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Abstract: Diagnosis and treatment planning forms the crux of orthodontics, which orthodontists gain
with years of expertise. Machine Learning (ML), having the ability to learn by pattern recognition, can
gain this expertise in a very short duration, ensuring reduced error, inter–intra clinician variability
and good accuracy. Thus, the aim of this study was to construct an ML predictive model to predict a
broader outline of the orthodontic diagnosis and treatment plan. The sample consisted of 700 case
records of orthodontically treated patients in the past ten years. The data were split into a training and
a test set. There were 33 input variables and 11 output variables. Four ML predictive model layers
with seven algorithms were created. The test set was used to check the efficacy of the ML-predicted
treatment plan and compared with that of the decision made by the expert orthodontists. The model
showed an overall average accuracy of 84%, with the Decision Tree, Random Forest and XGB classifier
algorithms showing the highest accuracy ranging from 87–93%. Yet in their infancy stages, Machine
Learning models could become a valuable Clinical Decision Support System in orthodontic diagnosis
and treatment planning in the future.

Keywords: machine learning; orthodontic treatment planning; clinical decision support system

1. Introduction

In recent years, with the flourishing of studies and technological evolution, artificial
intelligence (AI) is going through revolutionary progress in the field of medicine. The
development of medical artificial intelligence [1] has been identified with the development
of Clinical Decision Support Systems (CDSSs) [2,3] which are interactive computer pro-
grams designed and intended to help the clinician to develop a diagnosis and determine
appropriate treatment options and prognosis.

Machine Learning (ML) [4,5], a branch of AI, facilitates machines and computer
systems to process, analyze and interpret data to aid in providing solutions for real-world
challenges such as software and website designing, online data storage, sharing and
protection, national security and defense and health care management (patient appointment
management, treatment predictions, robotic surgeries, 3D printing, etc.) The algorithms
have the ability to learn and execute actions on their own based on the type of adequate
data provided. The algorithm is set up so that machines can anticipate results dependent
on previous events. With the provided information, Machine Learning algorithms and
strategies help in training a model to foresee and conform to future outcomes.

In the field of dentistry, various AI–ML-integrated programs have been developed
to assist dental specialists in their clinical practice. Some of them include diagnosis of
proximal dental caries [6], AI in dental surgery [7], categorize pre-malignant and malignant
oral smears [8] apical foramen localization [9], oral cancer prognosis [10], etc.
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Diagnosis and treatment planning forms the essence of orthodontics. Many studies
have been carried out in orthodontics that have made use of AI and ML to predict various
aspects of treatment planning, most of which deal with cephalometric landmark identi-
fication [11–19] and extraction–non-extraction decisions [20–25]. However, there are no
studies yet to predict a broader outline of the diagnosis of a patient’s malocclusion, and
the mode of treatment as comprehensive and deliberate evaluation of numerous factors
makes diagnosis and treatment planning a complex process. Moreover, diagnosis depends
on the subjective judgement of the orthodontists, with various philosophies and theories
of orthodontics posing a challenge to standardize a particular treatment, thus leading to
inter- and intra-clinician incongruities and also differences in treatment plans between
experienced and less experienced orthodontists.

Orthodontists acquire keen clinical expertise with many years of practice and expe-
rience, along with the support of essential and supplemental diagnostic aids. Machine
Learning models, which have the ability to learn by pattern recognition and algorithms
using data fed into a computer, can gain this expertise using the algorithm in a very short
timeframe. They use a training dataset of large data collected from many expert orthodon-
tists. By this method of learning, there is diminished odds of error, missing out on data,
inter- and intra-clinician discrepancies and enhancement of the accuracy in prediction of
diagnosis and treatment planning [21].

Therefore, the aim of this study was to evaluate a Machine Learning predictive model
for orthodontic treatment plan prediction and to correlate the treatment plan prediction of
the model to the treatment plan of experienced orthodontists.

2. Materials and Methods

A total of 700 case records satisfied the inclusion criteria, which included (i) case
record files of the patients containing clinical examination, cephalometric data and the
treatment plan formulated by orthodontists and (ii) patient age groups between 10–30 years
who have undergone orthodontic treatment including growth modulation, camouflage
and jaw surgery modes of treatment in the past ten years. They were procured from the
Department of Orthodontics and Dentofacial Orthopedics. The exclusion criteria for the
study were (i) patients with significant systemic medical history and conditions, (ii) patients
with developmental disturbances, mutilated dentition, syndromes, craniofacial defects and
gross facial asymmetries and (iii) patients with a previous history of orthodontic treatment.

The sample was divided into a training set and a test set in a 70:30 ratio. A basic outline
of orthodontic diagnosis and treatment planning was designed for model construction and
training (Figure 1).
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The input layer of variables consisted of parameters that most commonly determine
the diagnosis and treatment planning of the patient (Table 1). All the layers consisted of
33 parameters. The output layer of 11 variables was comprised of the diagnosis and mode
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of treatment. These input variables were processed to ensure all of them were quantified
by converting them into numerical values (Table 2—Data Dictionary) before being used for
the model training. The data entry was conducted in four Microsoft Excel spreadsheets,
one for each model. The model training was performed with the training set.

Table 1. Input parameters.

Sl No. Parameter Sl No. Parameter Sl No. Parameter

1 Patient ID 13 LI–NB mm 25 IMPAg

2 Age 14 N perpendicular to Pt. A 26 Dentition
3 Gender 15 N perpendicular to Pog 27 Overjet
4 Profile 16 Wits Appraisal 28 Overbite
5 Nasolabial angle 17 Wits mm 29 Mandibular ramus
6 Molar relation 18 Beta angle 30 Mandibular body
7 SNA a 19 Lip competence 31 Maxilla
8 SNB b 20 Lip strain 32 Alignment
9 ANB c 21 CVMI f 33 Curve of Spee

10 UI–NA d degrees 22 Jaraback ratio
11 LI–NB e degrees 23 Mandibular plane angle
12 UI–NA mm 24 Interincisal angle

a—Sella-Nasion-point A angle. b—Sella-Nasion-point B angle. c—point A-Nasion-point B angle. d—upper
incisor to Nasion-point A. e—lower incisor to Nasion-point B. f—cervical vertebrae maturation stage. g—incisor
mandibular plane angle.

Table 2. Data Dictionary.

Sl No. Numerical Data Categorical Data

1 Patient ID Gender:
Male—1 Female—0

2 Age Profile:
Convex—1 Concave—2 Straight—3

3 Nasolabial angle Molar relation

4 SNA a
Wits Appraisal

AO ahead of BO—1 BO ahead of AO—2
AO=BO—3

5 SNB b
Lip competence:

Competent—1 Potentially incompetent—2
Incompetent—3

6 ANB c Dentition
Permanent—1 Mixed—2

7 UI–NA d degrees
Alignment:

Aligned—0 Crowding—1 Spacing—2
8 LI–NB e degrees
9 UI–NA mm

10 LI–NB mm
11 N perpendicular to Pt. A
12 N perpendicular to Pog
13 Wits mm
14 Beta angle
15 Lip strain
16 CVMI f

17 Jaraback ratio
18 Mandibular plane angle
19 Interincisal angle
20 IMPA g

21 Overjet
22 Overbite
23 Mandibular ramus
24 Mandibular body
25 Maxilla
26 Curve of spee

a—Sella-Nasion-point A angle. b—Sella-Nasion-point B angle. c—point A-Nasion-point B angle. d—upper
incisor to Nasion-point A. e—lower incisor to Nasion-point B. f—cervical vertebrae maturation stage. g—incisor
mandibular plane angle.
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The quantified data, including the treatment mode (determined by 10–15 expert
orthodontists with nearly 10–15 years of experience), were fed into the model. Through
pattern recognition, the first model was trained to diagnose the skeletal jaw bases I, II and III.
Once the jaw bases were diagnosed, the second model predicted the two broad treatment
modes for skeletal jaw base I—whether to extract (Extraction) or not (non-Extraction of first
and/or second bicuspids). The third and the fourth models predicted the treatment modes
of skeletal class II and skeletal class III—whether the patient requires growth modulation,
camouflage or jaw surgery treatment (Figure 2).
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Machine Learning model along with other considerations can aid in the formulation of the final
treatment plan.

During training of the model, the test set was not accessible to the model set. The
seven most suitable algorithms were used to construct the ML model and the data were
run with all the algorithms (Table 3).

Table 3. Machine Learning algorithm models.

Sl No. Algorithm

1 Random Forest Classifier
2 XGB * Classifier
3 Logistic Regression
4 Decision Tree Classifier
5 K-Neighbors Classifier
6 Linear SVM **
7 Naïve Bayes Classifier

* XGB—eXtreme Gradient Boosting. ** SVM—Support Vector Machine.

Once the model was trained, the test set with only the input parameters without the
output (treatment) was fed. The final prediction of the ML predictive model was compared
and correlated with the treatment plan formulated by the orthodontists for the same test
set of cases (Figure 3). Thus, the accuracy and efficiency of the model was determined.
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Figure 3. Methodology.

3. Results

According to the results, the Machine Learning algorithmic predictive models showed
accuracy F1 values of 84.93% for layer 1 (Table 4, Figure 4), 82.22% for layer 2 (Table 5,
Figure 5), 81.51% for layer 3 (Table 6, Figure 6) and 87.08% for layer 4 (Table 7, Figure 7), with
eXtreme Gradient Boosting (XGB), Random Forest (RF) and Decision Tree (DT) showing
the highest accuracy in the prediction.

Table 4. Layer 1—Accuracy.

Model Accuracy Precision Recall F1

1 XGB *_Classifier 90.00% 88.51% 89.74% 89.00%
2 Random_Forest_Classifier 88.75% 87.50% 87.99% 87.72%
3 Linear_SVM ** 88.75% 89.29% 88.95% 88.71%
4 Decision_Tree_Classifier 87.50% 87.27% 87.09% 86.89%
5 Logistic_Regression 83.75% 81.77% 82.19% 81.96%
6 K-Neighbors_Classifier 82.50% 83.84% 82.75% 81.91%
7 Naive_Bayes_Classifier 77.50% 82.48% 80.98% 78.33%

Layer 1 Average 85.54% 85.81% 85.67% 84.93%
* XGB—eXtreme Gradient Boosting. ** SVM—Support Vector Machine.
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Table 5. Layer 2—Accuracy.

Model Accuracy Precision Recall F1

1 Random_Forest_Classifier 91.60% 92.31% 91.67% 91.29%
2 Decision_Tree_Classifier 91.36% 91.29% 91.29% 91.29%
3 XGB *_Classifier 91.30% 92.31% 91.67% 91.29%
4 Linear_SVM ** 90.00% 91.67% 90.00% 89.90%
5 Logistic_Regression 82.61% 82.58% 82.58% 82.58%
6 Naive_Bayes_Classifier 69.57% 74.11% 70.45% 68.62%
7 K-Neighbors_Classifier 60.87% 61.90% 61.36% 60.57%

Layer 2 Average 82.47% 83.74% 82.72% 82.22%
* XGB—eXtreme Gradient Boosting. ** SVM—Support Vector Machine.
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Figure 5. Layer 2 for prediction of extraction and non-extraction treatment for jaw base I—accuracy.
* XGB—eXtreme Gradient Boosting. ** SVM—Support Vector Machine.

Table 6. Layer 3—Accuracy.

Model Accuracy Precision Recall F1

1 Random_Forest_Classifier 94.12% 92.67% 95.21% 93.72%
2 XGB *_Classifier 91.18% 90.24% 92.65% 91.21%
3 Logistic_Regression 85.29% 85.24% 87.86% 86.32%
4 Decision_Tree_Classifier 82.35% 82.08% 84.96% 81.98%
5 K-Neighbors_Classifier 70.59% 69.65% 72.39% 68.41%
6 Linear_SVM ** 70.00% 67.25% 67.79% 67.43%
7 Naive_Bayes_Classifier 58.82% 43.67% 64.44% NaN

Layer 3 Average 78.91% 75.83% 80.76% 81.51%
* XGB—eXtreme Gradient Boosting. ** SVM—Support Vector Machine.
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Table 7. Layer 4—accuracy.

Model Accuracy Precision Recall F1

1 Random_Forest_Classifier 93.60% 93.42% 93.70% 93.36%
2 XGB *_Classifier 93.45% 93.24% 93.44% 93.41%
3 Logistic_Regression 90.91% 92.21% 88.89% 89.18%
4 Decision_Tree_Classifier 90.91% 89.68% 91.11% 90.13%
5 Linear_SVM ** 85.00% 83.33% 83.81% 83.22%
6 K-Neighbors_Classifier 81.82% 80.00% 80.00% 78.57%
7 Naive_Bayes_Classifier 81.82% 81.90% 82.22% 81.68%

Layer 4 Average 88.21% 87.68% 87.60% 87.08%
* XGB—eXtreme Gradient Boosting. ** SVM—Support Vector Machine.
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Figure 7. Layer 4 for prediction of growth modulation, camouflage and jaw surgery treatment options
for jaw base IV—accuracy. * XGB—eXtreme Gradient Boosting. ** SVM—Support Vector Machine.

The overall model (Table 8, Figure 8) and test set (Table 9, Figure 9) showed an average
accuracy of 84%, which means the model’s prediction of the treatment plan was the same
as the treatment plan decided by the orthodontists in 84% of total cases.

Table 8. Overall model accuracy.

Model Accuracy Precision Recall F1

1 XGB *_Classifier 91.48% 91.07% 91.88% 91.23%
2 Random_Forest_Classifier 92.02% 91.48% 92.14% 91.52%
3 Linear_SVM ** 83.44% 82.88% 82.64% 82.31%
4 Decision_Tree_Classifier 88.03% 87.58% 88.61% 87.57%
5 Logistic_Regression 85.64% 85.45% 85.38% 85.01%
6 K-Neighbors_Classifier 73.94% 73.85% 74.13% 72.37%
7 Naive_Bayes_Classifier 71.93% 70.54% 74.52% 76.21%

Overall Average 83.78% 83.26% 84.19% 83.75%
* XGB—eXtreme Gradient Boosting. ** SVM—Support Vector Machine.
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The correlation between the input parameters was also determined with a heat map
(Figure 10) of the correlation and regression analysis matrix. Furthermore, in this study,
the relative contribution of the individual parameters or factors to the treatment plan was
determined, and the top ten parameters were ranked in ascending order (Figure 11).
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4. Discussion

The present study aimed to explore the possibilities of the application of an AI–ML predic-
tive model as a Clinical Decision Support System (CDSS) in orthodontic treatment planning.

Park et al. [16,17] compared two AI machine learning algorithms for automated
identification of cephalometric landmarks and concluded that the AI accurately identified
the landmarks with approximately 50% accuracy. Kök et al. [26] used AI algorithms for
the determination of growth by Cervical Vertebrae Maturation Stage (CVMI) stages in
orthodontics using cephalometric radiographs. The study used algorithms similar to our
study—Random Forest Classifier, Logistic Regression, Decision Tree Classifier, K-Neighbors
Classifier, Artificial Neural Network (ANN), Linear Support Vector Machine (SVM) and
Naïve Bayes Classifier with Decision Tree showed the highest accuracy.

Yu et al. [27] used a deep learning multimodal Convoluted Neural Network (CNN) model
for skeletal classification using cephalometry in orthodontic diagnosis and treatment planning.
The model showed high performance in classifying skeletal jaw bases. Although deep learning
algorithms have been shown to improve performance when applied to cephalometric analysis,
many of these studies focus on detecting cephalometric landmarks [11–19,28,29].

Compared with the above studies, which made use of cephalometric data alone, in this
study, we used a trained model which included clinical, photographic and cephalometric
data for its prediction (Figure 2). Moreover, in comparison with that of Kök et al. [26], three
of the algorithms, namely Decision Tree, Random Forest and XGB classifier, showed high
accuracy, from 87–90% individually in treatment plan prediction.

Jung et al. [20] used ANN for diagnosis of extractions and extraction patterns. In
addition to cephalometric measurements, six indexes—maxillary arch length discrepancy
index, mandibular arch length discrepancy index, molar key index, large overjet index,
protrusion index and chief complaint index for protrusion—were included in the input
data [20]. The study was conducted with 156 subjects with 80% accuracy. Peilin Li et al. [21]
used a multilayer perceptron ANN for the determination of extraction–non-extraction,
extraction patterns and anchorage type in 302 subjects with 82% accuracy. Xi et al. [30]
constructed a decision-making ES using ANN to determine the necessity of orthodontic
extractions in patients between 11–15 years old.

The above studies have been conducted majorly to determine the need for extractions
and their patterns in orthodontics, with approximately 150–300 subjects using ANN. How-
ever, our study used and compared 6 different algorithms (Table 3) for a much larger sample
size of 700 to improve the performance of the model and dealt not only with extraction
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decisions but also classifying skeletal jaw bases and different modes of treatment, such as
growth modulation, camouflage and jaw surgery treatments, which has not been done so
far. Compared with other studies, the ML model used in our study achieved an improved
accuracy of 84% (Table 8), with individual layer accuracy going up to 87%.

Furthermore, not only a relative contribution of factors was determined, but also the
inter-factor correlation was deduced with heat maps and charts.

According to the heat map analysis (Figure 10) having the same parameters on the X
and Y axes, the highest correlation (varying shades of green indicating the strength) was
been found between:

1. Age and CVMI stages;
2. Lip competency and lip strain;
3. Profile, beta angle and mandibular dimensions;
4. SNA angle, N perpendicular Pt. A and maxillary dimensions;
5. Upper and lower incisor inclinations to interincisal angle;
6. Overjet and overbite;
7. Lower incisor inclination and IMPA;
8. ANB angle and overjet.

The least correlation (varying shades of red indicating the strength) was found between:

1. ANB angle and beta angle;
2. Overjet and beta angle;
3. Overbite and beta angle;
4. Profile and overjet;
5. Interincisal angle to IMPA;
6. Profile and ANB angle.

The feature importance graph (Figure 11), with the percentage of correlations (high-
est 100% and least 0%) in the X axis and parameters in the Y axis, revealed that Beta
angle, ANB angle, wits appraisal, clinical profile, overjet and overbite and maxillary and
mandibular dimensions contribute the highest in the orthodontic treatment plan prediction.

Diagnosis and treatment planning are extremely important in orthodontics [31]. This is
because many treatments are irreversible or cause irreversible adverse effects, such as apical
root resorption, gingival recession and dental caries. Because of this irreversibility, the
recall and F1 scores of the ML model is of more importance for reliability in its prediction.
Therefore, the system output showed the highest F1 accuracy value in treatment prediction
(Tables 4–9). This supports efficient implementation of the model for clinical practice.

Treatment plans that do not consider the discrepancies of skeletal components and
its severity are inconsistent. To assess the model’s ability to classify a skeletal discrepancy,
layer 1 was constructed to identify the jaw bases as class I, II and III (Figure 4). Following
this, layer 2 was constructed to predict two major modes of treatment—extraction and non-
extraction for normal jaw base I [32–35] (Figure 5). However, due to increased complexity
and a limited dataset for training, various other modes of treatment such as expansion,
distalization, etc., were not considered.

Three major treatment options for skeletal jaw bases II (retrusive profile) and III
(protrusive profile) are growth modulation, camouflage and jaw surgery [36–40]. Layer 3
and 4 were constructed for jaw bases II and III, respectively, with data which contributed
towards the treatments (Figures 6 and 7). Additional in-depth options such as appliance
selection, camouflage patterns and jaw surgery procedures were not considered, again due
to the limited dataset and the complexity of coding.

Medical data are often too complex for detailed AI analysis. Thus, despite the high
performance of the ML model in the present study, the main limitation was the amount of
data (e.g., skeletal class II cases are more prevalent, class III jaw surgery cases are rare due
to patient preferences, crowding cases are more prevalent, demanding extractions, etc.), so
the model was trained with data that could have been affected by selection bias. To avoid
the bias, an almost equal number of cases were taken for every layer.
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Orthodontic diagnosis and treatment planning [41–46] are highly subjective and opin-
ion based, which vary with the knowledge and expertise [47] of the orthodontists, causing
inter- and intra-clinician errors. They are also intricate and multifactorial, with the consid-
eration of innumerable factors such as facial appearance, skeletal relation, patients’ general
dental condition, etc. The growth modulation, camouflage and jaw surgery planning [48]
require a thorough and careful examination, which is not all about measurements and
values. The ML model could not include complex orthodontics cases such as skeletal
deformities, uncommon extraction patterns, soft tissue functions, etc.

There are various ways to treat a malocclusion. There is no definite answer on how to
treat an orthodontic patient. The purpose of this study was not to find the correct answer.
It was to assess whether the ML predictive model could provide a reference or assistance to
less experienced practitioners by emulating the dynamics of experienced orthodontists.

The ML model constructed in this study can be further improved with detailed
data which are of complex nature using various theories and philosophies of orthodontic
diagnosis and treatment planning. It can be integrated with already existing orthodontic
software [48,49] and programmed to naturally gauge the information for a comprehensive
structured and customized treatment plan for every individual. The field of orthodontics
requires more studies and research to explore and analyze the applicability and efficacy
of AI and ML. The wide variety of clinical data collected from different clinicians is of
great help in model training to improve performance. From an epidemiological point
of view, this model is a useful tool for analyzing large amounts of existing data for an
elementary classification of the treatment options in order to create large datasets for future
retrospective studies.

5. Conclusions

Orthodontic diagnosis and treatment planning is undergoing remarkable changes with
greater emphasis on soft tissue adaptation and proportions rather than the previous notion
of dental occlusion and hard tissue relationships. A comprehensive diagnosis embodies a
‘Problem-Oriented Approach’ comprising appropriate patient history, clinical examination,
study model, cephalometric evaluations, etc., which makes it a multifaceted, intricate and
highly subjective process.

An elementary attempt was made through this study to predict the diagnosis and
treatment plan using an artificial intelligence–Machine Learning model for patients requir-
ing orthodontic treatment, and the efficacy was compared with that of expert orthodontic
decisions. Overall, the ML-based AI model showed 84% accuracy in its treatment plan
prediction compared with the treatment plan for the same cases decided by expert opinion
of orthodontists. It also predicted the relative contribution of individual diagnostic data in
the treatment planning decision.

Machine Learning models may not have subtle, expert decision-making ability due to
the limited quality of technological expertise and training data, but with rapidly advancing
AI innovations and continuous improvement of the diagnostic system by improving the
quality and quantity of data, Machine Learning predictive models can be an effective Clini-
cal Decision Support System for orthodontists in the near future and provide orthodontists
a diagnostic framework, flexibility and feasibility of different treatment options.
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