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Abstract: Artificial intelligence (AI) is the development of computer systems whereby machines
can mimic human actions. This is increasingly used as an assistive tool to help clinicians diagnose
and treat diseases. Periodontitis is one of the most common diseases worldwide, causing the
destruction and loss of the supporting tissues of the teeth. This study aims to assess current literature
describing the effect AI has on the diagnosis and epidemiology of this disease. Extensive searches
were performed in April 2022, including studies where AI was employed as the independent variable
in the assessment, diagnosis, or treatment of patients with periodontitis. A total of 401 articles were
identified for abstract screening after duplicates were removed. In total, 293 texts were excluded,
leaving 108 for full-text assessment with 50 included for final synthesis. A broad selection of articles
was included, with the majority using visual imaging as the input data field, where the mean number
of utilised images was 1666 (median 499). There has been a marked increase in the number of studies
published in this field over the last decade. However, reporting outcomes remains heterogeneous
because of the variety of statistical tests available for analysis. Efforts should be made to standardise
methodologies and reporting in order to ensure that meaningful comparisons can be drawn.
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1. Introduction

Artificial intelligence (AI) aims to develop computer systems that can mimic human
behaviour using machines. Within medicine and dentistry, commentators predicted as early
as the 1970s that AI would bring clinical careers to an end [1]; however, this has not been
the case. Science fiction will present AI as a comprehensive overarching intelligence [2],
but this is far from the truth. Thus far, AI development has proved successful in solving
problems in specific areas by learning distinct thinking mechanisms and perceptions.

Periodontitis is the sixth most prevalent disease worldwide. It is characterised by
microbially associated, host-mediated inflammation that results in loss of alveolar bone
and periodontal attachment, which can lead to tooth loss [3]. This disease has a well-
reported but complex relationship with a number of other physiological systems leading to
detrimental effects on quality of life and general health [4]. Further to this, a bi-directional
relationship between systemic conditions, including chronic inflammatory disease such as
diabetes [5,6] and atherosclerosis [7], has been shown.

Periodontitis is also challenging for clinicians to accurately recognise and diagnose [8].
Best practice currently focuses on measuring soft tissues with a graduated probe [9] and
assessing hard tissues with radiographic imaging [10]. However, these methods have poor
inter- and intra-operator reliability due to variations in probing pressure and radiographic
angulation [8].

As such, the study of periodontitis presents a diagnostic challenge linked to a disease
process of complex relationships between predisposing factors that are difficult for clinicians
and scientific processes to fully comprehend. These complex factors lend the study of this
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disease to the application of AI to best comprehend how these factors affect the diagnostics
or understanding of its aetiology.

It is important to differentiate AI from traditional software development. In the
traditional approach to software development, the researchers identify a series of processing
steps and, optionally, a data-dependent strategy to reach the results. This is best described
as an input ‘A’ is received, it is computed through the pre-defined strategy of sub-tasks,
and an output ‘B’ is returned. As such, whilst this performs incredibly useful tasks for
humankind, it requires vast amounts of effort to perform complex tasks and risks providing
only limited availability for adaptation to unseen scenarios. Artificial intelligence, in
contrast, has a different mode of work. When developing an AI-based tool, both the input
‘A’ and the required output ‘B’ are provided; the AI approach will then tune the tool to
leverage the link between inputs and outputs, which can then be used on new (unseen)
data sets, typically with remarkable performance [11].

AI is ever-increasing in medicine and dentistry as an assistive tool, becoming a cen-
tral tenet in providing safe and effective healthcare. More recently, deep learning (DL)
has been the mainstay of this endeavour, mainly through its applications stemming from
the use of artificial neural networks (ANN) that exhibit a very high degree of complex-
ity [12], where large numbers of artificial neurons (or nodes) are connected into layers
and several hundreds, or thousands, of layers are assembled into specific structures called
architectures. DL networks can assess large volumes of data to perform specific tasks,
among which electronic health records, imaging data, wearable-device sensor collections,
and DNA sequencing play a prominent role. Within medical fields, these are classically
used for computer-aided diagnosis, personalised treatments, genomic analysis, treatment
response assessment.

When images are used as input data, we as humans perceive digital images as ana-
logues or as a continual flow of information. Still, a digital (planar) image is nothing more
than a collection of millions of tiny points of colour or pixels, each with their 2D location.
Thus, these pixel series can be viewed as strings of values with additional information
about their neighbouring locations that software can process efficiently.

A subset of ANNs, a convolutional neural network (CNN), is specifically designed for
handling imaging data. The CNN concept was developed to replicate the visual cortex and
differentiate patterns in an image [13]. Classic neural networks typically need to consider
each pixel individually to process an image and therefore are heavily constrained in the
size of the images that can be analysed. CNNs, on the other hand, are capable of working
with the image data in their spatial layout; their output is a new set of data replicating the
original layout of the image while increasing or condensing the information stored at each
location. This process is similar to applying several digital filters to an image to ‘highlight’
key features that will collectively help perform the task at hand, e.g., select distinct aspects
of an object to identify its presence inside the image.

CNN-based architectures will often have multiple layers, or multiple levels at which
these transformations are applied. Early layers will focus on picking up gross content such
as edges, gradient orientation, and colour, with later layers focusing on higher-level (more
task specific) features. This kind of approach is usually called an encoder because the iconic
information inside the image is transformed into a more abstract, symbolic representation,
and this is achieved by juxtaposing CNN-based blocks that progressively reduce the size
of the image being processed while, concurrently, increasing the number of the channels,
i.e., the number of values associated with each image pixel. The complementary approach
to an encoder is a decoder where the abstract information is transformed into an iconic
representation by successively increasing the image size while reducing the channel number.
A common pattern in ANN architectures based on CNN layers is to have an encoder section,
a decoder section, or both; for instance, the U-Net architecture [14], which is one of the
most used approaches when segmenting imaging data, is structured as an encoder section
followed by a decoder section to achieve a transformation of the image information from
iconic to abstract and then back to iconic while performing the task at hand.
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Therefore, CNNs can be taught to recognise specific collections of pixel/location pairs
and subsequently find similar patterns in new image datasets. For CNNs to perform this
function, they require a so called ‘training’ stage. Training is a process whereby humans
identify target subsets and show a CNN what to look for. In image analysis, this often
relies on experts labelling image sections of interest so that CNN can find similar regions
in the future. For example, radiologists would draw around these nodules for a CNN
to recognise nodules on CT images of a lung to show their correct extent. As the CNN
is shown more nodules, it will become more capable of identifying similar regions. This
process, leading to the software’s ability to carry out the nodule localisation independently,
is called supervised learning [14].

Whilst in some cases CNNs can be definitive in their image recognition, they are more
commonly used as assistive tools, whereby AI can highlight the areas that are likely to
contain the sought pathology or image type. This has been demonstrated in radiology
(for detecting abnormalities within chest X-rays) [15], dermatology (to detect lesions of
oncological potential) [16], and ophthalmology (to detect specific types of retinopathy) [17].
It has been suggested, however, that within these fields, some of the work may lack the
robustness to be truly generalisable to all clinical situations or, indeed, to be as accurate as
medical professionals [18].

Within dentistry, radiographs are combined with a full clinical examination and special
tests to aid in assessment, diagnosis, and treatment planning. The type of radiograph
taken depends upon the disease or pathology being investigated or the procedure being
undertaken, and may include bitewing, periapical, or orthopantomography [19]. Common
justifications for taking dental radiographs include the diagnosis of dental caries staging
and grading of periodontal disease [20], detection of apical pathology [21], or in the
assessment of peri-implant health. A dentist will then report on these images. Still, it has
been shown that in detecting both dental caries and periodontal bone loss, inter-ratee and
intra-rater agreement is poor [22,23], lending this analysis to CNN assistance.

Image-based diagnostics is not the only area in which CNNs are currently used within
medicine and dentistry. AI’s ability to assess large volumes of data for regression purposes
lends itself to data analysis within larger data fields where traditional methods struggle.
In medicine, success has been achieved using patient health records and metabolite data
to predict Alzheimer’s disease, depression, sepsis, and dementia [11]. As the data pro-
cessing technology has improved, specific to medicine and dentistry, a term introduced
by the American Medical Association is that of ‘augmented intelligence’. This describes a
conceptualisation of AI in healthcare, highlighting its assistive role to medical professionals.

Whilst the benefits of utilising AI within healthcare can be clear to see, for example
reducing human error, assisting in diagnosis, and streamlining data analysis and task
performance, which may ultimately lead to more efficient and cost-effective services, its
adoption is not without issue. Specifically, these can include a lack of data curation, hard-
ware, code sharing, and readability [24], as well as the inherent issues of introducing any
new technology within a service such as reluctance to change, embedding new technology
within current infrastructures, and ongoing cost maintenance. More recent criticism ad-
dressed the presence of implicit biases in the training datasets and the direct consequences
in AI performance [25].

Within periodontology and implantology, AI is still in its relative infancy and has
not yet been used to its full potential. With the advantages of diagnostic assistance, data
analysis, and detailed regression, it would appear that much could be gained through
applying this tool. Given the relative paucity of literature in the subject area, this scoping
review aimed to assess the current evidence on the use of artificial intelligence within the
field of periodontics and implant dentistry. This would both describe current practice and
guide further research in this field.
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2. Materials and Methods

This prospective scoping review was conducted by considering the original guidance
of Arksey et al. [26] and more recent guidance from Munn et al. [27].

2.1. Focused Question and Study Eligibility

The focused question used for the current literature search was “What are the cur-
rent clinical applications of machine learning and/or artificial intelligence in the field of
periodontology and implantology?”

The secondary questions were as follows:

1. Which methods were used in these studies to establish datasets; develop, train, and
test the model; and report on its performance?

2. In cases where these models were tested against human performance:

a. What metrics were used to compare performance?
b. What were the outcomes?

The inclusion criteria for the studies:

1. Original articles published in English.
2. Implant- and periodontal-based literature using ML or AI models for diagnostic

purposes, detection of abnormalities/pathologies, patient group analysis, or planning
of surgical procedures.

3. Study designs whereby the use of ML or AI was used as the independent variable.

The exclusion criteria for the studies:

1. Studies not in English.
2. Studies using classic software rather than CNN derivative protocols for machine-

based learning.
3. Studies using AI for purposes other than periodontology and peri-implant health.

2.2. Study Search Strategy and Process

An electronic search was performed via the following databases:

• Medline—the most widely used medical database for publishing journal articles. The
search strategy for this is outlined in Figure 1.

• Scopus—the largest database of scientific journals.
• CINAHL—an index that focuses on allied health literature.
• IEEE Xplore—a digital library that includes journal articles, technical standards, con-

ference proceedings, and related materials on computer science.
• arXiv—arXiv is an open-access repository of electronic preprints and postprints ap-

proved for posting after moderation but not peer review.
• Google Scholar—Google Scholar is a freely accessible web search engine that indexes

the full text or metadata of scholarly literature across an array of publishing formats.

This electronic search was supplemented with hand searches of included texts ref-
erences lists. The search strategy was compiled in collaboration with the librarian at the
University of Sheffield Medical Library. Keywords were a combination of Medical Subject
Headings (MeSH) terms and frank descriptors, which were employed to reflect the intri-
cacies of each database. The publication period was set to 20 years and was restricted to
literature in English. All articles were included for initial review in line with the scoping
review methodology. Records were collated in reference manager software (EndnoteTM;
Version: 20, Clarivate Analytics, New York, NY, USA) [28], and the titles were screened
for duplicates.
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2.3. Study Selection

A single reviewer screened titles and abstracts. For records appearing to meet in-
clusion criteria, or where there was uncertainty, full texts were reviewed to determine
their eligibility. This was completed twice by the reviewer at a 2-month interval to assess
intra-rater agreement. Additional manual hand searching was performed of included
full-text articles with reference lists from these studies included. These selected full texts
were similarly read, and suitability for inclusion was as per the original criteria.

2.4. Data Extraction and Outcome of Interest

Data was extracted from the studies and recorded in a tabulated form. The stan-
dardised data collation sheet included the author title, year of publication, data format,
application of ML/AI technique, the workflow of the ML/AI model, the subsequent train-
ing/testing datasets, the validation technique, the form of comparison used, and then
some description of the performance of the AI model. The primary outcome of interest
was the scope of current clinical applications of ML/AI in the field of periodontology
and peri-implant health and the performance of these AI models in clinician or patient
assistance. As this was a scoping review, all texts meeting eligibility criteria were subject to
qualitative review.

3. Results
3.1. Study Selection and Data Compilation

The study selection process is outlined in Figure 2. A total of 401 articles were identified
for screening after the removal of duplicates. In total, 293 texts were excluded after
screening for factors not meeting inclusion criteria. Full-text review and hand searching
identified 50 studies for inclusion in the qualitative analysis. Most of these excluded articles
tested software rather than an AI architecture to assess the input data.



Dent. J. 2023, 11, 43 6 of 25

Dent. J. 2023, 11, x FOR PEER REVIEW 6 of 27 
 

 

assistance. As this was a scoping review, all texts meeting eligibility criteria were subject 

to qualitative review. 

3. Results 

3.1. Study Selection and Data Compilation  

The study selection process is outlined in Figure 2. A total of 401 articles were iden-

tified for screening after the removal of duplicates. In total, 293 texts were excluded after 

screening for factors not meeting inclusion criteria. Full-text review and hand searching 

identified 50 studies for inclusion in the qualitative analysis. Most of these excluded arti-

cles tested software rather than an AI architecture to assess the input data.  

 

Figure 2. Study selection flowchart. Figure 2. Study selection flowchart.

The included articles were appraised with key information compiled into a single data
table (Table 1) for display in text format.

3.2. Location of Research

The first authors were from a wide variety of locations, illustrated in Figure 3. However,
over half were from institutions in the USA (n = 12), China (n = 11), or South Korea
(n = 7). The remainder were from Europe (n = 6), the Middle East (n = 4), the Indo-Pacific
(n = 4), Brazil (n = 3), Turkey (n = 2), and Canada (n = 1). There is also strong evidence of
international collaboration, with the first and last authors’ locations being geographically
disparate in a number of cases (n = 8).
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3.3. Year of Publication

Figure 4 depicts the year that studies were published. The first was in 2014, with a
steady increase in the frequency of publication over the next decade. This number appears
to be stabilising at 14–15 per year post-2020, in line with six found in 2022 prior to April
when the searches were conducted.

3.4. Input Data

All included studies had a periodontal focus; however, the input data varied signif-
icantly (Figure 5). The majority (68%) of studies focused on imaging data, using either
photographs (n = 12), radiographs (n = 20), or ultrasound images (n = 2). Patient data
(Electronic Health Record) were used in to attempt to predict periodontal or dental out-
comes (n = 7). Metabolites and saliva markers were used to classify, diagnose, and predict
periodontal and dental outcomes (n = 7).

3.5. Datasets

The dataset size had a large span due to the variability of inputs and outcomes of the
study types. Datasets for image processing studies ranged from 30 to 12,179, with a mean
of 1774 for solely panoramic radiographs, 1064 for solely periapical radiographs, and 1431
for photographs. Due to the novel nature of ultrasound imaging, the two included studies
contained less data (n = 35 and 627). Patient datasets varied between 216 and 41,543 with
no meaningful descriptive statistics due to outcome and methodological heterogeneity. For
all imaging studies, a mean of 1666 images were used.

However, it is worth noting that the number of images included in studies with
relatively heterogenous image types (i.e., plain film radiography) was not distributed in
a Gaussian or normally distributed curve, with the median being significantly different
to the mean. This was demonstrated with median (585 images) divergent from the mean
(1940 images). Figure 6 shows the relative frequency peaks for visual analysis.
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3.6. ML Architectures

A wide variety of convolutional architectures were used in this literature body (n = 67).
The most common architecture described was a U-Net (n = 9). Several other architectures
were used, including ResNet (n = 6), GoogLeNet Inception (n = 4), R-CNN or Faster
R-CNN’s (n = 4), and AlexNet (n = 2).

For image recognition, there appears to have been a shift to the use of U-Net over other
architectures with all nine studies utilising or comparing this platform published in 2021 or
2022 [29–37]. When compared against other architectures, Dense U-Net out performed a
standard U-Net [35], or U-Net was found to be optimised with a ResNet Encoder [36].

A number of studies involved patient data (e.g., metabolites or Electronic Health
Record (EHR) data used support vector machine algorithms (SVM) [38–43]. The difference
in data studies showed significant heterogeneity in methods, observations, and outcomes,
and as such, no relevant statistical outcomes can be formed. However, descriptively, SVM
showed either comparative outcomes [39] or reduced predictive capabilities [43] when
compared to other ML formats such as ANN multilayer perceptron (MLP), random forest
(RF), or naïve Bayes (NB).

3.7. Training and Annotation

The majority of patient data research in this literature body focused on using CNNs to
assist with regression analyses. In these cases, training is not required as the models are
sourcing regression analyses rather than replicating human activity.

In the case of image data processing, CNNs are mimicking humans and, as such,
require training. General dentists performed training annotation in 47% of papers (n = 16),
some form of specialist dentist or trainee specialist dentist performed training annotation
in 16% of papers (n = 6), and radiologists in 8% (n = 3) of studies. Dental hygienists were
also used (n = 1), as well as mixtures of clinicians (n = 6).

The methods of labelling were, in the majority, manual annotation by drawing or
labelling the external pixels of required features (n = 25). However, in a more recent
paper [44], a process of ‘dye staining’ was used, whereby annotators merely highlighted
areas of interest with a CNN used to ascertain characteristics around these single or
multiple-point annotations had occurred.
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3.8. Outcome Metrics and Comparative Texts

As is the nature of a scoping review there is vast heterogeneity in data forms, method-
ologies which result in very different outcome metrics [26,27]. These included an array
of best fit measurements including F1 and F2 scores, precision, and accuracy, alongside
sensitivity and specificity. Area under the curve analyses and ICC between test sets and
representative expert labels were also frequently quoted. More specific imaging outcomes
were also used with Jaccard’s Index, Pixel Accuracy, and Hausdorff Difference utilised.
This made a meaningful statistical comparison of outcomes difficult due to the vast number
of analyses presented.

Descriptively, as one would expect, when ML was asked to produce nominal outcomes,
accuracy increased. In cases where outcomes were dichotomous, 90–98% accuracy was
reported [45]. Within research that is more image focused, this is reflected when the task is
more simple, such as in the work of Kong et al., with gross recognition of periodontal bone
loss reporting an accuracy of 98% [46].

However, as the task asked of the ML increases in complexity, the accuracy was shown
to drop. This is possibly best illustrated by the eloquent research of Lee et al. [36]. This
study assessed several parameters to provide best outcomes for the radiographic staging
of periodontitis, showing a U-Net with ResNet Encoder-50 for the majority of its image
analysis. A power calculation was performed for gross bone loss. Here, Lee et al. describes
greatest accuracy (0.98) where there was no bone loss, with reduction in accuracy (0.89) for
fine increments such as for minimal bone loss (stage 1).



Dent. J. 2023, 11, 43 11 of 25

Table 1. Description of included studies.

Study Country Year Data
Type

Subject
Total

ML
Architecture Annotators Performance

Comparison
CNN Performance

Comment Brief Description

1 Papantonopoulos
[45] Greece 2014 Patient

data 29 MLP ANN n.a. Not
comparative

ANN’s gave 90–98%
accuracy in classifying

patients into AgP or CP.

ANNs used to classify periodontitis by
immune response profile to aggressive

periodontitis (AgP) or chronic
periodontitis (CP) class.

2 Bezruk [47] Ukraine 2017 Saliva 141 CNN
(no description) n.a. Not

comparative

Precision of CNN 0.8 in
predicting gingivitis based

upon crevicular
fluid markers.

CNN was used for the learning task to
build an information model of salivary

lipid peroxidation and periodontal
status and to evaluate the correlation

between antioxidant levels in
unstimulated saliva and inflammation

in periodontal tissues.

3 Rana [48] USA 2017 Photographs 405 CNN
Autoencoder Dentist Not

comparative

AU ROC curve of 0.746 for
classifier to distinguish
between inflamed and

healthy gingiva.

Machine learning classifier used to
provide pixel-wise inflammation

segmentations from photographs of
colour-augmented intraoral images.

4 Feres [41] Brazil 2018 Plaque 435 SVM n.a. Not
comparative

AUC > 0.95 for SVM to
distinguish between disease
and health. AUC for ability
to distinguish between CP

and AgP was 0.83.

SVM was used to assess whether 40
bacterial species could be used to
classify patients into CP, AgP, or

periodontal health.

5 Lee [49] South
Korea 2018 Periapical 1740 CNN encoder

+ 3 dense layers Periodontist Periodontist

CNN showed AU ROC curve
of 73.4–82.6 (95% CI

60.9–91.1) in predicting
hopeless teeth.

The accuracy of predicting extraction
was evaluated and compared between
the CNN and blinded board-certified
periodontists using 64 premolars and
64 molars diagnosed as severe n the
test dataset. For premolars, the deep

CNN had an accuracy of 82.8%
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Table 1. Cont.

Study Country Year Data
Type

Subject
Total

ML
Architecture Annotators Performance

Comparison
CNN Performance

Comment Brief Description

6 Yoon [50] USA 2018 Patient
data 4623 Deep neural

network-BigML n.a. Not
comparative

DNN used as
multi-regressional tool found
correlation between ageing

and mobility.

78 variables assessed by DNN were
used to find a correlation that can

predict tooth mobility.

7 Aberin [51] Philippines 2019 Plaque 1000 AlexNet Pathologists Not
comparative

Accuracy in predicting health
or periodontitis from plaque

slides reported at 75%.

CNN was used to classify which
microscopic dental plaque images

were associated with gingival health.

8 Askarian [52] USA 2019 Photographs 30 SVM n.a. Not
comparative

94.3% accuracy of SVM in
detection of

periodontal infection.

Smartphone-based standardised
photograph detection using CNN to

classify gingival disease presence.

9 Duong [31] Canada 2019 Ultrasound 35 U-Net n.a. Orthodontist
CNN yielded 75% average
dicemetric for ultrasound

segmentation.

The proposed method was evaluated
over 15 ultrasound images of teeth
acquired from porcine specimens.

10 Hegde [39] USA 2019 Patient
data 41,543 SVM n.a. Not

comparative

Comparison of ML vs. MLP
vs. RF vs. SVM for data

analysis. Similar accuracy
found between all methods.

The objective was to develop a
predictive model using medical-dental

data from an integrated electronic
health record (iEHR) to identify

individuals with undiagnosed diabetes
mellitus (DM) in dental settings.

11 Joo [53] South
Korea 2019 Photographs 451 CNN encoder

+ 1 dense layer n.a. Not
comparative

Reported CNN accuracy of
70–81% for validation data.

Descriptive analysis of preliminary
data for concepts of imaging analysis.

12 Kim [54] South
Korea 2019 Panoramic 12,179 DeNTNet Hygienists Hygienists

Superior F1 score (0.75 vs.
0.69), PPV (0.73 vs. 0.62), and

AUC (0.95 vs. 0.85) for
balanced setting DeNTNet vs.

clinicians for assessing
periodontal bone loss.

CNN used to develop an automated
diagnostic support system assessing
periodontal bone loss in panoramic

dental radiographs.
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Table 1. Cont.

Study Country Year Data
Type

Subject
Total

ML
Architecture Annotators Performance

Comparison
CNN Performance

Comment Brief Description

13 Krois [55] Germany 2019 Panoramic 85 CNN encoder
+ 3 dense layers Dentist Dentists

CNN performed less
accurately than the original

examiner segmentation
and independent

dentists’ observers.

CNNs used to detect periodontal bone
loss (PBL) on panoramic

dental radiographs.

14 Moriyama [56] Japan 2019 Photographs 820 AlexNet Dentist Not
comparative

Changes in ROC curves can
have a significant effect on

outcomes—looking at
predicted pocket depth

photographs and distorting
images to improve accuracy.

CNN was used to establish if there is a
correlation between pocket depth

probing and images of the
diseased area.

15 Yauney [57] USA 2019 Patient
data 1215 EED-net

(custom net) Dentist Not
comparative

AUC of 0.677 for prediction
of periodontal disease

based on intraoral
fluorescent porphyrin
biomarker imaging.

CNN was used to establish a link
between intraoral fluorescent

porphyrin biomarker imaging, clinical
examinations, and systemic health

conditions with periodontal disease.

16 Alalharith [58] Saudi
Arabia 2020 Photographs 134 Faster R-CNN Dentist

Previously
published
outcomes

Faster R-CNN had tooth
detection accuracy of 100% to
determine region of interest

and 77.12% accuracy to
detect inflammation.

An evaluation of the effectiveness of
deep learning based CNNs for the

pre-emptive detection and diagnosis of
periodontal disease and gingivitis by

using intraoral images.

17 Bayrakdar [59] Turkey 2020 Panoramic 2276 GoogLeNet
Inception v3

Radiologist
and

periodontist

Radiologist
and

periodontist

CNN showed 0.9 accuracy to
detect alveolar bone loss.

CNN used to detect alveolar bone loss
from dental panoramic
radiographic images.

18 Chang [60] South
Korea 2020 Panoramic 340 ResNet Radiologist Radiologists

0.8–0.9 agreement between
radiologists and

CNN performance.

Automatic method for staging
periodontitis on dental panoramic

radiographs using the deep learning
hybrid method.
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Table 1. Cont.

Study Country Year Data
Type

Subject
Total

ML
Architecture Annotators Performance

Comparison
CNN Performance

Comment Brief Description

19 Chen [61]
China

(and the
UK)

2020 Photographs 180 ANN
(no description) n.a. Not

comparative

ANN accuracy of 71–75.44%
for presence of gingivitis

from photographs.

Visual recognition of gingivitis testing
a novel ANN for binary classification

exercise—gingivitis or healthy.

20 Farhadian [38] Iran 2020 Patient
data 320 SVM n.a. Not

comparative

The SVM model gave an
88.4% accuracy to diagnose

periodontal disease.

The study aimed to design a support
vector machine (SVM)-based

decision-making support system to
diagnose various periodontal diseases.

21 Huang [40] China 2020

Gingival
crevicu-

lar
fluid

25 SVM n.a. n.a.

Classification models
achieved greater than or

equal to 91% in classifying SP
patients, with LDA being the

highest at 97.5% accuracy.

This study highlights the potential of
antibody arrays to diagnose severe
periodontal disease by testing five

models (SVM, RF, kNN, LDA, CART).

22 Kim [42] South
Korea 2020 Saliva 692 SVM n.a. n.a.

Accuracy ranged from 0.78 to
0.93 comparing neural

network, random forest, and
support vector machines
with linear kernel, and

regularised logistic
regression in the R

caret package.

CNN was used to assess whether
biomarkers can differentiate between

healthy controls and those with
differing severities of periodontitis.

23 Kong [46] China 2020 Panoramic 2602 EED-net
(custom net) Expert? Expert?

The custom CNN performed
better than U-Net or FCN-8,

all with accuracies above 98%
for anatomical segmentation.

CNN was used to complete
maxillofacial segmentation of images,

including periodontal bone
loss recognition.

24 Lee [62] South
Korea 2020

Periapicals
and

panoramic
10,770 GoogLeNet

Inception v3 Periodontist Periodontist

The CNN (0.95) performed
better than human (0.90) for

OPGs, but the same for
PAs (0.97).

CNN used for identification of
implants systems and their

associated health.
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Table 1. Cont.

Study Country Year Data
Type

Subject
Total

ML
Architecture Annotators Performance

Comparison
CNN Performance

Comment Brief Description

25 Li [63] Saudi
Arabia 2020 Panoramic 302 R-CNN Dentist Other CNNs

and dentist

Proposed architecture gave
accuracies of 93% for

detecting no periodontitis,
89% for mild, 95% for

moderate, and 99%
for severe.

This study compared different CNN
models for bone loss recognition.

26 Moran [64] Brazil 2020 Periapicals 467 ResNet,
Inception

Radiologist
and dentist

Compares
two CNN

approaches
for accuracy

AUC ROC curve for ResNet
and Inception was 0.86 for
identification of regions of

periodontal bone destruction.

Assessment of whether a CNN can
recognise of periodontal bone loss
improve post-image enhancement?

27 Romm [65] USA 2020 Metabolites N/A
CNN

(No description),
PCA

n.a. n.a.
Oral cancer identified rather
than a periodontal disease

with 81.28% accuracy.

CNN to analyse metabolite sets for
different oral diseases to distinguish

between different forms of
oral disease.

28 Shimpi [43] USA 2020 Patient
data N/A SVM, ANN n.a. n.a.

ANN presented more reliable
outcomes than NB, LR,

and SVM.

The study reviewed classic and CNN
regression to assess accuracy in
prediction for periodontal risk

assessment based on EHIR.

29 Thanathornwong
[66] Thailand 2020 Panoramic 100 Faster R-CNN Periodontist Periodontist

0.8 precision for identifying
periodontally compromised

teeth using radiographs.

CNN used to assess periodontally
compromised teeth on OPG.

30 You [67] China 2020 Photographs 886 DeepLabv3+ Orthodontist Orthodontist

No statistically significant
difference in the ability to

discern plaque on
photographs compared

to clinician.

CNN used to assess plaque presence
in paediatric teeth.

31 Cetiner [68] Turkey 2021 Patient
data 216 MLP ANN n.a. n.a.

The DT was most accurate,
with accuracy of 0.871

compared to LR (0.832) and
LP (0.852).

Assessment of three models of data
mining to provide a predictive

decision model for
peri-implant health.
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Table 1. Cont.

Study Country Year Data
Type

Subject
Total

ML
Architecture Annotators Performance

Comparison
CNN Performance

Comment Brief Description

32 Chen [69] China 2021 Periapicals 2900 r-CNN Dentist n.a. CNN used to locate periodontitis,
caries, and PA pathology on PAs.

33 Danks [70] UK 2021 Periapicals 340 ResNet Dentist Dentist Predicting periodontitis stage
accuracy of 68.3%.

CNN used to find bone loss landmarks
using different tools to provide staging

of disease.

34 Kabir [30] USA 2021 Periapicals 700

Custom CNN
combining

Res-Net and
U-Net

Periodontitis Periodontitis
Agreement between

professors and HYNETS
of 0.69.

CNN calibrated with bone loss on PAs
applied to OPGs for staging and

grading of whole-mouth
periodontal status.

35 Khaleel [71] Iraq 2021 Photographs 120 BAT algorithm,
PCA, SOM Dentist n.a.

BAT method provided 95%
accuracy against

ground truth

Assessment of different algorithms’
efficacy in recognising

gingival disease.

36 Kouznetsova
[72] USA 2021

Salivary
metabo-

lites
N/A DNN n.a. n.a.

Model performance
assessment only of

different CNNs.

CNN predicts which molecules should
be assessed for metabolic diagnosis of

periodontitis or oral cancers.

37 Lee [35] South
Korea 2021 Panoramic 530

U-Net, Dense
U-Net, ResNet,

SegNet
Radiologists Radiologists The accuracy of the resulting

model was 79.54%.

Assessment of a variety of CNN
architectures for detecting and

quantifying the missing teeth, bone
loss, and staging on

panoramic radiographs.

38 Li [73] China 2021 Photographs 3932 Fnet, Lnet, cnet Dentist Dentists
Low agreement between

three dentists and CNN in
heatmap analysis.

CNN used for gingivitis
detection photographs.

39 Li [29] China 2021 Photographs 110 DeepLabv3+ Dentist n.a.

MobileNetV2 performed in a
similar manner to

Xception65; however, Mob,
was 20× quicker.

Different CNNs trialled for RGB
assessment of gingival tissues to assess

inflamed gum detection
on photographs.
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Table 1. Cont.

Study Country Year Data
Type

Subject
Total

ML
Architecture Annotators Performance

Comparison
CNN Performance

Comment Brief Description

40 Ma [74] Taiwan 2021 Panoramic 432 ConvNet, U-Net Unknown n.a.

ConvNet analysis post U-Net
segmentation—the model
showed moderate levels of

agreement (F2 score of
between 0.523 and 0.903) and

the ability to predict
periodontitis and ASCVD.

CNNs used to assess for
atherosclerotic cardiovascular disease

and periodontitis on OPGs.

41 Moran [75] Brazil 2021 Periapicals 5

Inception and
for super-
resolution
SRCNN

Dentist n.a.

Minimal enhancement of
CNN performance was noted
from super resolution, which

may introduce
additional artefacts.

The study compared the effects of
super resolution methods on the

ability of CNNs to perform
segmentation and bone

loss identification.

42 Ning [76] Germany 2021 Saliva N/A DisGeNet,
HisgAtlas n.a. n.a.

DL-based model able to
predict immunosuppression
genes in periodontitis with

an accuracy of 92.78%.

CNN to identify immune subtypes of
periodontitis and pivotal

immunosuppression genes that
discriminated periodontitis from

the healthy.

43 Shang [32] China 2021 Photographs 7220 U-Net Dentist Dentist

U-Net to have a 10%
increased recognition of

calculus, wear facets,
gingivitis, and decay

Comparison of U-Net vs. comparison
between U-Net and

DeepLabV3/PSPNet architecture for
image recognition on oral pictures for
wear, decay, calculus, and gingivitis.

44 Wang [77] USA 2021 Metabolites N/A FARDEEP n.a. n.a.
ML successfully used in

logistic regression of
plaque samples.

CNN is used as a processing tool for
clinical, immune, and microbial

profiling of peri-implantitis patients
against health.

45 Jiang [37] China 2022 Panoramic 640 U-Net,
YOLO-v4 Periodontist Periodontist

Compared to the ground
truth, accuracy of 0.77 was
achieved by the proposed

architecture.

CNN used to provide % bone loss and
resorption/furcation lesion and
staging of periodontal disease

from OPGs.
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Table 1. Cont.

Study Country Year Data
Type

Subject
Total

ML
Architecture Annotators Performance

Comparison
CNN Performance

Comment Brief Description

46 Lee [36] USA 2022 Periapicals 693 U-Net, ResNet Dentist Dentist
The accuracy of the diagnosis

based upon staging and
grading was 0.85

Full mouth PA films were used to
review bone loss—staging and
grading were then performed.

47 Li [73] China 2022 Photographs 2884 OCNet, Anet Dentist Dentist

CNN provided AUC
prediction of 87.11% for

gingivitis and 80.11%
for calculus.

Research trialling different methods of
segmentation to assess plaque on
photographs of tooth surfaces (inc

‘dye labelling’).

48 Liu [78] China 2022 Periapicals 1670 Faster R-CNN Dentist Dentist

The results confirm the
advantage of utilising

multiple CNN architectures
for joint optimisation to

increase UTC ROC boosts of
up to 8%.

CNN used to assess implant marginal
bone loss with dichotomous outcomes.

49 Pan [33] USA 2022 Ultrasound 627 U-Net Dentist Dentist

Showed a significant
difference between CNN

outcome and dental
experts’ labelling.

CNN was used to provide an
estimation of gingival height in

porcine models.

50 Zadrozny [34] Poland 2022 Panoramic 30 U-Net Radiologists Dentists

Tested CNN showed
unacceptable reliability for

assessment of caries
(ICC = 0.681) and periapical

lesions (ICC = 0.619), but
acceptable for fillings

(ICC = 0.920), endodontically
treated teeth (ICC = 0.948),
and periodontal bone loss

(ICC = 0.764).

Testing of commercially available
product Diagnocat in the evaluation of

panoramic radiographs.
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4. Discussion

CNNs are becoming increasingly clinically relevant in their ability to assess imaging
data and can be an excellent utility for analysing large clinically relevant datasets. In
the present review, we systematically compiled the application of CNNs in the field of
periodontology, evaluating the application and outcomes of these studies. The majority of
these studies were completed in the USA and China, which is line with the majority of DL
papers in the medical spheres [79].

The use of CNNs in periodontal and dental research has continuously grown over
the last decade. Since the first publications using CNNs in the early 2010s, there has
been an exponential increase in the number of publications using this tool. In 2021 alone,
there were 2911 registered studies on PubMed with CNN in the title, up from 42 in 2010.
This, of course, makes empirical sense. The power, utility and applicability of this tool
are endless and are improving as the architectures evolve, providing both generic and
task-focused utility.

Previous systematic and scoping reviews in dentistry have highlighted the underuse
of this tool and a lag for dental research in this area [80,81]. However, with the total number
of periodontal imaging papers alone now equalling the number of dental imaging papers
in 2018, this lag is likely to have been overcome. This is unequivocally to the betterment of
dental patient care when considering the benefits patients have enjoyed through similar
endeavours in medicine [82].

The advantage of a broad search is the volume of literature that is assessed. However,
it must be noted that a significant portion of the literature was derived from technical
standards, conference proceedings, and related materials on computer-science-oriented
repositories rather than journal articles. This is advantageous for the authors because the
time to publication can be significantly reduced by removing the requirement for peer
or public review. This may suit the rapidly evolving world of computer science, where
breakthroughs can occur at breakneck speed, but it is unclear if the intrinsic validity of these
publications is reduced due to a lack of public/peer scrutiny. This literature is published
by technical scientists and therefore reported differently to how clinicians might expect it.

The majority of studies focused on the processing of images and the recognition of
structures. Radiography accounted for two-thirds of these data (Figure 5), reasonably
evenly split between periapical and panoramic radiographs. With both imaging modalities
indicated in the assessment of patients with periodontitis, virtual assistance in diagnosis
will be relevant to the clinician. In these studies, the majority of studies focused on image
segmentation rather than pathology detection. We can only assume that this was due to
the relative complexity of a detection tool compared to segmentation. However, moving
forwards, relative detection from consecutive radiographs or more pathology identification
would be of use as an assistive tool.

Database collation is an issue for all data science. This is of significant difficulty when
compiling data from medical records. When considering the field of machine learning,
suitable numbers of records are required to train and refine an AI tool. Supervised training
is recognised as a central tenant to improve a CNN’s performance. This process requires
that the CNN is shown labelled images to define structures for the CNN to segment. It is,
however, possible to over-train CNNs, resulting in errors due to over-recognition.

With homogenous data, it would not be unreasonable to believe that the distribution
of training input utilised would be Gaussian or normally distributed. However, we find
that the mean number of plain film radiographs utilised for training was multinomial
in distribution. This is best illustrated by the divergent mean (1940) and median (585).
Figure 6 shows a histogram of the data, where peaks can be seen between 100 and 1000
images and over 4000 images used. The authors query whether this was related to conve-
nient sampling implicit with smaller numbers of data or whether this is reflective of the
inherent variabilities of the requirements of the differing architectures of ML used. A power
calculation was performed in a single paper, but only for a single outcome, and as such may
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not have offered the researcher team an accurate assessment of data volume required [37].
Further to this, there was no notable descriptive correlation between outcome-reported
accuracy and the number of images used, with larger studies reporting a variety of accura-
cies or other outcomes [30,54,59,62,78]. This may be solely reflective of the noted variety of
reporting outcomes and methodologies rather than due to a lack of correlation.

Labelling these images for training and subsequent reference tests is also of paramount
importance. Gold standards were applied in several studies whereby more than one
clinician or a specialist radiologist was used to perform this manual task to ensure a
consensus approach to best fit was taken. However, in many studies, this was performed by
a single evaluator, reducing both the external validity of the results due to single operator
bias and the internal validity, introducing potential systematic error. Whilst some efforts
have been made to standardise methodologies [83,84], these are still yet to be adopted
or referenced in wider practice. The majority of studies used pixel-by-pixel annotation
tools, with single study moving to ‘Dye Staining or ‘Grab Cut’ methodology [73]. This
practice changes the digital annotation sequencing, essentially highlighting areas of interest
to the CNN rather than circumscribing the anatomical feature of relevance. This is already
mainstream in several other fields [85], possibly highlighting the digital technical lag
present in dental research and the opportunities available in this field.

The performance of CNNs was reported in very heterogeneous manners, almost all of
which come with drawbacks. Area under the curve (AUC) analyses are important, but only
partially informative when it comes to outcomes. Lying above the curve is just a minimum
requirement and, typically, only very elevated values are representative of applications
suitable to handle real-world data; thus, sensitivity and specificity need to be reported as
well to indicate performance. This was the case in some later papers, but those additional
values were missing from most papers where AUC was a reported outcome. Accuracy
was the most commonly reported outcome known to distort results when class imbalances
are in place [86]. This is due to the class distribution being unknown in the training data,
meaning that there is an assumption as to which population is more present (i.e., bone loss
or no bone loss). This assumption skews data, making the reported ≈70–90% accuracy less
meaningful due to inherent guesswork in ascertaining the class.

It has been suggested that the gold standard employed in these papers should be
for models to be tested against independent expert assessors on truly unseen data, or
indeed for the models to be used in a clinical trial [83]. However, no studies included
compare the outcomes from a truly independent examiner team on unseen data against
the proposed AI/ML outcomes. This leads to a ‘fuzzy gold standard’, whereby the AI/ML
outcome is being marked against the clinician examiners that were used to train the tool.
Until literature providing baseline information on the efficacy of examiners is universally
accepted or studies showing performance against truly independent dentist performance
in a clinical environment is shown, the assistive nature of these tools in a ‘real world setting’
will remain unproven.

With the marked reporting heterogeneity and uncertainty of gold standard testing, it is
not surprising that gauging meaningful comparison and pooling data for meta-analysis has
not been done. This may be indicated in a further systematic review in the future as more
standardisation of this form of research occurs. However, descriptively, when considering
outcomes, this body of research could show little improvement of accuracies over the last
nine years, with accuracies of 90–98% reported in 2014 [45] and accuracies of 0.85 described
in 2022. However, we feel that whilst the reported figures have remained similar, the
question has markedly changed over this time. Ever increasingly complex problems are
being asked of ML. Whilst historical papers asked more nominal questions, more recent
literature such as Jiang et al. [37] looked to radiographically stage periodontitis from OPG
radiographs. This represents a continuous problem that is grouped into ordinal datasets.
Here, the accuracy established was similar to the periodontists who had completed the
original manual labelling in the region of 0.85, depending upon tooth position and severity
of bone loss. This shows a significant improvement in the quality of the outcome and
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indicates that as the power of ML increases, the assistive nature of these tools may become
more powerful.

This scoping review comes with its inherent limitations. The chosen question is as
broad; as is inherent within the purpose of a scoping review [27], reflected by a broad
search strategy. Whilst including articles from resources such as ArXiv offers the readers a
larger pool of references, it should be noted that these articles are not peer-reviewed and
therefore may lack some of the methodological rigour of published literature. In addition
to this, the broad inclusion criterion has led to the authors somewhat controversially opting
to include papers using a broad variety of machine learning and artificial intelligence
modalities employed to analyse a broad range of data types. The resulting heterogeneity of
the literature reduced the opportunity for meaningful outcome data comparison. However,
the authors would add that they agree with the findings of referenced homogenisation
efforts to reduce the variability in results expressed in this field.

Methodologically, the main frailty revolves around searches and synthesis being
performed by a single reviewer, with cursory checks by second and third authors. Whilst
the single reviewer completed the synthesis twice with an extended time interval between
reviews, this still forms an area of inherent bias. However, this was necessary with the
practicality of this study.

5. Conclusions

Overall, this review gives insight into the application of machine learning in the
field of Periodontology. Given artificial intelligence’s relative infancy in healthcare, it
is not surprising that significant heterogeneity was found in the methodology and re-
porting outcomes. All efforts should be made to bring further research in line with in-
creasingly recognised gold standard for research and reporting. International agreement
on a gold standard against which to measure these tools would also significantly assist
readers in assessing the utility of this modality of tool. As such, at this juncture, no ac-
curate conclusions can be drawn as to the efficacy and usefulness of this tool in the field
of periodontology.
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