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Abstract: Gingivitis and periodontitis are inflammatory disorders caused by dental plaque and
calculus. These disorders often lead to tooth loss if not treated properly. Although antibiotics can
be used, it is hard to treat them due to the difficulty in supplying effective doses of antibiotics
to lesion areas and side effects associated with long-term use of antibiotics. In the present study,
attempts were made to provide in vitro and in vivo evidence to support anti-inflammatory activities
of TEES-10®, a mixture of ethanol extracts of Ligularia stenocephala (LSE) and Secale cereale L. sprout
(SCSE) toward gingivitis and periodontitis by performing the following experiments. TEES-10® with
a ratio of 6:4 (LSE:SCSE) showed the best effects in both stimulating the viability and inhibiting
the cytotoxicity. In in vitro experiments, TEES-10® showed an ability to scavenge 2,2-diphenyl-1-
picrylhydrazyl and superoxide radicals and remove ROS generated in periodontal ligament cells
treated with lipopolysaccharide. TEES-10® also enhanced the viability of stem cells from human
exfoliated deciduous teeth and stimulated the osteogenic differentiation of deciduous teeth cells.
In in vivo experiments using rats with induced periodontitis, TEES-10® significantly decreased
inflammatory cell infiltration and the numbers of osteoclasts, increased alveolar process volume and
the numbers of osteoblasts, decreased serum levels of IL-1β and TNF-α (pro-inflammatory cytokines),
and increased serum levels of IL-10 and IL-13 (anti-inflammatory cytokines). These results strongly
support the theory that TEES-10® has the potential to be developed as a health functional food that
can treat and prevent gingival and periodontal diseases and improve dental health.

Keywords: anti-inflammatory effect; anti-oxidative effect; Ligularia stenocephala; osteogenic differentiation;
periodontal disease; Secale cereale L. sprout

1. Introduction

Gingivitis and periodontitis are common dental inflammatory disorders caused by
dental plaque and calculus that are formed due to poor dental hygiene. These lesions are
susceptible to bacterial infection. If not treated properly, they can spread to the alveolar
bone and eventually lead to tooth loss [1–3]. Periodontal disease is characterized by separa-
tion of teeth and gums due to an inflammatory response to microbial plaque. This feature
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occurs when a mixture of pathogenic and non-pathogenic bacterial species binds to the
tooth surface and forms a biofilm [4]. Common periodontal pathogens include the anaero-
bic bacteria Trepanema denticola and Porphyromonas gingivalis, and the microaerobic bacteria
Aggregatibacter actinomycetemcomitans [5,6]. Compounds are produced to trigger inflamma-
tory responses [7]. An inflammatory response is induced by the direct action of LPS and
an endotoxin which accelerates tissues damages by producing matrix metalloproteinases
(MMPs), inflammatory cytokines [8,9] and reactive oxygen species (ROS) [10,11].

Of these mediators of tissue damage, ROS play major roles in tissue destruction. ROS
are constantly produced in all living organisms [12,13]. They are produced in a huge
amount from leukocytes during a bacterial infection in excess of removal capacity of the
tissues [14,15]. Due to their high reactivity, ROS produced in gingivitis and periodontitis
can destroy gingival and periodontal tissues [16,17]. By this mechanism of action, ROS
also cause tissue damages in other inflammatory diseases such as atopic dermatitis and
autoimmune arthritis [18].

As part of the treatment of gingivitis and periodontitis, mechanical removal methods
such as scaling and root planning of the root surface are known as the gold standard [19].
However, scaling and root planning cannot completely remove the endotoxin that prevents
the connective tissue from attaching to the root surface, and an amorphous smear is
formed [20,21]. Therefore, systemic and topical antibiotics, topical drug delivery, host-
controlled therapy, laser and other alternative therapies are used to support this, but all
have limitations [22–24]. However, the use of antibiotics is limited due to the difficulty in
supplying effective doses to lesion areas and side effects associated with their long-term use.
Common side effects of using antibiotics include gastrointestinal disorders, tooth surface
discoloration, loss of taste, disruption of oral bacterial balance and induction of resistant
bacterial strains [25]. Thus, efforts have been made to search for therapeutic substances
from biomaterials known to have fewer side effects [26–28]. Based on the roles of ROS in
tissue damage and inflammatory conditions, much attention has been paid to substances
with antioxidant activities [29,30].

Ligularia stenocephala, a perennial plant found in Korea, Japan, Taiwan, and China has
been used as a vegetable. It is also used as a folk remedy for asthma and arthritis. Recent
studies have shown that this plant has antioxidant, anti-inflammatory, anti-diabetic, and
lipolytic effects [31–33]. Secale cereale L. is a kind of grain belonging to the gramineous
plant and has spread to Europe and Northern Asia, in particular; it has been cultivated
as a staple crop in Middle and Northern Asia [34]. It has been found that Secale cereale L.
extracts have high antioxidant activities [35]. It has also been reported that a combination
of probiotics and Secale cereale L. bran enhanced anti-inflammatory effects compared with
probiotics or dietary fibers alone [36]; however, there are few studies on the effects of
Secale cereale L. sprouts.

A previous clinical study [31] has shown that TEES-10®, a mixture of LSE and SCSE,
can improve the symptoms of gingivitis and periodontitis [37]. In the present study, TEES-
10® was further investigated. The objectives of this study were: (1) to determine the ratio of
LSE and SCSE that would lead to the highest efficacy, (2) to determine in vitro free radical
scavenging and osteogenic activities of TEES-10® with the optimal ratio of LSE to SCSE,
and (3) to confirm therapeutic effect of TEES-10® with the optimal ratio of LSE to SCSE in
experimentally induced periodontitis in vivo using rats.

2. Materials and Methods

2.1. Preparing TEES-10®

TEES-10® was uniquely produced and provided by Famenity Co., Ltd. (Uiwang,
Gyeonggi, Korea) TEES-10® is a mixture of ethanol extracts of LSE and SCSE, which was
prepared according to a preparation process patented by Famenity Co., Ltd. [37]. It was
provided by Famenity Co., Ltd. To determine the ratio of LSE:SCSE with the optimal effect,
various preparations of TEES-10® were made with the following ratios of LSE and SCSE,
which were 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2 and 9:1.
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2.2. Experiments Using Cells

2.2.1. Determining the Optimal TEES-10® Using Periodontal Ligament (PDL) Cells

To determine the TEES-10® preparation with optimal efficacy, the above nine prepa-
rations of TEES-10® were tested for the effects on the viability of PDL cells and the LPS-
induced cytotoxicity of PDL cells.

PDL cells were supplied by Cell Engineering For Origin (CEFO™, Seoul, Korea) and
cultured at 37 ◦C in a human periodontal ligament cell growth medium (CEFOgro™) con-
taining 100 U/mL penicillin-100 µg/mL streptomycin (CEFOgro™) in a 5% CO2 incubator.
The medium used in this experiment was replaced every two days, and the cells were
cultured after reaching 90% confluency. We carried out PDL cell culture and cell viability
measurement according to our previous method [37].

The cell viability of PDL cells was examined using the EZ-Cytox cell viability assay
kit of Daeil Lab Service Co. (Seoul, Korea). PDL cells (8 × 103 cells/well) used in this
experiment were seeded in 96-well plates and incubated for one day. After removing
the culture medium, the cells were incubated in the culture medium containing each of
the TEES-10® preparations (100 µg/mL) for 24 h. After adding the EZ-Cytox solution
(10 µL) to each well, the cells were further incubated for 2 h and then the absorbance was
measured at 450 nm with an Infinite M200 PRO NanoQuant microplate reader (TECAN,
Männedorf, Switzerland).

To examine the cytoprotective effect of nine TEES-10® preparations, the PDL cells
were incubated with LPS (1 µg/mL) for 24 h. The cells were then incubated with each of
the TEES-10® preparations for 24 h and the cell viability was examined using the EZ-Cytox
solution as above. In both experiments, the results were obtained from the five trials and
presented as the mean ± SEM.

2.2.2. Measuring 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging Activity

TEES-10® was tested for the activity to scavenge DPPH radicals (Sigma, St. Louis, MO,
USA). DPPH (0.5 mM) were treated in the absence or presence of varying concentrations
of TEES-10® (12.5, 25, 50, 100, 200 or 400 µg/mL) for 30 min according to a previously
described method [38]. The same experiment was done with 50 µg of L-ascorbic acid
(Sigma), a positive control. The absorbance of the reactions was measured at 517 nm using
the Infinite M200 PRO NanoQuant microplate reader (TECAN). DPPH was used after
dissolving in DMSO. The activity of scavenging DPPH radicals was calculated using the
following formula:

Inhibition (%) = {1 − [(A Sample − A Blank)/A Control]} × 100

A Sample: absorbance in the presence of TEES-10®.
A Blank: absorbance in the absence of TEES-10®.
A Control: absorbance in the presence of L-ascorbic acid.

2.2.3. Measuring Superoxide Radical Scavenging Activity (SOD-like Activity)

TEES-10® was tested for the activity to scavenge superoxide radicals (O2·−) according
to the manufacturer’s protocol using the SOD assay kit of Dojindo Molecular Technologies,
Inc. (Rockville, MD, USA). Briefly, TEES-10® was dissolved in 200 µL of a working solution
(which contains xanthine) provided by the manufacturer to varying concentrations (12.5,
25, 50, 100, 200 or 400 µg/mL), mixed with 20 µL of an enzyme working solution (which
contains xanthine oxidase) and reacted at 37 ◦C for 20 min. The same experiment was done
with 12.5 µg of L-ascorbic acid, a positive control. The absorbance of the reactions was
measured at 450 nm. The SOD-like activity was calculated using the following formula:

SOD-like activity (%) = [(A Blank 1 − A Blank 3) − (A Sample − A Blank 2)]/ (A Blank 1 − A Blank 3) × 100

A Blank 1: absorbance of the reaction containing xanthine (X) and xanthine oxidase (XO).
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A Sample: absorbance of the reaction using TEES-10® + X + XO.
A Blank 2: absorbance of the reaction containing X only.
A Blank 3: absorbance of the reaction containing X, XO and SOD.

2.2.4. Measuring ROS Production from PDL Cells

The effect of TEES-10® on the generation of reactive oxygen species (ROS) in the LPS-
treated PDL cells was examined. We carried out 2′,7′-dichlorofluorescein (DCF-DA) staining
in accordance with a precedent study [39]. PDL cells (8 × 103 cells/well) were cultured for
24 h and cultured further for 24 h in the media containing LPS (1 µg/mL) with or without
TEES-10® (50 or 100 µg/mL). The cells were washed with PBS and cultured for 30 min in
the presence of 20 µM DCF-DA (Sigma). Thereafter, the cells were washed and suspended
in I mL of PBS. The fluorescence of the reactions was measured using a fluorescence
microplate reader (Glomax, Promega, Madison, WI, USA) with 485/20 excitation filter and
528/20 emission filter.

2.2.5. Measuring the Viability of Stem Cells from Human Exfoliated Deciduous
Teeth (SHED)

SHED cells were supplied by Cell Engineering For Origin (CEFO™) and cultured
in a SHED growth medium (CEFOgro™) containing 100U/mL penicillin-100 µg/mL
streptomycin (CEFOgro™) at 37 °C. The cells were subcultured 4–6 times after reaching
90% confluency changing the media every 2 days.

To examine the effect of TEES-10® on the viability of SHED, SHED (5 × 103 cells/well)
were cultured for 24 h and cultured further in the medium containing varying concen-
trations of TEES-10® (10, 20, 50, 100, 200 or 400 µg/mL). The cell viability was mea-
sured using the EZ-Cytox Cell viability assay kit (Daeil Lab Service Co., Seoul, Korea) as
described above.

2.2.6. Measuring Osteogenic Differentiation of SHED by Alizarin Red S Staining

To induce osteogenesis in the SHED, SHED (3× 103/well) were cultured in the Human
MSC Differentiation Medium Osteogenesis (CEFOgro™) in the absence or presence of TEES-
10® (6:4) (100 µg/mL) for 24 h. After removing the medium, the cells were stained with
1% alizarin red S (pH 4.2; Sigma) at room temperature for 30 min to detect the calcification
according to a previously published method [40], washed with distilled water and examined
for calcification under a microscope. In addition, the color intensity was quantitated.

2.3. Experiments Using Animals
2.3.1. Inducing Experimental Periodontitis (EPD) in Rats

Sprague-Dawley rats (male, 6 weeks old) were acclimated in stainless steel cages (2 rats
per cage) for 1 week. The twenty-three rats were anesthetized by intraperitoneally injecting
a mixture (1 mL/kg) of Zoletil (Virbac, Milan, Italy) and Rompun (Bayer, Milan, Italy)
(4:1 v/v). The five rats were subjected to a sham operation (control group) and eighteen rats
received the EPD operation by ligating the right mandibular first molar with a 3-0 suture.
The ligated 3-0 suture was left on the right mandibular first molar of rats. The nine rats
(vehicle group) were given the vehicle and another nine rats (TEES-10® group) were given
TEES-10® (50 mg/kg) for 4 weeks, respectively. TEES-10® was orally administrated to the
rats for 4 weeks every day from week 1 after ligating the right mandibular first molar.

2.3.2. Histologic Examination of EPD Region

All the animals were anesthetized by intraperitoneally injecting a mixture (1 mL/kg)
of Zoletil (Virbac) and Rompun (Bayer) (4:1 v/v) and perfused transcardially with 0.1 M
phosphate-buffered saline (PBS, pH 7.4) followed by 4% paraformaldehyde in 0.1 M
phosphate-buffer (PB, pH 7.4). The mandible tissue inducing the periodontitis was excised
and immersed in 10% paraformaldehyde in 0.1 M phosphate-buffer (PB, pH 7.4).
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The mandible tissue samples from the rats were obtained by crossly trimming around
the first molar teeth region, including gingival and mandibular tissues. The mandibular
tissues were treated with a decalcifying solution including 24.4% formic acid, and 0.5 N
sodium hydroxide for 48 h. The resulting decalcified tissues were fixed in 10% neutral
buffered formalin for one day and then made into paraffin blocks using the automated
tissue processor of Shandon Citadel 2000 (Thermo Scientific, Waltham, MA, USA) and the
embedding center of Shandon Histostar (Thermo Scientific). From each paraffin block, five
µm-thick sections were made using an automated microtome (RM2255, Leica Biosystems,
Nussloch, Germany). These sections were stained with hematoxylin and eosin (H & E)
according to previously established methods [41,42] with our modifications and examined
using the light microscope of Model Eclipse 80i (Nikon, Tokyo, Japan).

2.3.3. Histomorphometry

The degree of inflammation of the EPD region was graded from a score of 0 to 3,
considering the inflammatory cell influx, alveolar process and cementum integrity as
described in Table 1 [41,43]. In addition, the infiltrated inflammatory cell numbers on
the gingival sulcus (cells/mm2 of gingival tissues), alveolar process volumes between the
periodontal ligament and inner gingival limits, and the mean osteoclast and osteoblast cell
numbers on the inner alveolar process surface (cells/mm of alveolar process surface) were
measured and analyzed using a computer-assisted image analysis program (iSolution FL
ver 9.1; IMT i-solution Inc., Vancouver, British Columbia, Canada), based on previously
established methods [44,45].

Table 1. The Histological Scores of EPD used in this study.

Scores Remarks

0 Absence or only a discrete cellular infiltration (inflammatory cell infiltration is sparse and restricted to the region of the
marginal gingival), preserved alveolar process and cementum

1 Moderate cellular infiltration (inflammatory cellular infiltration present all over the insert gingival), some but minor
alveolar process resorption and intact cementum

2 Accentuated cellular infiltration (inflammatory cellular infiltration present in both gingival and periodontal ligament),
accentuated degradation of the alveolar process and partial destruction of cementum

3 Accentuated cellular infiltrate, complete resorption of the alveolar process and severe destruction of cementum

Max = 3

EPD: Experimental periodontitis. EPD and related alveolar bone loss were induced by ligation placement around
cervix of mandibular first molar teeth.

2.3.4. Measuring Blood Levels of Some Biomarkers

After the 4-week experiments, the rats were anesthetized and 10 mL of blood was
drawn from the inferior vena cava. The anesthesia and sacrifice were conducted as de-
scribed in Section 2.3.2. The sera were obtained from the blood samples and assayed for
markers of liver and kidney functions [aspartate aminotransferase (AST), alanine amino-
transferase (ALT), and blood urea nitrogen (BUN)] and inflammatory cytokines (IL-1β,
TNF-α, IL-10, and IL-13) using the MILLIPLEX MAP Rat Cytokine/Chemokine Magnetic
Bead Panel of Immunology Multiplex Assay (Millipore, Billerica, MA, USA).

2.4. Statistical Analysis

All results obtained in this experiment were presented as mean ± standard error of
mean (S.E.M). Statistical significance between groups was tested using ANOVA followed by
Tukey’s test as a post-hoc test with the level of significance set to p < 0.05. The statistical sig-
nificance of the results of the histomorphometric analysis performed on EPD-induced rats
was tested using ANOVA followed by the least-significant differences multi-comparison
(LSD) test with the level of significance set to p < 0.05. The Kruskal–Wallis H test was
performed if a significant variance was found in the Levene test. If a significant difference
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was found in the Kruskal–Wallis H test, the Mann–Whitney U (MW) test was performed
with the level of significance set to p < 0.05.

3. Results

3.1. Selecting the TEES-10® with Best Efficacy

In this study, an attempt was made to determine the ratio of LSE and SCSE to give
the optimal efficacy. The results were shown in Figure 1. None of the TEES-10® prepara-
tions reduced the viability of PDL cells. They rather stimulated the viability. The highest
stimulation of 121.4% was observed at the LSE-SCSE ratio of 6:4 (Figure 1A). The via-
bility of PDL cells was reduced to 50% by treatment with 1 µg/mL LPS. This reduced
viability was inhibited by all the nine preparations. Here again, the highest inhibition was
observed by the preparation of the 6:4 ratio (Figure 1B). Through the two experiments,
TEES-10® of 6:4 ratio was found to have the best efficacy, In the following experiments, the
6:4 preparation was used.
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Figure 1. Effect of each preparation (100 µg/mL) on the viability of PDL cells (A) and LPS-induced
cytotoxicity of PDL cells (B). The highest stimulation and inhibition is observed by the preparation
of 6:4 ratio. Each bar represents the mean ± SEM (n = 5, respectively). * p < 0.05 as compared with
control group; # p < 0.05 as compared with 1 µg/mL LPS-treated group.

3.2. Antioxidant Activities of TEES-10®

The antioxidant activities of TEES-10® were evaluated by the three methods.
The first was the inhibition of ROS generation in the LPS-treated PDL cells (Figure 2),

which was measured by the fluorescence of DCF-DA. The ROS levels were increased up to
170% in the LPS-treated PDL cells compared to the untreated control. This increase of ROS
production was inhibited by TEES-10® dose-dependently. With 100 µg/mL, the production
was inhibited to the control level.

The second was the scavenging of the DPPH radicals (Figure 3A). The activity of
the scavenging DPPH radicals was dose-dependent from 12.5–400 µg/mL. The activity at
400 µg/mL was almost the same as that of 50 µg/mL of ascorbic acid.

The third was scavenging superoxide radicals (SOD-like activity) (Figure 3B). The
activity of scavenging superoxide radicals was also dose-dependent from 12.5–400 µg/mL.
The activity at 400 µg/mL was even higher than that of 12.5 µg/mL of ascorbic acid.

3.3. Effects of TEES-10® on Viability and Osteogenic Differentiation of Stem Cells from SHED

TEES-10® was examined for the osteogenic differentiation using SHED. First, TEES-
10® was tested on the viability of SHED (Figure 4). TEES-10® did not affect the viability of
these cells from 10 to 400 µg/mL and rather stimulated the viability in this range of the
concentrations. The highest stimulation was observed at 100 µg/mL. Therefore, the effect
on osteogenesis was tested with 100 µg/mL.
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Figure 2. Effect of TEES-10® on the production of ROS in the LPS-treated PDL cells. Increased
ROS production in the LPS-treated PDL cells is inhibited by TEES-10® dose-dependently. Each bar
represents the mean ± SEM of fluorescence intensity (n = 5, respectively). * p < 0.05 as compared with
control group; # p < 0.05 as compared with 1 µg/mL LPS-treated group.
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Figure 4. Effects of TEES-10® on viability of stem cells from SHED cells. The highest stimulation
is shown at 100 µg/mL. Each bar indicates the means ± S.E.M. (n = 5, respectively). * p < 0.05 as
compared with control group with no TEES-10®.

As shown in Figure 5A, the induction of osteogenesis was confirmed by observing
the increase in stained color intensity. The color intensity was significantly increased by
100 µg/mL of TEES-10® indicating that TEES-10® can induce the osteogenesis. SHED were
not stained when the cells were cultured in the ordinary medium regardless of the presence
of TEES-10®. In Figure 5B, the staining intensity was quantitated and the intensity was
found to be increased almost three-fold by TEES-10®.
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Figure 5. Effect of TEES-10® on SHED cells. (A) Induction of osteogenesis by observing the increase of
stained color intensity. The color intensity is significantly increased by TEES-10® indicating that TEES-
10® can induce osteogenesis. (B) Quantitation of the staining intensity. The intensity is increased
almost three-fold by TEES-10®. Each bar indicates the means ± S.E.M. (n = 3, respectively). Black
bars: the results in the ordinary medium. * p < 0.05 compared to control group in ordinary medium.

3.4. Anti-Inflammatory Effect of TEES-10® on Experimental Periodontitis in Rats

TEES-10® was tested for the anti-inflammatory action using the experimental periodon-
titis in rats. The induction of periodontitis was confirmed in the H&E-stained tissue sections
(Figure 6) which show marked and noticeable infiltrations of inflammatory cells, mainly
neutrophils on the gingival tissues, increases in osteoclast cells and decreases in osteoblast
cells together with alveolar process resorptions. These inflammatory signs were suppressed
by TEES-10® significantly. In Table 2, inflammatory cell numbers, alveolar process vol-
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umes and numbers of osteoblasts and osteoclasts were quantitated. TEES-10® showed
the significant suppressing effects on these inflammatory parameters. Table 2 also shows
inflammatory scores that were estimated according to the criteria in Table 1. The score
of periodontitis was 2.44 ± 0.73, which was decreased to 0.89 ± 0.33 by the treatment
with TEES-10®.
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Figure 6. The effect of TEES-10® in right mandible using H&E staining in rats. Noticeable infiltra-
tions of inflammatory cells, increases in osteoclast cells and decreases in osteoblast cells are shown
in EPD + vehicle group, but these inflammatory signs are significantly suppressed by TEES-10®.
AB: abscess, AP: alveolar process, CM: cementum, DE: dentin, GS: gingival sulcus, GV: gingiva,
LS = ligation site, OC: oral cavity, PL: periodontal ligament. Scale bars = 100 µm.

Table 2. The quantitative analysis of TEES-10® effect on the experimental periodontitis (EPD) in rats.

Groups
Histological

Scores
(Max = 3)

Inflammatory Cell
Numbers

(cells/mm2 of
Gingival Tissues)

Alveolar Process
Volumes (%)

Osteoclast Cell
Numbers

(cells/mm2 of
Alveolar Gingival

Tissues)

Osteoblast Cell
Numbers

(cells/mm2 of
Alveolar Gingival

Tissues)

Control 0.20 ± 0.45 27.20 ± 8.20 70.93 ± 6.50 9.60 ± 4.56 91.60 ± 15.65

EPD + Vehicle 2.44 ± 0.73 a 414.89 ± 280.59 c 36.17 ± 12.20 c 38.00 ± 9.27 a 18.33 ± 7.14 a

EPD + TEES-10® 0.89 ± 0.33 a, b 133.78 ± 50.35 c, d 61.77 ± 5.39 c, d 2.89 ± 3.89 b 56.67 ± 12.49 a, b

The histologic preparations in Figure 6 were analyzed with respect to the numbers of inflammatory cells, volume
of alveolar process and numbers of osteoclasts and osteoblasts. The severity of inflammation was scored according
to the criteria in Table 1. Each bar represents the mean ± SEM (n = 5 in control and n = 9 in other groups)).
a p < 0.05 as compared with Control group by LSD test. b p < 0.05 as compared with EPD + Vehicle group by LSD
test. c p < 0.05 as compared with Control group by MW test. d p < 0.05 as compared with EPD + Vehicle group by
MW test.
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Anti-inflammatory action of TEES-10® was also assessed by measuring the serum
levels of cytokines associated with inflammation. In Figure 7A,B, IL-1β and TNF-α, which
are pro-inflammatory cytokines, significantly increased in the EPD group but decreased
significantly by treatment with TEES-10®. On the contrary in Figure 7C,D, the levels of
IL-10 and IL-13, which are anti-inflammatory cytokines, significantly decreased in the
EPD group but were increased significantly by TEES-10®. These results also support the
anti-inflammatory action of TEES-10®.
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The serum was also tested for AST, ALT, and BUN levels which are biomarkers related
to liver and kidney functions. The levels of these markers were the same in the control,
EPD and EPD + TEES-10® groups (data not shown), suggesting that TEES-10® does not
affect liver and kidney functions.

4. Discussion

In this study, in vitro and in vivo results indicate that TEES-10®, a mixture of LSE and
SCSE, has a therapeutic potential for gingivitis and periodontitis. First, the ratio of LSE to
SCSE that showed the highest efficacy was determined using nine preparations of TEES-10®

with ratios of LSE to SCSE ranging from 1:9 to 9:1. Of these nine preparations, the TEES-10®

with a ratio of LSE to SCSE at 6:4 showed the highest effects in stimulating the viability
of PDL cells and inhibiting the LPS-induced cytotoxicity of these cells. Second, in in vitro
experiments, the TEES-10® could scavenge DPPH and superoxide radicals and remove ROS
generated in PDL cells treated with LPS. The TEES-10® could also enhance the viability
of SHED stem cells of human teeth and stimulate the osteogenic differentiation of SHED
cells. In in vivo experiments using rats with induced periodontitis, TEES-10® suppressed
inflammatory reactions significantly by decreasing inflammatory cell infiltration, increasing
alveolar process volume, increasing osteoblasts and decreasing osteoclasts. TEES-10® also
decreased serum levels of IL-1β and TNF-α (pro-inflammatory cytokines) and increased
serum levels of IL-10 and IL-13 (anti-inflammatory cytokines) in these rats.
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The most common causes of gingivitis and periodontitis are dental plaque and calculus.
Unless treated properly, these inflammatory disorders can damage the alveolar bone and
ligaments supporting teeth [46]. If the lesion is infected with bacteria, the situation is
exacerbated, eventually leading to loss of teeth [3]. In this pathologic condition, stem
cells of teeth play important roles in repairing damaged tissues. These stem cells are
rapidly differentiated into peripheral cells and osteogenic cells to actively regenerate lost
tissues [47,48].

TEES-10® (6:4) could effectively inhibit gingivitis and periodontitis. This action of
TEES-10® is assumed due to the following activities: (1) activities to stimulate the prolifera-
tion of cells of tooth supporting tissues and stem cells of teeth. This assumption was based
on the findings that TEES-10® stimulated the proliferation of PDL and SHED cells, which
are periodontal ligament cells and stems cells of human deciduous teeth, respectively;
(2) activities to stimulate differentiation of tooth stem cells. In addition to stimulating the
proliferation, TEES-10® also accelerated osteogenic differentiation. Several kinds of stem
cells can be obtained from teeth and the surrounding tissues [49]. The SHED used in this
study were obtained from the pulps of deciduous teeth or exfoliated natal teeth. The SHED
have gained attention as a source of stem cells due to their high proliferation rates and
osteogenic potential [50,51]. We observed a noticeable increase in the cell proliferation
and the osteogenic differentiation level of SHED treated with TEES-10®. Since TEES-10®

promoted the proliferation and osteogenic differentiation of SHED, TEES-10® may be ex-
pected to reinforce the function when we apply stem cells derived from deciduous teeth
in tissue engineering after this; (3) ROS are well-known mediators causing tissue damage
in inflammatory conditions. It has been reported that ROS are involved in tissue damage
in periodontal inflammatory disorders [11,52,53]. The assumption that TEES-10® is an
efficient antioxidant is strongly supported by its ability to scavenge DPPH and superoxide
radicals and remove ROS generated in LPS-treated PDL cells. The results of this study
indicate that TEES-10® has an excellent antioxidant effect and could effectively reduce the
excessive oxidative stress caused by inflammatory reactions in PDL cells.

Consistent with the above in vitro results supporting its mechanism of actions [37],
TEES-10® (6:4) was observed to be able to efficiently suppress symptoms of experimentally
induced periodontitis in rats. Macrophages stimulated by bacterial LPS product pro-
inflammatory cytokines such as IL-1β and TNF-α [54]. Whereas a marked increase in the
levels of IL-1β and TNF-α, which are mediators of strong inflammatory reactions involved
in tissue destruction [55], was observed in the animal model of periodontitis compared to
the control, a significant decrease in the levels of the same biomarkers was observed in the
group orally administered TEES-10®. While the levels of IL-10 and IL-13, which are anti-
inflammatory cytokines that regulate immune responses [56,57], decreased in the animal
model of periodontitis, the levels of the same biomarkers increased in the group orally
administered TEES-10®. These results indicate that orally administering TEES-10® inhibits
the activity of pro-inflammatory factors while restoring the activity of anti-inflammatory
factors to reduce periodontal inflammation.

Both in vitro and in vivo results in this study further support the findings of a previous
clinical study [37] showing that four-week administration of TEES-10® to subjects with
gingival problems can improve the gingival index (GI) and bleeding on probing (BOP) and
remarkably reduce saliva levels of MMP-8 and MMP-9, which are enzymes that destroy
connective tissues in inflammatory conditions. Taking the results of the present study and
the previous study together, TEES-10® is highly recommended as a functional food for
preventing and treating dental inflammatory disorders.

5. Conclusions

In the present study, TEES-10® had a strong anti-oxidative effect by increasing the
DPPH radical scavenging activity, increasing activity among scavenging superoxide rad-
icals, and reducing ROS in LPS inflammation-induced PDL cells. In addition, TEES-10®

significantly promoted the osteodifferentiation of deciduous dendritic stem cells. Fur-
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thermore, in rats orally administered with TEES-10® in an animal model of periodontitis,
periodontitis symptoms and alveolar bone loss were inhibitory, inflammation-inducing
cytokine levels in the blood decreased, and anti-inflammatory cytokine levels increased.
Therefore, this study suggests the possibility that TEES-10® can be developed as a safe
natural material that can help prevent and improve periodontal health.
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