h. Ceria–zirconia composition in the solid solution was
checked by XRD using the Rietveld refinement analysis (Table 1). Catalyst/soot mixtures were prepared
by mixing a synthetic soot (Printex U by Degussa, Essen, Germany) with ceria–zirconia solid solution
in a weight ratio 1:20. Printex U was selected as model soot due to its extensive use in literature; it is
characterized by a C content of 96% and a surface area of 100 m2/g. Loose contact was obtained by
mixing the mixture in a vial for 2 min, while tight contact conditions were realized by grinding CZ and
soot in an agate mortar for 10 min. Supertight contact was achieved milling ceria–zirconia particles and
soot for 8 h in a high-energy Spex mill equipped with zirconia balls and a jar. Surface area measurements
were carried out by means of a Tristar 3000 gas adsorption analyzer (Micromeritics, Norcross, GA,
USA). X-ray diffraction patterns were recorded using a step size of 0.02◦ and a counting time of 40 s per
angular abscissa in the range 20–145◦ on a Philips X’Pert diffractometer (40 kV and 40 mA, Ni-filtered
Cu-Kα radiation, (PANalytical B.V., Almelo, The Netherlands). Phase identification was processed
by Philips X’Pert HighScore software (Version 1.0b, PANalytical B.V., Almelo, The Netherlands),
while mean crystalline size was estimated by the Scherrer [32] equation from the full width at the half
maximum (FWHM) of the X-ray diffraction peak. The GSAS-EXPGUI program [36,37] was used for
Rietveld refinement [38] of the XRD pattern.

The carbon soot oxidation activity was followed by running temperature programmed oxidation
(TPO) and thermogravimetric (TGA) experiments. In TPO the samples (ca. 20 mg) were treated by a
fixed gas flow of 500 mL/min (10%O2/N2, 500 ppm NOx/10%O2/N2 or 250 ppm NO2/10%O2/N2) from
room temperature to 800 ◦C (heating rate 10 ◦C/min) with a GHSV ranging from 2.2 to 2.5 × 106 h−1.
A chromel-alumel thermocouple was used to measure the temperature of the catalyst and the outlet
composition was monitored by FT-IR gas analyzers (MultiGas 2030, MKS Instruments, Inc., Andover,
MA, USA). Tp, peak-top temperature was used to compare the activity. Selectivity to CO2 formation
was determined by CO and CO2 concentration in the outlet gas using the expression:

Selectivity to CO2 = 100 × CCO2 /CCO2 + CCO (1)

TGA experiments were carried out in a Q500, TA Instruments. The samples (ca. 20 mg) were first
pretreated under inert atmosphere at 150 ◦C for 60 min to eliminate adsorbed water and then heated at
a constant rate (10 ◦C/min) in air or N2 (60 mL/min). T50, the temperature at which 50% of weight loss
was obtained was used to compare the activity. Reproducibility in term of T50 and/or Tp in TPO and
TGA experiments was always within ±5 ◦C and ±3 ◦C, respectively. Reproducibility tests on weight
loss were carried out and have shown that the total weight loss for each type of contact was close to
the nominal value with reproducibility within ±3% for CZ(m), and ±7% for CZ(t) and CZ(l).

4. Conclusions

In this study the effect of different atmosphere and contact conditions on soot combustion over
a ceria-based catalyst was investigated to better understand the oxygen transfer ability and redox
behavior of ceria–zirconia at low temperatures promoted by the use of carbon soot as a solid reductant.
To accomplish this aim three different contact models were used with varying degrees of interfacial
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interaction between carbon and ceria–zirconia. The nanoscale carbon–ceria interface that we built
using milling, although far from being representative of real conditions, can disclose information that
are important in the understanding of oxidation properties of ceria. By increasing the numbers of
contact points the temperature of soot oxidation in O2 progressively decreased (from 550 to 280 ◦C).
The effect of various oxidation atmospheres (O2, NO+O2 and NO2+O2) was investigated at different
contact conditions. It appeared for example that oxygen atmosphere was best utilized for oxidation
of carbon at the interface in close contact with ceria in contrast to the well-known properties of
NO/O2 mixtures that surpass oxygen when contact conditions are less robust. Therefore when the
interfacial ceria–zirconia/soot contact was strongly enhanced, gas phase O2 promoted the formation of
active oxygen through interfacial oxygen vacancies, resulting in a more powerful oxidant than NO2.
The presence of a ceria–zirconia core/carbon shell architecture strongly enhanced the reactivity of
interfacial oxygen species while at the same time affecting negatively NO oxidation characteristics,
by establishing a sort of protective shield, which did not allow ceria–zirconia to act as an oxidant for
NO, thus preventing its action toward carbon. Therefore, the active oxygen species formed through
interaction of the gas-phase oxygen with interfacial ceria vacancies immediately reacted with soot
enhancing the combustion at very low temperature and hindering NO oxidation that usually takes
place in that temperature range. This indicates that, even under an oxidizing atmosphere, the close
and extended interfacial contact between ceria and carbon, allows the formation of oxygen vacancies,
which then activate oxygen through the formation of well-known active oxygen species. This did not
occur with the same intensity over CZ/carbon mixture prepared using the tight mode and did not
occur at all over CZ(l), thus explaining the different level of activity toward oxygen and NO/NO2.
The above findings confirmed the key role of active oxygen species in soot oxidation with ceria-based
materials and more importantly they disclosed the subtle but distinct redox chemistry of ceria with O2

and NO/NO2 mixtures at varying degree of interaction with carbon.
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