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Abstract: The purpose of this study is to calculate microbiological composition of aligners after
a day of wearing them. To date, the dental market for orthodontists offers many ways to correct
bites. Aligners are transparent and almost invisible from the teeth. They are used for everyday wear
to correct the incorrect position of the teeth, which was once considered the prerogative of braces.
Scientists worldwide have repeatedly considered questions regarding the interaction between aligners
and the oral cavity’s microflora; however, the emphasis has mainly shifted toward species composition
and antibiotic resistance. The various properties of these microorganisms, including biofilm formation,
adhesion to various cells, and the ability to phagocytize, have not been studied so widely. In addition,
these characteristics, as well as the microorganisms themselves, have properties that change over
time, location, and in certain conditions. In this regard, the problem of biofilm formation in dental
practice is always relevant. It requires constant monitoring since high contamination of orthodontic
materials can reduce the effectiveness of local anti-inflammatory therapy and cause relapses in caries
and inflammatory diseases of the oral cavity. Adhesive properties, one of the key factors in forming
the architectonics of biofilms, provide the virulence factors of microorganisms and are characterized
by an increase in optical density, determining the duration and retrospectivity of diagnostic studies.
This paper focuses on the isolation of clinical microbial isolates during aligner therapy and their
ability to form biofilms. In the future, we plan to use the obtained strains of microorganisms to create
an effective and safe biofilm-destroying agent. We aimed to study morphometric and densitometric
indicators of biofilms of microorganisms persisting on aligners.

Keywords: bacteria; biofilms; dental abutments; dental aligners; microbiology; optical density;
microscopy; phenotypic features

1. Introduction

The oral cavity constantly encounters microorganisms [1]. Plaque biofilm, the main
cause of caries, periodontitis, and other dental diseases, is a complex community of bacteria
and fungi that causes infection by protecting pathogenic microorganisms from external
medicinal agents and avoiding host defense mechanisms [2]. Although a significant amount
of research is aimed at developing antimicrobial agents to solve this problem, most have
low efficacy and safety [3,4].

R.G. Gibbons et al. were the first to investigate the interaction between representatives
of oral microflora and their adhesion to the surface of filling materials [5,6]. An important
factor in the adhesion of microorganisms to the surface of the filling material and enamel is
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the presence of saliva, which stimulates this adhesion and contributes to the development
of caries [7]. Moreover, the concentration of saliva glycoproteins positively correlates with
the adhesion of S. mutans on the surface of enamel and dental fillings; that is, the higher the
concentration of saliva glycoproteins, the higher the probability of S. mutans adhesion. As a
result of research [8,9], R.G. Gibbons suggested that S. sanguis adheres to composite fillings
better than S. mutans. However, this does not correspond to the main hypothesis that
S. mutans is the most virulent (cariogenic) representative with the best adhesive ability due
to its production of insoluble glycans, which improves these microorganisms’ attachment
to the seal’s surface [10,11].

Since the appearance of transparent aligners, a device for light and moderate orthodon-
tic movement of teeth, in 1998, the problem of biofilm formation has become relevant.
Transparent aligner therapy has been a part of orthodontic practice for decades and is
becoming an increasingly common addition to the orthodontic arsenal. Internet searches
show hundreds of articles currently devoted to the problem of biofilm formation during
orthodontic treatment. This study is the first of a whole series of studies, we decided not to
focus on the difference in the composition of biofilms in the first article. In the next article
there will be a different age of the participants and we will compare the results, focus on
strains and differences in biofilms.

Fixed and removable orthodontic devices can affect the composition of oral microbiota
through two mechanisms: (1) accumulation of plaque and (2) violation of oral hygiene.
Quantitative and qualitative changes in the oral cavity’s microbiota associated with or-
thodontic treatments, since they cover an extensive surface of the teeth, are reflected in
many scientific papers [12–15]. Accumulation of food residues, bacterial plaque, and in-
creasing difficulty in maintaining good oral hygiene by patients are the main risk factors
for the occurrence or exacerbation of dental caries and gingivitis/periodontitis [16–18].

We aimed to study morphometric and densitometric indicators of biofilms persisting
on aligners.

2. Materials and Methods
2.1. Microbial Strains

During the study, a microbiological examination of 10 persons using aligners obtained
from adolescents aged 13 to 19 years was conducted (six female and four male participants).
The choice of this age group is due to the high prevalence of this orthodontic procedure
compared to people of other groups. In further work, we plan to repeat the studies in other
age groups, including 20–29 and 30–39 years. At a more mature age, wearing orthodontic
aligners is not so popular. The procedure is not recommended for persons under the age
of 13, and is only for special purposes.

Patients used Nuvola® aligners. They are made of polyethylene terephthalate glycol
(PETG), a light, resistant, and very clear material. We asked patients not to wash the aligners
after a day of wearing them. In the clinic, patients received a new pair of aligners, and the
old one was used in the experiment. These aligners with biofilms of microorganisms were
sliced and placed in sterile wide test tubes filled with 10 mL of sterile 0.85% NaCl solution.
For the complete removal of microorganisms, the test tubes were left in the solution for 3 h
and then thoroughly mixed in the vortex for 10 min (3000 rpm) (Figure 1). A total of 1 mL
of the sample was obtained from a test tube.

Then, we prepared serial dilutions, plated the diluted suspensions, and counted
the number of colony-forming units. For yeast-like fungi (YLF), Sabouraud dextrose
agar (BioMerieux, France) was used. For Bifidobacterium spp., Blaurock medium (HEM,
Moscow, Russia) was used. For Lactobacillus spp., MRS medium (HiMedia, India) was
used. For Staphylococcus spp., peptone–salt medium and yolk–salt agar (HiMedia, India)
were used. For Streptococcus spp., mitis-salivarius agar (HiMedia, India) was used. For the
Enterobacteria family, Endo’s medium, Ploskirev’s medium, and bismuth-sulfite agar (HEM,
Moscow, Russia) were used. For Clostridium spp., clostridial agar (HiMedia, India) was used,
and for all others, meat-peptone agar (MPA) (HEM, Moscow, Russia) was used. The plates
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were incubated at 37–38 ◦C for 24–72 h. We used AnaeroJar anaerostat and Anaerocult
gas-generating packages (Merk, Germany) for 72 h at 37 ◦C to create anaerobic conditions.
The pure cultures were identified using a matrix-activated laser desorption/ionization
technology by MALDI Biotyper (Bruker Daltonik Inc., Billerica, MA, USA). The values of
the X score ranged from 0 to 3, and values from 2 to 3 were considered successful. A score
of >2.3 was considered highly reliable [19,20].
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Figure 1. (a) used aligners from one patient; (b) aligners sliced and placed in a solution.

The number of microorganisms (contamination index—C) in 1.0 cm3 of the sample
was calculated using the formula and expressed as a logarithm with base 10 (lg CFU/1 mL,
where CFU is colony forming unit):

C = (N/V)× K

where N represents the average number of colonies in one bacteriological cup, V represents
the volume of suspension applied when seeding the surface of the agar, and K represents
the multiplicity of dilution [21,22].

If different scores were detected by MALDI Biotyper, the culture of microorganisms
was considered a separate strain. We used established guidelines CLSI for microbiological
identification by MALDI-TOF MS (https://clsi.org/standards/products/microbiology/
documents/m58/, accessed on 6 December 2022) and database MALDI Biotyper (Bruker
Daltonics GmbH, Bremen, Germany) [23,24]. The number of different strains from the
same species was calculated in absolute numbers (A.n.). The percentage of strains was also
entered in the table.

Microorganism cultures were stored in semi-liquid 0.5% of meat-peptone agar in
freeze-dried form at 4 ± 1 ◦C.

2.2. Densitometric Indicators of Microbial Biofilms

Microbial biofilms were indicated by the degree of crystal violet binding (HiMedia,
India) at 490 nm wavelength. The tested samples were added to the wells of a 96-well
plate (Medpolymer Company, Russia), and cultivated in a constant aerobic environment of
37 ◦C for 48 h. The liquid was discarded, and the wells were washed three times (pH 7.3)
with 200 µL of phosphate-buffered solution (PBS). The plates were shaken for 5 min at each
washing stage. The samples were fixed with 150 µL of 96% ethanol for 15 min and dried
out at 37 ◦C for 20 min. The microbial biofilms were stained by adding 0.5% stain solution
to each well and subsequent cultivation at 37 ◦C for 5 min. The contents of the wells were

https://clsi.org/standards/products/microbiology/documents/m58/
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discarded, and the plates were washed three times (pH 7.3) with 200 µL of PBS and dried
out. The bound stain was eluted from the attached cells with 200 µL of 96% ethanol for
30 min [25,26].

The optical density (OD) of biofilms was determined by the degree of crystal
violet binding [27].

2.3. Confocal Laser Scanning Microscopy

The absence of biofilms on the aligners after washing was analyzed by the CSLM
LSM510/ConfoCor2 system (Carl Zeiss, Oberkochen, Germany). Pieces of aligners were
stained with concanavalin A (50 mg/L) (Molecular Probes, Eugene, OR, USA) at 37 ◦C for
1 h (green fluorescence). Approximately 100 sections were created from the studied surfaces.
The absence of a fluorescent signal proved the absence of biofilms on the aligners.

2.4. Statistics

We analyzed the results using SPSS 20.0 (IBM Corp., Armonk, NY, USA). The signifi-
cance of the results was determined using Student’s t-test and when p < 0.05.

3. Results and Discussions

Microorganisms belonging to 28 species were isolated and identified by studying the
oral microflora in the observed group (Table 1). Studying the contamination index helped
compare groups of microorganisms according to the degree of dominance and identify
those most important to the microecosystem formation of aligners. The data analysis in
Table 1 shows that the most important representatives (≥5 lg CFU/1 mL) of oral microflora
when teenagers wear aligners are bifidobacteria, YLF of the genus Candida—Candida albicans,
E. coli, Peptostreptococcus anaerobius, Porphyromonas gingivalis, Prevotella buccae, Staphylococcus
aureus, and Streptococcus mitis. We detected 13 Gram-positive and 13 Gram-negative bacteria,
indicating the equivalent participation of these bacteria in the cell wall structure while
forming plaque microbiota. The digital expression of ecological significance in other
microflora representatives is significantly less than the values established for the dominant
species (<5 lg CFU/1 mL), indicating their insignificant contribution to the structure of
biofilm biocenoses.

C. albicans’ colonization of the mucous membranes may result in the acquisition and
preservation of a stable population of Candida, preventing clinical infection development.
The higher YLF concentration can be explained by the pathogenicity factors of C. albicans,
which can be conditionally divided into five groups. However, when pathology occurs in
the body, their effects are conducted simultaneously:

1. The ability to adhere to host tissues is the first step to interaction with a microorganism;
2. Production of proteolytic enzymes—secretory aspartyl proteases (SAP), which

facilitate the penetration and invasion of Candida into tissues;
3. Morphological transformation of the “yeast–hyphal form”, which also facili-

tates the penetration of YLF into tissues and helps the microorganism bypass the host’s
defense systems;

4. Various immunomodulatory actions (mechanisms) of some C. albicans molecules
that may contribute to reducing the effectiveness of antifungal immunity;

5. Phenotypic switching characteristic of Candida when the conditions of existence change.

Morphometric and Densitometric Indicators of Biofilms

Biofilm formation represents the species’ ability to occupy a dominant position in a
community and exert a predominant influence on biocenotic processes, which determine
the type of biocenosis according to the dominant ecological groupings [28–31]. In this
regard, it was interesting to evaluate the community structure of bacteria and fungi and
determine the degree of biofilm formation for each isolate within the species (Table 2).
The strongest producers of biofilms were (ODS ≥ 0.3): Actinomyces israelii, Actinomyces
naeslundii isolate 3, Campylobacter concisus, Candida albicans, Candida parapsilosis, Capnocy-
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tophaga gingivalis isolate 1, Escherichia coli, Fusobacterium nucleatum, Lactobacillus rhamnosus,
Peptostreptococcus anaerobius, Prevotella buccae, Prevotella denticola, and Staphylococcus aureus.
All other community types on the liners had biofilm formation rates many times lower. All
isolates with a high ability to form biofilms were stored for future use in a freeze-dried
form at 4 ± 1 ◦C.

Table 1. Groups of microorganisms according to the degree of dominance on aligners.

Species
Gram-Negative (−) or

Positive (+)

Number of Isolates

lg CFU/1 mL
Absolute
Number %

Actinomyces israelii + 2.45 ± 1.01 2 2.94

Actinomyces naeslundii + 4.54 ± 1.38 3 4.41

Actinomyces viscosus + 2.29 ± 0.75 1 1.47

Bifidobacterium bifidum + 5.67 ± 2.21 4 5.88

Campylobacter concisus − 2.35 ± 0.51 1 1.47

Campylobacter gracilis − 3.22 ± 0.78 2 2.94

Candida albicans YLF 6.38 ± 1.86 4 5.88

Candida parapsilosis YLF 2.45 ± 0.60 3 4.41

Capnocytophaga
gingivalis − 4.05 ± 1.20 3 4.41

Clostridium
aminobutyricum + 1.19 ± 0.29 2 2.94

Escherichia coli − 5.67 ± 2.05 5 7.35

Fusobacterium
canifelinum − 1.18 ± 0.43 2 2.94

Fusobacterium nucleatum − 2.54 ± 0.86 2 2.94

Gemella sanguinis + 2.66 ± 0.97 3 4.41

Lactobacillus rhamnosus + 4.38 ± 1.27 2 2.94

Leptotrichia buccalis − 4.82 ± 1.31 2 2.94

Leptotrichia shahii − 2.16 ± 0.50 1 1.47

Peptostreptococcus
anaerobius + 8.72 ± 2.24 3 4.41

Porphyromonas
gingivalis − 6.40 ± 2.01 3 4.41

Prevotella buccae − 5.68 ± 1.80 4 5.88

Prevotella denticola − 2.89 ± 0.56 2 2.94

Prevotella intermedia − 2.42 ± 0.84 1 1.47

Prevotella oris − 1.39 ± 0.26 1 1.47

Staphylococcus aureus + 6.05 ± 1.44 4 5.88

Streptococcus gordonii + 3.88 ± 1.20 3 4.41

Streptococcus mitis + 7.51 ± 1.64 3 4.41

Streptococcus sanguinis + 0.27 ± 0.18 1 1.47

Streptococcus salivarius + 0.31 ± 0.20 1 1.47

Total: 28 13 Gr+ and 13 Gr− 68 100%

CFU—colony forming unit; YLF—yeast-like fungi.
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Although orthodontic treatment with aligners has shown encouraging results in
terms of plaque index and gum condition control compared to classical fixed orthodon-
tic treatment [32–34], bacteria can form oral biofilms on the surface of clear aligners.
Tektas et al. [35] demonstrated that the initial microbial adhesion and biofilm formation
of aerobic and anaerobic oral cavity types were similar between enamel, metal orthodon-
tic braces, and clear aligners. In addition, bacterial adhesion to aligners increases due
to the shape of the aligner, which is not straight and contains grooves and protrusions.
In addition, Low et al. [36] showed that on the surface of the aligner itself, even if it is
new, there are micro-scratches, microcracks, and slight elevations. Bacterial and fungal
biofilms attach to these irregularities. In addition, Gracco et al. [37] demonstrated physical
changes on the aligners when wearing them. After 14 days, microcracks, and worn and
delaminated areas appeared on them, promoting adhesion and bacterial growth, as well
as localized deposits of calcined biofilm and loss of transparency. Schuster et al. [38] and
our study analyzed used aligners and found the erasure of protrusions and adsorption of
buccal epithelial cells mixed with microbial biofilms. Finally, Low et al. [36] studied the
ultrastructure and morphology of biofilms on aligners. They found that the initial biofilm
consisted of mostly coccal bacterial species, including streptococci and staphylococci. This
biofilm included Gram-negative flora and, after a while, fungi. A similar experiment was
conducted by Zhao et al. [39] who studied microbial changes in the oral cavity during
aligner treatment, comparing the contamination indicators in 25 patients before and after
six months. They revealed the appearance of periodontal pathogens and cariogenic bac-
teria, including Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Treponema
denticola, Porphyromonas gingivalis, Streptococcus mutans, and Streptococcus sobrinus. They
concluded that more long-term, high-quality investigations are necessary to elucidate
whether changes in oral and periodontal microbiology associated with the placement of
orthodontic appliances return completely to pretreatment levels.

In interesting research of Sfondrini M.F. et al. [40], periodontal status and microbio-
logical composition of oral microbiota induced by clear aligner treatment were measured.
A total of 20 orthodontic patients were submitted to professional oral hygiene and, subse-
quently, underwent aligners. They proved that aligner therapy does not significantly affect
periodontal and microbiological parameters with respect to untreated patients for the first
two months of therapy.

Table 2. Determination of bacterial biofilm formation intensity by optic density.

Optic Density

ODS
ODA

Average
Error1 2 3 4 5

Actinomyces israelii 0.312 0.331 np np np 0.3215 0.0095

Actinomyces naeslundii 0.244 0.293 0.302 np np 0.2797 0.0238

Actinomyces viscosus 0.284 np np np np np np

Bifidobacterium bifidum 0.246 0.256 0.267 0.275 np 0.261 0.01

Campylobacter concisus 0.358 np np np np np np

Campylobacter gracilis 0.261 0.265 np np np 0.263 0.002

Candida albicans 0.420 0.502 0.431 0.384 np 0.4343 0.0338

Candida parapsilosis 0.390 0.347 0.333 np np 0.3567 0.0222

Capnocytophaga gingivalis 0.350 0.291 np np np 0.3205 0.0295

Clostridium aminobutyricum 0.279 0.193 np np np 0.236 0.043

Escherichia coli 0.462 0.411 0.380 0.376 0.382 0.4022 0.0274

Fusobacterium canifelinum 0.177 0.193 np np np 0.185 0.008
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Table 2. Cont.

Optic Density

ODS
ODA

Average
Error1 2 3 4 5

Fusobacterium nucleatum 0.398 0.347 np np np 0.3725 0.0255

Gemella sanguinis 0.199 0.193 0.180 np np 0.1907 0.0071

Lactobacillus rhamnosus 0.325 0.303 np np np 0.314 0.011

Leptotrichia buccalis 0.179 0.191 np np np 0.185 0.006

Leptotrichia shahii 0.208 np np np np np np

Peptostreptococcus anaerobius 0.418 0.403 0.384 np np 0.4017 0.0118

Porphyromonas gingivalis 0.132 0.176 0.173 np np 0.1603 0.0189

Prevotella buccae 0.327 0.345 0.396 0.401 np 0.3673 0.0313

Prevotella denticola 0.470 0.392 np np np 0.431 0.039

Prevotella intermedia 0.132 np np np np np np

Prevotella oris 0.193 np np np np np np

Staphylococcus aureus 0.421 0.394 0.385 0.400 np 0.4 0.0105

Streptococcus gordonii 0.189 0.195 0.215 np np 0.1997 0.0102

Streptococcus mitis 0.244 0.230 0.261 np np 0.245 0.0107

Streptococcus sanguinis 0.281 np np np np np np

Streptococcus salivarius 0.253 np np np np np np

ODS—tested sample; ODA—average value; np—not possible.

4. Conclusions

Our results proved that morphometric and densitometric indicators of heterogeneous
biofilms could be used in developing antibacterial drugs for patients undergoing orthodontic
treatments. We found 13 Gram-positive and 13 Gram-negative bacteria, and 2 yeast-like
fungi. We tested isolated microorganisms’ ability to produce biofilms and identified the
strongest producers. There are currently no means of ensuring the direct and complete
destruction of biofilms. However, when we revealed the pathogenetic mechanisms behind the
microorganisms’ relationship in biofilms, we developed an understanding of how to create
and develop new drugs. Our study had several limitations, including the small sample of
10 patients and only participants of the 13–19 age category. Future studies should consider
other age categories and groups of more than 10 people. Additionally, we plan to use the
obtained strains of microorganisms to create an effective and safe biofilm-destroying agent.
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