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Abstract: Magnesium-based hydrides are considered as promising candidates for solid-state hy-
drogen storage and thermal energy storage, due to their high hydrogen capacity, reversibility, and
elemental abundance of Mg. To improve the sluggish kinetics of MgH2, catalytic doping using
Ti-based catalysts is regarded as an effective approach to enhance Mg-based materials. In the past
decades, Ti-based additives, as one of the important groups of catalysts, have received intensive en-
deavors towards the understanding of the fundamental principle of catalysis for the Mg-H2 reaction.
In this review, we start with the introduction of fundamental features of magnesium hydride and
then summarize the recent advances of Ti-based additive doped MgH2 materials. The roles of Ti-
based catalysts in various categories of elemental metals, hydrides, oxides, halides, and intermetallic
compounds were overviewed. Particularly, the kinetic mechanisms are discussed in detail. Moreover,
the remaining challenges and future perspectives of Mg-based hydrides are discussed.

Keywords: magnesium hydride; titanium-based hydride; catalysis; hydrogen storage properties

1. Introduction

Depletion of fossil fuels and changes in the global climate urge people to seek green,
sustainable energy resources and high-efficiency energy systems. Hydrogen is one of the
secondary energy solutions with high gravimetric energy density, high efficiency, and zero
carbon emission [1]. However, the hydrogen economy relies on safe and mature technology
to store hydrogen, which remains a great challenge [2]. Solid-state hydrogen storage using
metal hydrides is considered to be a safe and efficient method in comparison to other
storage technologies, such as compressed hydrogen gas or liquid hydrogen.

Among various solid-state hydrogen storage materials, magnesium hydride (MgH2) is
one of the metal hydrides that has been considered to be promising, due to its high storage
capacity, abundant resources, and relative safety. MgH2 was first prepared in 1912 [3],
and was proposed that can be used as energy storage media since the 1960s [4]. MgH2
is known for its high hydrogen storage content, up to 7.76 wt%. More importantly, Mg
has a single and flat pressure plateau under desorption/absorption, and is an abundant
resource in the crust, which makes it one of the most promising hydrogen storage materials
comparing to others. Thus, Mg-based hydride is expected to play important roles in future
hydrogen storage techniques. In past decades, research efforts have made significant
progress on improving Mg-based hydrides in terms of thermodynamics, kinetics, and
reversibility. The utilization of MgH2 for “energy storage” relates to two aspects, namely,
hydrogen storage (HS) [5] and thermal energy storage (TES) [6]. Despite the difference
in material-level for HS and TES, both applications require Mg-based hydride with fast
hydrogen absorption and desorption rates. This leads to a large demand for studying
catalysis in the Mg-H2 system.
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Due to the extensive research activities on Mg-based hydrides, a series of review
papers have been published [7–14]. A comprehensive review by Yartys et al. [15] provides
a historical overview as well as future perspectives. Recent reviews have covered various
directions for Mg-based hydrogen storage, such as downsizing (nanostructuring) [7,10],
catalysis and kinetics [7,16,17], and destabilization [18,19]. However, given the large
volume of publications as well as many review papers on Mg-based hydride, it still
lacks a review regarding a specific group of catalysts and responsible effects. Transition
metals (TM)-based additives have been proved to be effective to enhance the hydrogen
storage properties of MgH2. Among different TM-based additives, Ti and its compounds
are recognized as a group of promising additives, which have been widely investigated
from many different aspects, including catalytic effects, catalysis mechanism, nano- and
microstructures, and synthetic methods. In the past decades, much attention and many
efforts were directed to this group of additives, with progress being continuously made.
With a special emphasis on Ti-based catalysts, we intend to provide overviews of specific
fundamental understanding and clear catalysis mechanisms for Mg-based material.

2. Fundamentals of the Mg-H2 System
2.1. Crystal Structure

MgH2 is a stoichiometric compound with a H/Mg atomic ratio of 1.99± 0.01 [20]. The
Mg-H bond is an ionic type that is similar to alkali and alkaline earth metal hydrides [21].
MgH2 with different types of structures can be synthesized by the reaction of magne-
sium with hydrogen under different conditions. β-MgH2, which is stable at ambient
pressure (1 bar) and room temperature, has a tetragonal TiO2-rutile-type structure with
space group P42/mnm [22]. β-MgH2 can be formed under moderate conditions during
reversible hydrogen cycling. Nevertheless, MgH2 has at least four high-pressure forms, and
the corresponding crystal structure parameters are tabulated in Table 1. At high applied
pressures exceeding 0.387GPa or milled under high energy, β-MgH2 transforms into the
orthorhombic γ-MgH2 form with α-PbO2-type structure [23]. Additionally, a subsequent
phase transition from γ-MgH2 to a modified-CaF2-type structure was observed experimen-
tally using in situ synchrotron diffraction when hydrogen pressure is above 3.84 GPa [24].
According to Varin et al., high energy ball-milling of MgH2 produced γ-MgH2 coexisted
with nanocrystalline β-MgH2. They suggested that the presence of the γ-MgH2 phase
contributed to reducing the hydrogen desorption temperature of MgH2 [25].

Table 1. Optimized structural parameters, bulk modulus (B0), and pressure derivative of bulk modulus (B’
0) for MgH2 in

ambient and high-pressure phases. (Reprinted with permission from ref. [22]. Copyright 2006 American Physical Society.)

Modification Unit Cell (Å)
Positional Parameters B0 (GPa) B′ 0Structure Type a b c

β-MgH2, TiO2-rutile (P42/mnm) 4.5176 4.5176 3.0206 Mg (2a): 0, 0, 0 45.00 ± 2 3.35 ± 0.3
γ-MgH2, Modified CaF2 (Pa3) 4.6655 4.6655 4.6655 Mg (4a): 0, 0, 0 47.41 ± 4 3.49 ± 0.4

α-MgH2, α-PbO2 (Pbcn) 4.5246 5.4442 4.9285 Mg (4c): 0, 0.3313d, 1/4d 44.03 ± 2 3.17 ± 0.4
δ
′
-MgH2, AuSn2 (Pbca) 8.8069 4.6838 4.3699 Mg (8c): (0.8823, 0.0271, 0.2790) 49.83 ± 5 3.49 ± 0.6

2.2. Thermodynamics of the Mg-H2 System

The first experimental evaluation of the thermodynamics of the Mg-H2 system was re-
ported by Stampfer et al., showing the enthalpy of formation of MgH2 to be−74.5 kJ/mol·H2,
and the entropy of formation is 136 J/K·mol·H2 [20]. The thermodynamics parameters of
the Mg-H2 system have been reported, see Table 2. The pressure-composition-isotherm
(PCI) method is commonly used to determine the enthalpy (∆H) and entropy (∆S) of the
Mg-H2 system. By measuring a series of equilibrium pressures at various temperatures,
∆H and ∆S can be derived by Van’t Hoff relation.
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Table 2. Thermodynamic parameters and energy storage properties of MgH2 [26].

Thermodynamic Parameters Values

Formation enthalpy, kJ/(mol·H2) −74.5
Formation entropy, J/(mol·H2·K) −135

Hydrogen Storage Capacity (Theoretical)

Gravimetric capacity, wt% 7.6
Volumetric capacity, g/(L·H2) 110

Thermal Energy Storage Capacity (Theoretical)

Gravimetric capacity, kJ/kg 2204
Volumetric capacity, kJ/dm3 1763

For on-board solid-state hydrogen storage, a thermodynamic window in the range
of approximately 25–45 kJ/mol·H2 is recognized for suitable metal hydride material [27].
Therefore, efforts have been directed to destabilize the MgH2, or in other words, reducing
the ∆H of MgH2. It is expected that reducing ∆H can lower the working temperature for
Mg-based hydride, which is crucial for on-board applications. Three typical approaches
were proposed to destabilize MgH2, namely, alloying, downsizing, and stress effect.

The alloying method refers to alloying other elements with Mg to form a new alloy
or hydride compound with lower stability of its hydride. So far, alloying systems have
been reported including Mg2NiH4 [28], Mg2FeH6, Mg2CoH5, Mg2Cu [29], Mg(Al) [30],
Mg51Zn20 [31], Mg2Si [32], Mg(In) [33], Mg(Sn) [21], Mg(AgIn) [34], MgReNi [35], Mg2M-
xMxHy (M = Fe, Co, Ni), and so on. The principle is using a less-stable hydriding element A
to form an Mg-A alloy. The energy diagram of the alloying method is illustrated in Figure 1.
Since Mg-Ti is an immiscible system, Mg and Ti do not form an alloy. However, metastable
Mg-Ti-H compounds have been reported. Kohta et al. [36–39] successfully synthesized
MgxTi100−x (35 ≤ x ≤ 80) alloys with hexagonal close-packed (HCP), face-centered cubic
(FCC), and body-centered cubic (BCC) structures by ball milling. Vermeulen et al. [40]
reported that Mg-Ti-H system has a very low plateau pressure (≈10−6 bar at room tem-
perature). Additionally, it will have a higher plateau pressure and a reversible hydrogen
storage capacity of more than 6 wt%, when forming ternary compositions with Al or Si.
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Figure 1. Schematic of destabilization process of a hydride MH using third element A. (Reproduced
with permission from ref. [41]. Copyright 2016 Elsevier).

Nano-sizing of Mg-based materials is not only a strategy to enhance kinetics, but also
considered as an approach to destabilize MgH2. It has attracted a great deal of effort in
the past decades, despite its effectiveness and feasibility remaining controversial. The
influence of nano-sizing on pressure-temperature dependence as well as ∆H is given in
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Figure 2. Theoretically, nanosizing to hydrides introduces excessive free energy to bulk
or coarse particles. The excessive free energy may originate from lattice distortion [42].
Sadhasivam et al. [8] summarized the dimensional effects of nanostructured Mg/MgH2
materials. They reported that Mg/MgH2 with a particle size <5 nm has improved hydrogen
storage properties. However, a great challenge remains in synthesizing such fine particles as
well as maintaining the nano-size after thermal cycling for Mg-based materials. According
to [8], the 1-dimensional Mg nanowire shows a promising hydrogen storage property.
However, the nanowire structure would collapse into nanoparticles after a few cycles.
Additionally, it is reported that reducing magnesium hydride structure to nanosize induces
the stress/strain effect, which has been reviewed by Zhang et al. [43] It was pointed out that
the stress/strain applied on MgH2 leads to lattice deformation and volume change, which
endows the extra strain energy for MgH2. The research of Berube et al. [44] supported this
claim. They reported that a 15% reduction of the formation enthalpy of nanostructured
MgH2 can be achieved by the introduction of surfaces, grain boundaries, as well as the
presence of γ-MgH2. Recent reviews [8,45,46], have provided thoughtful introduction and
discussion into the thermodynamic aspects.
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2.3. Kinetics

Kinetics for hydrogen storage materials is generally defined as the dynamic rate where
hydrogenation and dehydrogenation take place in time. Kinetics measurements provide
critical information on the rates of hydrogen uptake or release from Mg-based materials.
It is necessary to be rather explicit when investigating hydrogenation and dehydrogena-
tion kinetics. For pure Mg and MgH2 in the conventional form of coarse powders, they
demonstrate very sluggish kinetics for hydrogen absorption and release, usually requiring
over 400 ◦C for the reverse reactions. The slow hydrogenation rate of Mg, as well as dehy-
drogenation rate of MgH2, can be attributed to several intrinsic factors: dissociation of the
hydrogen molecule, penetration of hydrogen through the surface, diffusion of hydrogen in
the matrix, in addition to possible contamination in the sample environment.

For hydrogenation of Mg, dissociation of the hydrogen molecule on the Mg surface
is often considered as a rate-limiting step. Table 3 summarizes the energies for hydrogen
molecule dissociation on Mg and modified Mg surfaces. The reported values of hydrogen
dissociation energy on the Mg surface are in the range of 0.4–1.15 eV (38.59–110.96 kJ/mol),
which is higher than most transition metals, such as Ti, V, Ni, and Fe [48]. This means
that a large energy barrier needs to be overcome for dissociation of H2 on pure Mg (0001)
surfaces [49]. Another intrinsic issue is the slow hydrogen diffusion rate in MgH2. Figure 3
shows the geometry model of the reaction for an Mg/MgH2 particle. Based on the model,
the hydride layer formed on the particle surface becomes the major barrier during hydro-
genation, since the hydrogen atom diffusion rate in the hydride phase is much slower than
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that in the metallic phase. According to Spatz et al., the hydrogen diffusion coefficient (DH)
of MgH2 is quite low (1.1 × 10−20 m2/s at 305 K) [50]. Figure 4 shows that the DH of MgH2
is at magnitudes lower than the DH of the Mg metal phase. It is also evident in this figure
from the diffusion coefficient plots that most transition metals and their hydrides have DH
several magnitudes higher than the DH of MgH2.

Table 3. Dissociation energy of hydrogen molecule on the surface of Mg. (Reproduced with permis-
sion from ref. [49]. Copyright 2008 AIP Publishing).

Metal Dissociation Energy (eV)

Pure Mg 0.87, 0.40, 0.50, 1.15, 1.05, 0.95, 1.00
Ti-doped Mg Null, negligible
Ni-doped Mg 0.06
V-doped Mg Null

Cu-doped Mg 0.56
Pd-doped Mg 0.39
Fe-doped Mg 0.03
Ag-doped Mg 1.18
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Catalytic doping and nanosizing of Mg-based systems have been considered as impor-
tant methods to improve their kinetics. In general, the catalyst is defined as an agent which
reduces the activation barrier without participating in the chemical reaction, as illustrated
in Figure 5. A common consensus is that transition metals (TM) and their compounds
are effective catalysts. These catalysts can be doped into Mg/MgH2 material by different
synthetic approaches. Most TM catalysts are effective in both hydrogenation and dehydro-
genation reactions. The roles of different Ti-based catalysts and the underlying mechanism
will be reviewed in the following section.

Downsizing MgH2 to nano-scale is also shown to be effective to improve the kinetics.
It is believed that nano-sizing can enhance kinetics by the creation of a large amount of fresh
surface, shortening hydrogen diffusion, and promoting nucleation of the hydride/metal
phase [12]. It is noteworthy that a combination of nanosizing and catalytic doping is
usually realized during synthesis. For example, using a high-energy ball milling technique,
co-milling MgH2 with transition metal powder could produce a nanocomposite with
nano-size microstructure and homogeneously doped catalyst particles.
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3. Catalytic Effects
3.1. Transition Metals Catalysts

Among various additives for improving Mg-based materials, TM catalysts have been
intensively investigated. Interestingly, most of the transition metals and their compounds
are found to be effective as both hydrogenation and dehydrogenation catalysts. In general,
1–5 at.% addition of TM catalyst leads to dramatic improvement while the hydrogen storage
capacity is not sacrificed significantly. Research efforts have been directed to investigate
the effectiveness of various TM-based catalysts. Table 4 compiles the reported results from
Ti-based additive-enhanced MgH2 systems as well as corresponding synthetic approaches
and kinetic behaviors.
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Table 4. Hydrogen storage properties of Mg with various types of Ti-based catalysts.

Materials Synthetic Methods
Hydrogen Storage Properties

Reference
Desorption Kinetics Eades (kJ/mol) Absorption Kinetics Eaabs (kJ/mol)

Titanium/Titanium Hydrides

Mg-2%Ti Inert gas condensation Des: 4.50%/320 ◦C/0.2 bar/25 min Abs: 4.80%/320 ◦C/8 bar/21 min [55]

MgH2 + 2 at% Ti Ball milling (argon) Des: 6.32 wt%/623 K/35 kPa/0.5 h Abs: 6.32 wt%/623 K/2000 kPa/4 min
[56]Cold rolling (5 times, air) Des: 6.00 wt%/623 K/35 kPa/0.5 h Abs: 5.70 wt%/623 K/2000 kPa/4 min

MgH2-4 mol% Ti Ball milling Des: 1.10%/573 K/2 MPa/5 min Abs: 6.40%/573 K/2 MPa/5 min [57]
MgH2-5 at% Ti Ball milling Des Temperature: 235.6 ◦C 70.11 [58]
MgH2-5 at% Ti Ball milling Des: 5.50%/523 K/0.015 MPa/20 min 71.1 Abs: 4.20%/373 K/1.0 MPa/15 min [53]
MgH2-5 at% Ti Ball milling Des: 5.20%/573 K/0.03 MPa/15 min Abs: 6.70%/ 573 K/0.8 MPa/15 min [54]

Mg-5% Ti Chemical vapor synthesis 104 [59]
Mg-14 at% Ti Gas phase condensation 35 52 [60]Mg-22 at% Ti 31 47
MgH2-15% Ti Ball milling Des: 0.12%/573 K/1 bar/60 min Abs: 3.48%/573 K/12 bar/60 min [61]

Mg0.9Ti0.1 Ball milling 76 Abs: 6.62% (after milling)
[62]Mg0.75Ti0.25 Ball milling 88 Abs: 6.18% (after milling)

Mg0.5Ti0.5 Ball milling 91 Abs: 5.21% (after milling)
MgH2-20% Ti Ball milling 72 ± 3 [63]

MgH2-coated Ti Ball milling Des: 5.00%/250 ◦C/15 min (TPD) Des
Temperature: 175 ◦C [64]

Mg83.5Ti16.5 Inert gas condensation Des: 2.50%/300 ◦C/0.15 bar/2 min Abs: 2.20%/300 ◦C/9 bar/1 min [65]
15Mg-Ti Chemical method 72.2 [66]

MgH2-4 mol% TiH2 Ball milling Des: 0.70%/573 K/2 MPa/5 min Abs: 6.10%/573 K/2 MPa/5 min [57]

MgH2-5 at% TiH2 Ball milling Des: 5.80%/270 ◦C/0.12 bar/10 min Des
Temperature: 235.5 ◦C 67.24 Abs: 2.70%/25 ◦C/1 bar/250 min [58]

10MgH2-TiH2 Ball milling 73 [67]
7MgH2-TiH2 Ball milling 71 [68]
4MgH2-TiH2 Ball milling 68 [68]

MgH2-10 mol% TiH2 Ball milling Abs: 5.70%/240 ◦C/2 MPa/200 s 16.4 [69]
MgH2-10% TiH2 Ball milling 24.2 [70]

MgH2-10% TiH2 Ball milling 17.9 [71]
Mg-9.2% TiH1.971-3.7% TiH1.5 Ball milling Des: 4.10%/573 K/100 Pa/20 min 46.2 Abs: 4.30%/298 K/4 MPa/10 min 12.5 [72]

Mg0.65Ti0.35D1.2 Ball milling 17 [73]

Titanium Oxides

MgH2-10% TiO2 Ball milling Des: 6.00%/300 ◦C/vacuum/20 min Abs: 6.00%/300 ◦C/0.84 MPa/5 min [74]
Mg-20% TiO2 Reactive ball milling Des: 4.40%/350 ◦C/1 bar/8.5 min Abs: 3.80%/350 ◦C/20 bar/2 min [75]

MgH2-6% TiO2 Ball milling 145.8 ± 14.2 [76]
MgH2 + 10% TiO2 Ball milling Des Temperature: 200 ◦C 75.50 [77]
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Table 4. Cont.

Materials Synthetic Methods
Hydrogen Storage Properties

Reference
Desorption Kinetics Eades (kJ/mol) Absorption Kinetics Eaabs (kJ/mol)

Titanium Halides

MgH2-10% TiF4 Ball milling Des Temperature: 216.7 ◦C 71 (Des: 6.6%) [78]
MgH2-10% TiF4 Ball milling (2 h, argon) Des Temperature: 154 ◦C 70 [79]

MgH2 + 10% TiF4 Ball milling Des Temperature: 150 ◦C 70 [77]
MgH2-4 mol% TiF3 Ball milling Des: 4.50%/573 K/2 MPa/5 min Abs: 5.10%/573 K/2 MPa/5 min [57]
MgH2-4 mol% TiCl3 Ball milling Des: 3.70%/573 K/2 MPa/5 min Abs: 5.30%/573 K/2 MPa/5 min [57]

MgH2-7% TiCl3 Ball milling Des temperature: 274 ◦C 85 [80]

Titanium Alloys

MgH2-5a% TiAl Ball milling Des: 4.90%/270 ◦C/0.12 bar/10 min Des
Temperature: 219.6 ◦C 65.08 Abs: 2.50%/25 ◦C/1 bar/250 min [58]

MgH2-5 a% Ti3Al Ball milling Des Temperature: 232.3 ◦C 70.61 [58]
Mg85Al7.5Ti7.5 DC-magnetron co-sputtering Des: 5.30%/200 ◦C/vacuum/20 min Abs: 5.60%/200 ◦C/3 bar/0.5 min [81]

Mg0.63Ti0.27Si0.10D1.1 Ball milling 27 [73]
MgH2-5 at%TiNi Ball milling Des Temperature: 242.4 ◦C 73.09 [58]
15Mg-Ti-0.75Ni Chemical method 63.7 [66]

Mg0.63Ti0.27Ni0.10D1.3 Ball milling 21 [73]

MgH2-5at%TiNb Ball milling Des: 5.90%/27 ◦C/0.12 bar/10 min
Des Temperature: 231.3 ◦C 71.72 Abs: 2.80%/25 ◦C/1 bar/250 min [58]

MgH2-5at% Cr-5a% Ti Film Des: 6.00%/200 ◦C/5 mbar/25 min Abs: 6.20%/200 ◦C/3 bar/10 min [82]MgH2-7 at% Cr-13 at% Ti Film Des: 5.00%/200 ◦C/5 mbar/25 min Abs: 5.60%/200 ◦C/3 bar/10 min

MgH2-5 at% TiFe Ball milling Des: 5.20%/270 ◦C/0.12 bar/10 min
Des Temperature: 237.7 ◦C 72.63 Abs: 3.00%/25 ◦C/1 bar/250 min [58]

MgH2-5% FeTi Ball milling Abs: 2.30%/150 ◦C/2 MPa/5 min 21 [83]

MgH2-5 at% TiMn2 Ball milling Des: 4.80%/270 ◦C/0.12 bar/10 min
Des Temperature: 219.7 ◦C 74.22 Abs: 3.20%/25 ◦C/1 bar/250 min [58]

MgH2-10% TiMn2 Ball milling 22.6 [70]
MgH2-5% VTi Ball milling Abs: 3.30%/150 ◦C/2 MPa/5 min 10.4 [83]

Mg87.5Ti9.6V2.9
Hydrogen plasma metal

reaction Des: 4.00%/300 ◦C/1 mbar/5 min 73.8 Abs: 4.80%/200 ◦C/40 bar/5 min 29.2 [84]

MgH2-5 at% TiVMn Ball milling Des: 5.70%/270 ◦C/0.12 bar/10 min
Des Temperature: 216.7 ◦C 85.20 Abs: 3.00%/25 ◦C/1 bar/250 min [58]
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Table 4. Cont.

Materials Synthetic Methods
Hydrogen Storage Properties

Reference
Desorption Kinetics Eades (kJ/mol) Absorption Kinetics Eaabs (kJ/mol)

Multiple Catalysts

Mg-10% Ti-10% Pd Ball milling 114 ± 4 [85]
Mg-TiH1.971-TiH1.5-ZrH1.66 Arc melting 36.6 21.2 [86]

Mg0.9Ti0.1 + 5% C Ball milling 88 Abs: 6.43% (after milling) [62]
MgH2-6% NiTiO3 Ball milling 74 ± 4

[87]MgH2-6% CoTiO3 Ball milling 100 ± 2
MgH2-10 mol% TiH2-6 mol% TiO2 Ball milling 118 [88]

MgH2-5% VTi-CNTs Ball milling Abs: 5.10%/150 ◦C/2 MPa/5 min 10.2 [83]
MgH2-5% FeTi-CNTs Ball milling Abs: 0.60%/150 ◦C/2 MPa/5 min 65.5 [83]
MgH2-10% Ni-TiO2 Ball milling Des: 6.50%/265 ◦C/0.02 bar/7 min 43.7 ± 1.5 Abs: 5.00%/100 ◦C/60 bar/7 min [76]

MgH2-4% Ni-6% TiO2 Ball milling 91.6 ± 8.5 [76]
MgH2-10% Co-TiO2 Ball milling Des: 6.20%/250 ◦C/0.02 bar/15 min 77 Abs: 4.24%/100 ◦C/60 bar/10 min [89]
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Early work by Liang et al. [53] evaluated the catalytic effects of 3d-TM elements (Ti, V,
Mn, Fe, and Ni) on the reaction kinetics of ball-milled catalyzed MgH2 (see Figure 6). The
MgH2-Ti composite showed superior hydrogen desorption/absorption kinetics, exhibiting
the best desorption kinetics at 573 K, followed in order by V, Fe, Ni, and Mn. The activation
energies (Ea) of MgH2-Ti, MgH2-V, MgH2-Mn, MgH2-Fe, and MgH2-Ni are calculated to be
71.1 kJ/mol, 62.3 kJ/mol, 104.6 kJ/mol, 67.6 kJ/mol, and 88.1 kJ/mol, respectively, which
are significantly reduced compared to that of the ball-milled pure MgH2 (120 kJ/mol). It was
indicated that the TM catalysts could drastically improve the kinetic properties of MgH2,
among which Ti-catalyzed MgH2 shows superior performance. Rizo-Acosta et al. [54]
compared hydrogenation properties of MgH2 with the addition of early transition metals
(Sc, Y, Ti, Zr, V, and Nb). As shown in Figure 7a,b, their results indicated that full reactions
finished within less than 120 min in all cases and the hydrogen absorption rate increased
along the sequence Y < V < Ti < Nb < Sc < Zr. However, an apparent degradation was
observed when the cycling number increases. Interestingly, this evolution is less pronounced
in the Ti-doped system, as shown in Figure 7c, which was attributed to the lattice mismatch
between Mg and TiH2 hydride that limits Mg grain growth. Among all cases, MgH2-TiH2
nanocomposite presented the best cycling properties with a reversible capacity of 4.8 wt%
after 20 cycles and the reaction time arbitrarily limited to 15 min.
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Zhou et al. [90] prepared 49 additive-doped MgH2 samples by ultra-high-energy-
high-pressure ball milling, in order to conduct a comprehensive survey on a wide range of
additives and corresponding dehydrogenation temperatures of the catalyzed MgH2. The
plot of the Thermogravimetric Analysis (TGA) dehydrogenation temperatures is shown in
Figure 8, indicating that the additives containing the IV-B and V-B group elements are the
most effective catalysts while the VII-B (Mn), VIII-B (Fe, Co, and Ni) groups show moderate
catalytic effects. Besides, Ti and its compounds are more effective compared to those
catalysts based on heavier elements (Zr, ZrH2, ZrO2, and Ta) in the same periodic group.

Cui et al. [91] synthesized micro-sized Mg particles coated with nano-sized TM cata-
lyst, showing that the nano-coating of TM on the Mg/MgH2 surface is more effective than
co-ball-milling of Mg with TMs. The authors also suggested that the catalytic improvement
on dehydrogenation kinetics can be ranked as Mg-Ti, Mg-Nb, Mg-Ni, Mg-V, Mg-Co, and
Mg-Mo, and the hydrogenation kinetics is in a sequence of Mg-Ni, Mg-Nb, Mg-Ti, Mg-V,
Mg-Co, and Mg-Mo.

It has been recognized that early transition metals (ETM) belong to the group of
most effective catalysts. Despite some discrepancies in reported data, Ti-based catalysts,
involving not only elemental Ti but also Ti hydrides, oxides, halides, and intermetallic
compounds have shown great benefits in improving the hydrogen storage properties of
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MgH2. In-depth investigations of Ti-based catalysts are also beneficial for understanding
the catalysis mechanism for the Mg-H2 system.
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3.2. Catalytic Effects of Ti-Based Compounds

A large number of Ti-based catalysts have been explored for enhancing the hydro-
gen storage properties of MgH2. Early attempts using elemental Ti powder to ball-mill
with MgH2 received encouraging results [53]. Soon, researchers found that TiH2 powder
additive is very effective as well. Lu et al. [92] reported exceptional room temperature
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hydrogenation properties of MgH2-0.1TiH2 material prepared by ultra-high-energy-high-
pressure (UHEHP) ball milling. Liu et al. [72] studied the effects of two different Ti hydrides
(TiH1.971 and TiH1.5) on the hydrogenation kinetics of Mg. It pointed out an important
fact that elemental Ti can easily react with hydrogen to form various Ti hydrides under
certain temperatures and hydrogen pressures. During the reverse hydrogen reaction, the
following equations can be summarized:

Mg + Ti + H2 →Mg + TiH1.971 (1)

Mg + TiH1.5 + TiH1.971 + H2 →MgH2 + TiH1.5 + TiH1.971 (2)

MgH2 + TiH1.5 + TiH1.971 →Mg + TiH1.5 + TiH1.971 + H2 (3)

According to the Mg-Ti phase diagram, neither Ti nor Ti hydrides are immiscible
with Mg or MgH2 phases. Furthermore, no ternary Mg-Ti hydride exists in the phase
diagram. However, under a metastable condition, it is possible for Ti to dissolve into Mg
and form a solid solution. Ponthieu et al. [93] reported Ti solubility in β-MgD2 up to 7 at.%,
and Mg solubility in TiD2 up to 8%, which suggested shortened D-diffusion path due to
the introduction of TiD2. An Nuclear Magnetic Resonance (NMR) study of MgD2/TiD2
composite found lattice coherent fluorite (fcc) structured TiD2 and MgD2, which is expected
to be a fast H-diffusion pathway to accelerate the kinetics [94].

Another focus is discovering a novel metastable Mg-Ti-H hydride with a new structure.
Kyoi et al. [95] synthesized Mg7-Ti-H FCC hydride using a high-pressure anvil cell. Asano
and Akiba reported the ball-milling synthesis of a series of Hexagonal Closest Packed
(HCP), Face-centered Cubic (FCC), and Body-centered Cubic (BCC) MgxTi100−x alloys, and
Mg-Ti-H FCC hydride phases with chemical formulae of Mg40Ti60H113 and Mg29Ti71H57.
These ternary hydrides had lower stabilities in comparison to MgH2 and thus show lower
desorption temperatures.

TiO2 was considered an effective catalyst. Wang et al. [75] prepared ball-milled Mg-
TiO2 and showed good hydrogenation and dehydrogenation kinetics. For the past two
decades, however, the investigation of oxide catalysts paid more attention to Nb2O5, since
it seems to be more efficient among transition metal oxides [96]. Actually, doping of
TiO2 would present a similar effect comparing to the Nb2O5 catalyst. As suggested by
Pukazhselvan et al. [97], TiO2 can be partially reduced to a lower 3+/2+ state (TiO and
Ti2O3). The presence of MgxTiyOx + y oxide was also suspected, but no direct support was
seen by X-ray Diffraction (XRD) results. More recently, Zhang et al. [98] showed good
catalytic activity of carbon-supported nanocrystalline TiO2 (TiO2@C). It was reported that
the dehydrogenation temperature of MgH2-10 wt%TiO2@C can be lowered to 205 ◦C and
hydrogen uptake took place at room temperature. Berezovets et al. [99] reported that
the Mg-5 mol% Ti4Fe2Ox was able to absorb hydrogen even at room temperature after
hydrogen desorption at 300–350 ◦C and its cycling stability could be substantially improved
by introduction of 3 wt% graphite into the composite.

Ti halides have been reported to offer a positive effect on the kinetics of MgH2. TM
fluorides usually present superior catalytic effects and satisfactory kinetics. Malka et al. [80]
reported the catalytic effects of a group of TM fluorides (FeF2, NiF2, TiF3, NbF5, VF4, ZrF4,
CrF2, CuF2, CeF3, and YF3) on the kinetics of MgH2. The best catalysts for magnesium
hydride decomposition were selected to be ZrF4, TaF5, NbF5, VCl3, and TiCl3. In another
investigation by Jin et al. [100], it was suggested that TiF3 and NbF5 showed better effects
over other TM fluorides. It was found that the hydride, for example, TiH2, formed after
co-milling MgH2 with the fluorides, with an in situ reaction described as follows:

3MgH2 + 2TiF3 → 3MgF2 + 2TiH2 + H2 (4)

Moreover, Wang et al. [101] conducted a comparison study on the elemental Ti, TiO2,
TiN, and TiF3 catalyzed MgH2 materials, showing that TiF3 had the strongest catalytic
effect among them.
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Ti-based intermetallics as catalysts have been receiving active attention in recent years.
Early researchers used TiFe [102], (Fe0.8Mn0.2)Ti [103], Ti2Ni [104], and TiMn1.5 [105] addi-
tives to improve hydrogen storage properties of MgH2, showing that all these intermetallics
were effective catalysts. Interestingly, some Ti-based intermetallics themselves, including
TiFe and TiMn1.5, are known as hydrogen storage alloys. Zhou et al. [58] conducted a
systematic investigation focusing on a series of Ti-based intermetallic catalysts (i.e., TiAl,
Ti3Al, TiNi, TiFe, TiNb, TiMn2, and TiVMn). The results found that TiMn2-doped Mg
demonstrated extraordinary hydrogen absorption capability at room temperature and 1-
bar hydrogen pressure while its apparent activation energy is 20.59 kJ/mol·H2. The strong
catalytic effect of TiMn2 is also confirmed by another experimental work by El-Eskandarany
et al. [106,107] and first principles calculation by Dai et al. [108].

4. Synthetic Approaches

The synthesis methods of Mg-based hydrides have a great impact on their hydrogen
storage properties. With expanding research scope of hydrogen storage materials, there
are emerging preparation methods in recent years. Many hydrogen storage alloys can be
prepared by physical methods, including ball milling [109], induction melting [110], arc
melting [111], et cetera. Complex hydrides are usually prepared by chemical methods, such
as organic synthesis, hydrothermal method, and solvothermal method [112]. However,
conventional high-temperature preparations such as sintering or melting have been largely
restricted due to the low melting temperature and high vapor pressure of magnesium [15].
Widely-used methods for Mg-based hydride preparation include ball milling, thin film
deposition, and chemical methods.

4.1. Ball Milling

Ball milling is a mechanical method that grinds metal or alloy powder into extremely
fine powders [113]. During ball milling, the collision between powder particles and
grinding balls will generate localized high pressure and cold welding of powder parti-
cles repeatedly, which leads to interdiffusion and alloying between different elements to
produce hydrides with nano-size structure [114–116]. By technical categorizing, there are
mainly four kinds of high-energy ball-milling techniques to prepare Mg-based hydride: ag-
itator [117], shaker/vibration type mills [118], planetary mill [119], and uni-ball mill [120].
The ball milling technique is quite effective to improve the hydrogen storage properties of
magnesium-based alloys due to the following reasons. First, the native oxide layer can be
broken during ball milling, and thus a large number of fresh surfaces is created [121,122].
Second, defects and grain boundaries can be produced during the ball milling process,
which provides channels for bulk hydrogen diffusion [123]. Third, reduced grain size
accelerates the diffusion of hydrogen atoms inside grains [124,125]. Fourth, ball milling
of magnesium in hydrogen gas resulted in the formation of a mixture of β-MgH2 and
γ-MgH2, which can destabilize the MgH2 system, reduces H2 desorption temperature,
and improves the desorption kinetics [126,127]. Last, the defects and strain generated
during ball-milling usually disappear after cycling the hydride, which may raise a con-
cern about the kinetic degradation. However, several cycling studies observed that the
high-temperature kinetics (~300 ◦C) maintained good stability, yet the low-temperature
hydrogenation kinetics suffered a severe degradation after hydrogen cycles [128–130].

4.2. Thin Film Deposition

The thin-film deposition method can prepare doped Mg-based material with one
dimension in the range of a few atoms to micrometers. It can be divided into two categories,
physical vapor deposition (PVD) and chemical vapor deposition (CVD) coating systems.
PVD is an atomistic deposition processes in which materials are vaporized from a solid or
liquid source and then condensed onto the substrate [131]. Using PVD processes, Ti and
other elements can be added into Mg to form the Mg-Ti-H system which can reduce the
stability of MgH2. Gremaud et al. [132] prepared Mg-Ni-Ti ternary alloy films, showing
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that the enthalpy of absorption/dehydrogenation of Mg0.69Ni0.26Ti0.05 film reduced to
40 kJ/mol·H2, as shown in Figure 9.
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CVD is a coating process using a thermally induced vapor phase chemical reaction to
deposit matter on a substrate surface, which provides great versatility for synthesizing both
simple and complex compounds with relative ease at generally low temperatures [133].
This method is favorable for large-scale production because of its simple equipment,
easily controlled reaction conditions, high purity, and narrow particle size distribution of
products. Different shapes of crystals with different compositions were prepared by CVD at
different temperatures and pressures, as shown in Figure 10, which might support the mass
production of nano- and micro-sized MgH2/Mg using hydrogen. Another approach to
improve the hydrogen storage properties of Mg is by forming an alloy with other elements.
For example, 1.5 µm thick Mg-Al-Ti, Mg-Fe-Ti, and Mg-Cr-V ternary alloy films showed
remarkable kinetics at 200 ◦C [81,134].
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4.3. Chemical Methods

MgH2 and doped Mg-based hydrides can also be synthesized by a chemical reaction
from organic compounds. Chemical reduction to prepare Mg-based material nanoparticles
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is one of the bottom-up approaches with several advantages, including morphology control,
easy separation, facile post-synthesis modifications, stable nanoparticles, and ease of scal-
ing up [136]. In the last two decades, molecular magnesium hydride chemistry has received
a major boost from organometallic chemists with a series of structurally well-characterized
examples [137]. Norberg et al. [138] reported that the density of defect sites of Mg nanocrys-
tals is increased through the low-temperature reduction, which provides a simple route
to enhance H2 sorption kinetics dramatically. Mg nanoparticles synthesized by chemical
reduction in solution usually have an irregular shape, with particle lengths/widths ranging
from 7 to 60 nm. For a typical synthesis routine, Ti-catalyzed MgH2 nanocrystalline was ob-
tained from the reaction using Mg powder, anthracene, anhydrous tetrahydrofuran (THF)
solution, and ethyl bromide, according to Equations (5)–(7) [139]. The nanocrystalline ma-
terial consists of 89 wt% for the dominant β-MgH2 phase and 11 wt% for γ-MgH2, which
surprisingly obtains γ-MgH2 under relatively mild conditions (hydrogenation reaction at
room temperature and under 8 MPa hydrogen pressure) [122].
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5. Mechanisms of Catalysis

Understanding the catalysis is critical to improving hydrogen absorption and desorp-
tion kinetics for Mg-based systems. Based on the understanding of the hydrogen reaction
in the metal-hydrogen system [140], the hydrogenation of metal should go through the
following five steps: (1) Physisorption of the H2 molecule, (2) dissociation of the H2
molecule, (3) surface penetration of H atoms, (4) diffusion of H atoms in the host lattice,
and (5) hydride formation at metal/hydride interface, as shown in Figure 11. For the dehy-
drogenation reaction, a hydride particle could go through the following steps: (1) Hydride
decomposition, (2) diffusion of hydrogen atom, (3) surface penetration, (4) recombination
to hydrogen molecule, and (5) desorption to the gas phase. Either hydrogen absorption
or desorption should be controlled by a rate-limiting step while other steps are likely
in equilibrium.
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However, the rate-controlling mechanisms in hydrogenation and dehydrogenation
may not necessarily be the same. The physisorption of a H2 molecule on a metal surface
needs a very low activation energy, so it is generally not considered a limiting step. The
rest of the steps can be rate-limiting which is worthy of discussion. For dehydrogenation,
steps 1, 2, and 3 (illustrated in Figure 11) can be considered as possible rate-limiting
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steps. Note that the hydrogen atoms should diffuse across the metal phase, in which the
diffusion coefficient is much higher compared to that in the hydride phase. Moreover, the
dehydrogenation has a H2 recombination step instead of dissociation. The recombination
of H atoms into a molecule does not have an energy barrier to overcome [141]. From these
aspects, it seems reasonable that the kinetic barrier of dehydrogenation could be lower than
that of hydrogenation. However, dehydrogenation is an endothermic reaction whereas
hydrogenation is exothermic, which means the hydrogenation of Mg is favored in respect
of thermodynamics. These fundamental differences may change the activation barrier and
lead to different reaction behaviors.

5.1. Hydrogen Dissociation

Both theoretical calculation and experimental work have suggested that a large energy
barrier needs to be overcome when hydrogen dissociates on a pure Mg surface. A density
functional theory (DFT) study by Du et al. [142] shows that the hydrogen dissociation
activation barrier will decrease from 1.051 eV for a pure Mg(0001) surface to 0.103 eV
and 0.305 eV for Ti-doped and Pd-doped Mg(0001) surfaces, respectively. Another DFT
work conducted by Yao et al. [143] reported the energy barrier for molecular hydrogen
dissociation on the Mg surface to be 1.15 eV. The calculated activation energies for hydrogen
dissociation on V and Ti atoms are 0.201 eV and 0.103 eV, respectively. Pozzo et al. [48]
calculated that the energy for hydrogen dissociation on pure Mg(0001) is as high as 0.87 eV
and Mg-Ti, Mg-V, Mg-Zr, and Mg-Ru have nearly zero dissociation barrier. In addition,
nanosized metal surfaces may provide additional promotion for hydrogen dissociation, due
to the increases of metal surface area and a number of steps, kinks, and corner atoms [12].

Once the hydrogen molecules dissociate into atoms on the surface, the obstacle may
still exist to prevent transferring hydrogen atoms from catalytic sites into bulk. The so-
called “hydrogen spillover” mechanism may play the role in Mg-TM catalyzed systems [83].
Hydrogen spillover refers to the surface migration of activated hydrogen atoms from a
catalytic particle onto the matrix. This phenomenon has been intensively studied in
catalysis science. However, hydrogen spillover in a catalyzed Mg-based system and
migration is challenging to observe so it still lacks direct evidence.

According to Sabatier’s principle, the catalyst for dehydrogenation/hydrogenation
reactions should not bond with hydrogen too strongly or too weakly. This leads to a volcano
plot [144] for elements in the hydrogen evolution reaction, see Figure 12a. Interestingly,
when screening more effective catalytic species for the Mg-H2 system, the experimental
result does not always follow this prediction. Pozzo et al. [48,49] proposed an inverse
volcano plot (see Figure 12b) combining the effects of hydrogen dissociation and hydrogen
diffusion, suggesting that doping of Ni and Pd could provide the top catalytic activities.
However, Ti and V have been experimentally demonstrated as strong catalysts, at least
equivalent to Ni and Pd. In fact, the IV and V group elemental catalysts (such as Ti or V)
in the hydrogen atmosphere may transform into hydride phases (TiHx or VHx) instead of
their metallic phases. Therefore, a more comprehensive model and understanding of the
catalytic behavior is still required to design an optimized catalyst.

5.2. Surface Penetration

To improve dehydrogenation and hydrogenation kinetics, surface modification is
necessary due to the presence of a surface oxide layer, which hinders the penetration of
hydrogen atoms into the bulk. The continuous passive MgO/Mg(OH)2 layer would easily
cover the Mg/MgH2 surface, even under inert gas with a trace amount of O2/H2O [145].
Recent work on the effect of air exposure on TiMn2 catalyzed MgH2, [146] showed that
the direct air exposure leads to reduction of hydrogen storage capacity, but only moderate
deterioration in kinetics. Further surface characterizations found that the surface of MgH2
forms a layer with Mg(OH)2 and MgO. However, the layer may crack during hydrogen
cycling while the nanocomposite can be re-activated with the presence of catalyst. The
doped catalyst particles on hydride surfaces can serve as paths to transfer hydrogen from
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surface to bulk, or from MgH2 to the outside. This mechanism is often referred as the
“hydrogen gateway” effect, as having been claimed in MgH2-Nb [147] and MgH2-Pt [148]
catalyzed systems. In several in situ characterizations, intermediate phases (NbH0.7 or
TiH) were observed during dehydrogenation, supporting the assumption that the surface
activated catalyst can create a hydrogen penetration path over the MgO layer.
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5.3. Accelerating Hydrogen Diffusion

The addition of catalyst may play an important role in accelerating the hydrogen
diffusion rate in the matrix. Due to the slow diffusion rate in MgH2, it is thus believed
that the reaction is likely to shift to diffusion-control when the forming hydride covers the
particles during hydrogenation. For both hydrogenation and dehydrogenation processes,
nano-doped catalytic species have been believed to help to accelerate hydrogen diffusion.
This mechanism was often referred as the “hydrogen pathway” effect.

The “pathway effect” was first suggested by Friedrichs et al. [149] in the study of
the MgH2-Nb2O5 system. They suggested the hydrogen sorption improvement through
a pathway effect of lower-oxidation-state Nb2O5-x, which was believed to help hydro-
gen transport into the particle. Ponthieu et al. [93] studied the structure and reversible
deuterium uptake of MgD2-TiD2 nano-composites by X-ray and neutron diffractions, sug-
gesting that TiD2 addition limits the grain growth of Mg and MgD2 phases and thus
reduce the D-diffusion path. The study also found coherent coupling between TiD2 and
Mg/MgD2 and the presence of sub-stoichiometric MgD2-η and TiD2-η phases, which are
indications that the TiD2 phase can favor the H-mobility. Note that the diffusion pathway
may contribute to the grain boundaries between catalyst and matrix because the boundary
and interface play the role of tunnels for fast hydrogen diffusion. Needless to say, nano-
sized Mg/MgH2 grains doped with catalysts lead to a significant number of boundaries,
interfaces, and dislocations. This mechanism is supported by many experimental works
where a refined catalyzed Mg/MgH2 composite is favored for the kinetics [150,151].

5.4. Nucleation and Growth

Nucleation and growth of the MgH2 phase can be considered as the final step for
the hydrogenation of Mg. The nucleation and growth of a hydride phase will lead to
considerable interfacial energy changes due to the crystal structure difference between Mg
metal and its forming hydride. Although, whether the rate-limiting step is controlled by nu-
cleation and growth or hydrogen diffusion is still under debate; many investigations have
successfully applied the Johnson–Mehl–Avrami–Kolmogorov (JMAK) model—a nucleation
and growth model—to various catalyzed MgH2 systems [152,153]. Some other results
showed that the kinetics can be fitted by diffusion models, such as the Jander diffusion
model [154,155]. In early works, Schimmel et al. [156] assumed that saturated catalyst parti-
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cles in close contact with a Mg particle act as nucleation centers. A recent hydrogenography
study of Mooij and Dam [157] showed evidence of nucleation and growth mechanism in
the hydrogenation of the 1-dimensional nanoconfined Mg/TiH2. They also suggested that
the desorption mechanism is not simply the reverse of the absorption mechanism, and the
energy barrier for nucleation of Mg is smaller than the nucleation of MgH2. Danaie and
Mitlin [158] established the metal hydride orientation relationship (OR) for the ball-milled
MgH2-TiF3 system during hydrogen absorption and it was determined to be (110)MgH2 ||
(−110−1)Mg and (111)MgH2 || (01−11)Mg. The authors observed that during desorption
the TiF3 catalyst substantially increases the number of the newly formed Mg crystallites,
which displays a strong texture correlation to the parent MgH2 phase. Mulder et al. [159]
made an assumption that MgF2 may act as seeding crystals for MgH2 because MgF2 and
MgH2 have the same crystallographic structure and good lattice matching.

6. Kinetic Modeling

Kinetics study focuses on the quantitative interpretation of the reaction rates and of
the factors upon which they depend. Early studies of the kinetics of the pure Mg-H2 system
attempted first-order reaction, second-order reaction, 2D contraction area, 3D diffusion,
and Jander diffusion model. Due to the sluggish diffusion of hydrogen in the MgH2
phase, it is believed that the hydrogenation of Mg is best described by the 3D diffusion-
controlled contracting volume model [121]. As more doped systems have been examined,
alternate kinetic models have been proposed to analyze the kinetic behavior of Mg-based
hydrides [160]. Despite the debate and deviation, kinetic analysis has been recognized as a
useful tool for Mg-based systems [161]. This section will summarize and discuss the kinetic
models and analytic methods that are commonly applied for analyzing kinetics.

Basically, the reaction progress of a solid-gas system is defined as the fraction of the
transformation, ξ (0 ≤ ξ ≤ 1), which is a function of reaction time t, and rate constant k, as
shown in Equation (8):

ξ = f (k, t) (8)

The rate constant k is defined as a specific rate and the rate coefficient and is a function
of temperature. This rate constant k varies with temperature T following the Arrhenius
Equation (9):

lnk = − Ea

RT
+ ln A (9)

In this relationship, activation energy can be calculated by the Arrhenius plot, which is
lnk against the reciprocal of the absolute temperature 1/T. As mentioned above, activation
energy (Ea) for a catalyzed Mg/MgH2 can be considered as a useful scale to evaluate the
effectiveness of a catalyst. More importantly, the kinetic analysis could not only calculate
(Ea) and rate constant k, but also provide an understanding of reaction mechanisms. As
can be seen in Table 5, the kinetic models can be divided into two categories: isothermal
models, which are based on analysis of isothermal hydrogen absorption or desorption
(ξ − t) curves; and non-isothermal models, which are based on (ξ − t) curves usually
obtained under linearly increasing temperature (by utilizing TGA or Differential Scanning
Calorimeters (DSC) techniques).

Table 5. Kinetic models applied for hydrogenation. (Reproduced with permission from ref. [71].
Copyright 2014 Elsevier).

Model Kinetic Equation

Johnson-Mehl-Avrami (JMA) ln(− ln(1− ξ)) = ln(k) + nln(t)
Jander diffusion model (JMD) (1− (1− ξ)1/3)

2
= kt

1-D diffusion ξ2 = kt
2-D diffusion (Bidimensional partical shape) (1− ξ) ln(1− ξ) + ξ = kt
3-D diffusion (Ginsling-Braunshteinn model) (1− 2ξ/3)− (1− ξ)2/3 = kt

2-D contracting area 1− (1− ξ)1/2 = kt
3-D contracting volume 1− (1− ξ)1/3 = kt
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6.1. Isothermal Models

Several isothermal models, such as Johnson–Mehl–Avrami–Kolomogorov (JMAK)
model [162], Jander model [163], Ginsling–Braunshtein (GB) model [164], contraction
volume (CV) model [165], Valensi–Carter (V–C) model [166], and Chou model [163], have
been applied to Mg-based systems. These models represent different rate-controlling
processes, in other words, the JMAK model is established based on nucleation-growth-
impingement mode; the Jander and GB models are derived from Fick’s diffusion law
and thus for a diffusion-controlled reaction; the CV model assumes that the hydrogen
absorption/desorption is controlled by the interface (hydride/metal) movement. Generally,
by examination of best-fitting using the above-mentioned and other models, rate-limiting
step(s) and kinetic parameters (such as rate constant k, dimensionality d, Avrami exponent
n), as well as corresponding physical interpretation, can be determined to investigate the
hydrogenation/dehydrogenation behaviors. In addition, in some scenarios, the isothermal
condition is difficult to maintain during hydrogenation, due to the highly exothermic
reaction of Mg with H2. Particular cautions are needed to minimize the thermal effect when
dealing with catalyzed MgH2 with fast hydrogenation rate and poor heat conductivity,
which leads to heat accumulation of the material [71].

The classic JMAK model is widely accepted for studying the kinetics of various
Mg-based materials [167]. The JMAK model assumes a solid-state phase transformation
containing three overlapping procedures: nucleation, growth, and impingement. Theo-
retically, for the nucleation, it may be either saturation or linear continuous mode, and
the former mode is usually described in heterogeneous catalysis. As for growth, both the
interface-controlled growth and diffusion-controlled growth modes are taken into account
within the JMAK model. Therefore, Avrami exponent n indicates different modes regarding
the nucleation modes, dimensionality, and rate-controlling steps.

Li et al. [168] applied various kinetic models for ball-milled pure MgH2, TiH2-, TiMn2-
and VTiCr-catalyzed MgH2 under different temperatures and pressures, showing the best-
fitting model for hydrogenation of the various materials is the JMAK model. However,
problems with the JMAK model still exist. It was pointed out that the obtained values of
Avrami exponent n are in a very wide range (n = 0.11–1.64), which is difficult to interpret
using the classic JMAK theory. Small values of n have also been reported in the hydro-
genation of Mg-Ti [168] and Mg-V-Nb [130] thin films. Overall, the kinetic parameters and
corresponding discussions obtained from isothermal modeling are usually difficult to be
conclusive. As pointed out in the review by Pang and Li [161], it is difficult to elucidate
the assumption and derivation steps of the kinetics models, and it is also difficult to select
proper methods to analyze the experimental data.

6.2. Non-Isothermal Method

The dehydrogenation kinetics method is based on Kissinger’s theory. It allows de-
riving activation energy by measuring the weight change via TGA, or heat flow via DSC
under a constant heating rate.

ln
(

β

T2
max

)
= −Ea

R

(
1

Tmax

)
+ FKAS(ξ) (10)

In Equation (10), Tmax is the temperature when the reaction rate reaches the maximum,
β is the heating rate, Ea is the activation energy, R is the gas constant, and FKAS(ξ) is
the function of the fraction of transformation ξ. The Kissinger method has been widely
employed for the calculation of dehydrogenation Ea of catalyzed MgH2 materials. This
method has the advantages of efficiency and convenience to evaluate dehydrogenation
activation energy. However, the estimation for kinetics cannot be conducted under different
hydrogen pressures, since most of the TGA/DSC tests are performed under the flow of inert
gas. Consequently, it is difficult to identify the actual process that is controlling the reaction
rates, which leads to inconsistent interpretations that cannot be reliability validated.
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6.3. Activation Energies

The activation energies (summarized in Table 4) for various Ti-additive doped MgH2
systems are plotted in Figure 13. For the reactions of pure MgH2, the activation energies
are reported to be 160 kJ/mol for dehydrogenation and 100 kJ/mol for hydrogenation [138].
Doping with different Ti-based catalysts reduced the MgH2 dehydrogenation Ea to as low
as approximately 70 kJ/mol. The majority of dehydrogenation Ea values were derived
using TGA/DSC and the Kissinger method. It is interesting to find that many catalyzed
systems reported dehydrogenation Ea in the range of 70–75 kJ/mol, which corresponds
with the ∆H of MgH2 (74.5 kJ/mol·H2) although there are some outliers in the reported
values. Note that in general the calculated dehydrogenation Ea should be no less than the
∆H (see Figure 5). The low values of Ea imply that in these systems the energy barriers
of dehydrogenation have been largely overcome. Additionally, some abnormally low Ea
should be carefully examined in terms of the systematic deviations or apparatus errors
during the experiments. For hydrogenation, many published hydrogenation Ea are below
30 kJ/mol, which is significantly lower than that of pure MgH2 [70,71]. From the survey of
published Ea data, it is shown that the kinetics can be significantly enhanced by Ti-based
addition. Ti and Ti hydrides, halides, and intermetallic compounds present excellent
catalytic effects.
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7. Summary and Perspectives

Mg-based hydrides have shown great prospects as high-energy-density media for
hydrogen storage and thermal energy storage. The high hydrogen capacity, abundant
resources, reversibility, and low toxicity make Mg-based materials promising candidates. It
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has been well recognized that doping Ti-based additive is an effective method to enhance
the hydrogen storage properties of MgH2. The catalytic doping combined with ball-milling
techniques is widely used for synthesizing nano-structured MgH2-additive composite.
Additionally, other synthetic methods such as thin film deposition and chemical methods
have been employed. Recent research showed that Mg-based material can be modified
into various nano-structures, while the kinetics are dramatically improved by catalytic
doping. Various types of Ti-based catalysts including hydrides, oxides, halides, and
intermetallics showed positive effects in improving dehydrogenation and hydrogenation
kinetics. However, it is still difficult to assess the effectiveness of different catalysts.

The survey of reported activation energies shows that the energy barrier can be largely
overcome by the use of Ti-based additives. The mechanism of catalysis can be resolved into
several steps, for example, for hydrogenation: hydrogen dissociation, surface penetration,
diffusion, hydride nucleation, and growth. Although a comprehensive understanding of
the role of Ti-based catalysts still remains unclear, there has been evidenced that catalysts
do play important roles in promoting some of the steps. It was believed that the doped
catalyst species can reduce the dissociation energy barrier of the hydrogen molecule, and
can also facilitate the hydrogen diffusion in the Mg/MgH2 matrix. Kinetic modeling could
become a more useful tool for interpreting the controlling steps of the reactions. Future
mechanism works should be directed to observe catalytic activities and microstructure
evolution during highly controlled reaction conditions to provide closer comparisons with
boundary conditions for the alternative models used for interpretations.
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