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Abstract: Early detection and accurate prediction of the risk of early childhood caries (ECC) are essen-
tial for effective prevention and management. This systematic review aims to assess the performance
and applicability of machine learning algorithms in ECC prediction and detection. A comprehensive
search was conducted to identify studies utilizing machine learning algorithms to predict or detect
ECC. The included (n = 6) studies demonstrated high accuracy, sensitivity, specificity, and area under
the receiver operating characteristic (AUC) values related to predicting and detecting ECC. The appli-
cation of machine learning algorithms contributed to enhanced clinical decision-making, targeted
preventive measures, and improved ECC management. The studies also highlighted the importance
of considering multiple factors, including demographic, environmental, and genetic factors, when
developing dental caries prediction models. Machine learning algorithms hold significant potential
for ECC prediction and detection, having promising performance outcomes. Due to the heterogeneity
of the studies, no meta-analysis could be performed. Moreover, further research is needed to explore
the feasibility, acceptability, and effectiveness of integrating these algorithms into dental practice.
This approach would ultimately contribute to enabling more effective and personalized dental caries
management and improved oral health outcomes for diverse populations.
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1. Introduction

Early childhood caries (ECC) represents a significant public health issue affecting
children worldwide. ECC is a term that encompasses any form of caries occurring in
infants, toddlers, or pre-schoolers, and it can have severe implications for a child’s overall
health, development, and quality of life [1]. The condition often leads to pain, infection,
and tooth loss, which can negatively impact a child’s nutrition, speech, and learning
abilities [2]. Furthermore, untreated ECC has been linked to higher rates of hospitalization
and increased healthcare costs, placing a considerable burden on healthcare systems [3]. As
such, accurate and timely diagnosis and treatment are crucial in terms of managing ECC
and mitigating its detrimental consequences.

In recent years, the advent of artificial intelligence (Al) has led to considerable advance-
ments in medical diagnostics, including in the field of dentistry. Al-driven diagnostic tools
have the potential to improve diagnostic accuracy, facilitate early detection, and support
treatment decision-making in a variety of clinical contexts [4]. In particular, Al-powered
imaging analysis techniques, such as convolutional neural networks (CNNs) and deep
learning algorithms, have shown promising results in terms of detecting carious lesions and
assessing their severity [5]. These innovative technologies may offer significant benefits in
the management of ECC by enhancing the precision of diagnosis and expediting treatment
initiation.

Despite the growing interest in using Al-driven diagnostic tools to identify ECC, the
literature on their effectiveness and impacts on clinical outcomes remains limited and
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heterogeneous in nature. A comprehensive evaluation of the current evidence is warranted
to elucidate the roles played by Al technologies in influencing treatment decision-making
and improving patient outcomes.

The application of Al in dental diagnostics is an emerging area of study, with several
studies demonstrating the potential of these technologies in caries detection and assess-
ment [6,7]. For instance, Lee et al. conducted a study employing a deep learning algorithm
to detect and classify carious lesions in dental radiographs [6]. The algorithm demon-
strated high levels of accuracy, sensitivity, and specificity, outperforming conventional
methods and indicating the potential of Al to act as an effective diagnostic tool [6]. Simi-
larly, Schwendicke et al. explored the use of a CNN to detect occlusal caries in bitewing
radiographs, reporting comparable diagnostic performance to those of human examiners
and suggesting that Al-based methods could serve as valuable adjuncts to traditional
diagnostic techniques [7].

Beyond caries detection, Ngnamsie Njimbouom et al. developed a decision support
system based on machine learning algorithms to assist with treatment planning for dental
caries [8]. The study revealed that the system significantly improved treatment consistency
among dental professionals, highlighting the potential benefits of Al integration into dental
practice.

Despite these promising findings, several challenges remain in the translation of Al-
driven diagnostic tools into clinical practice. One such challenge is the diversity of the
Al algorithms and imaging modalities used in dental diagnostics [9]. This heterogeneity
can make it difficult to compare the effectiveness of different Al-driven diagnostic tools
and may impede the development of standardized guidelines for their use. Additionally,
concerns have been raised about the potential for Al technologies to exacerbate existing
health disparities, particularly in terms of access to care and the quality of care provided
to underserved populations [10]. As Al-driven diagnostic tools become more prevalent
in dental practice, it is essential to ensure that these technologies do not perpetuate or
exacerbate existing inequities in oral healthcare.

Another challenge is the need for robust validation of Al algorithms to ensure their
generalizability and reliability across different populations and clinical settings [11]. Many
Al-driven diagnostic tools have been developed and tested in controlled research envi-
ronments, and their performances in real-world clinical settings may significantly differ.
This issue underscores the importance of validating Al-driven diagnostic tools using di-
verse and representative datasets, as well as conducting prospective studies to assess their
performance and impacts on patient outcomes in actual clinical practice.

Furthermore, the integration of Al-driven diagnostic tools into dental practice raises
important ethical and legal considerations, particularly regarding data privacy, informed
consent, and professional responsibility [7]. As Al technologies become more integrated
into dental practice, it is essential to develop clear guidelines and regulations to address
these concerns and ensure the safe and responsible use of Al-driven diagnostic tools.

The successful implementation of Al-driven diagnostic tools in the management of
ECC requires effective collaboration between researchers, dental professionals, and other
stakeholders, including patients and policymakers [9]. This collaboration is essential to
facilitate the translation of research findings into clinical practice, develop appropriate
guidelines and regulations, and ensure that Al-driven diagnostic tools are used to improve
patient care and outcomes.

Finally, AI has several challenges that remain to be addressed, including the need
for robust validation of Al algorithms, addressing ethical and legal considerations, and
fostering effective collaboration between stakeholders.

This systematic review aims to synthesize the current evidence regarding the accu-
racy and clinical outcomes of Al-driven diagnostic tools in ECC management, as well
as to provide valuable insights to inform future research, clinical practice, and policy
developments.
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2. Materials and Methods

A comprehensive search was conducted by two independent reviewers to identify
studies utilizing machine learning algorithms to predict or detect dental caries. A thorough
search of electronic databases, including PubMed, Scopus, Embase, and the Cochrane
Library, was performed to identify articles published between 2015 and 2022.

2.1. Eligibility Criteria

The inclusion criteria for studies in this systematic review consisted of randomized
controlled trials and observational studies published in English, with a minimum of 10 par-
ticipants per study. These studies should investigate the influence of artificial intelligence-
driven diagnostic tools on treatment decision-making in early childhood caries, as well as
report the accuracy and clinical outcomes of the tools. Studies with at least a two-week
follow-up period were included.

Exclusion criteria for studies encompassed those that did not report on the accuracy
and clinical outcomes of artificial intelligence-driven diagnostic tools for early childhood
caries, were not published in English, had a follow-up period of less than two weeks, and
did not have full-text availability.

2.2. Population

The target population for this systematic review comprised children with ECC, in-
cluding infants, toddlers, and pre-schoolers. Studies that focused on the diagnosis and
treatment decision-making of ECC in children from diverse demographic backgrounds and
clinical settings were included, ensuring that the results of the review were generalizable
and applicable to a wide range of patients.

2.3. Intervention and Control

The intervention of interest in this review was the use of Al-driven diagnostic tools for
the detection, assessment, and management of ECC. These tools included algorithms based
on machine learning, deep learning, and other Al techniques designed to analyze dental
images or other clinical data for the purpose of diagnosing and treating ECC. The control
group consisted of traditional diagnostic methods, such as visual examination, tactile
examination, and radiographic analysis, without the assistance of Al technologies. By
comparing the performance of Al-driven diagnostic tools to those of conventional methods,
the added value of Al in ECC diagnosis and treatment decision-making was assessed.

2.4. Study Type and Size

Randomized controlled trials (RCTs), quasi-experimental studies, and observational
studies, such as cohort studies and case-control studies, were included in this review. Both
prospective and retrospective studies were considered. To ensure that the included studies
provided sufficient evidence of the effectiveness of Al-driven diagnostic tools, only studies
with sample sizes of at least 10 participants were included.

2.5. Information Sources and Search Strategy

An exhaustive search of electronic databases, such as PubMed, Scopus, Embase, and
the Cochrane Library, was performed to find articles published between 2015 and 2022.
The detailed database search strategy used is shown in Table 1.

The search strategy incorporated a mix of medical subject headings (MeSH) and
free-text terms. Each database had a specific search strategy developed with the help of
a medical librarian. The search was finalized in April 2023. The results of the searches
were imported into a reference management software program, and duplicate entries were
eliminated. Two independent reviewers examined the titles and abstracts for inclusion, and
full-text articles that met the eligibility criteria were retrieved. The initial search strategy
used is outlined below.



Dent. ]. 2023, 11, 214 40f13

Table 1. Search strategy.

Database Search Terms

(“early childhood caries” [MeSH terms] or “early childhood caries” [All
fields] or “pediatric dental caries” [MeSH terms] or “pediatric dental caries”
[All fields] or “child dentistry” [MeSH terms] or “child dentistry” [All fields]

or “young children” [MeSH terms] or “young children” [All fields] or
“infants” [MeSH terms] or “infants” [All fields] or “pre-school age children”
[MeSH terms] or “pre-school age children” [All fields]) and (“artificial
intelligence” [MeSH terms] or “artificial intelligence” [All fields] or “machine
learning techniques” [MeSH terms] or “machine learning techniques” [All
fields] or “deep learning approaches” [MeSH terms] or “deep learning
approaches” [All fields] or “diagnostic instruments” [MeSH terms] or
“diagnostic instruments” [All fields] or “decision support systems” [MeSH
terms] or “decision support systems” [All fields] or “image analysis” [MeSH
terms] or “image analysis” [All fields]) and (“2015/01/01” [PDAT] to
“2022/12/31” [PDAT])

TITLE-ABS-KEY (“early childhood caries” or “pediatric dental caries” or
“child dentistry” or “young children” or “infants” or “pre-school age
children”) and TITLE-ABS-KEY (“artificial intelligence” or “machine

learning techniques” or “deep learning approaches” or “diagnostic
instruments” or “decision support systems” or “image analysis”) and
PUBYEAR >2014 and PUBYEAR <2023 and (LIMIT-TO (DOCTYPE, “ar”))

(“early childhood caries” /exp or “early childhood caries” or “pediatric
dental caries”/exp or “pediatric dental caries” or “child dentistry”/exp or
“child dentistry” or “young children”/exp or “young children” or
“infants” /exp or “infants” or “pre-school age children”/exp or “pre-school
age children”) and (“artificial intelligence” /exp or “artificial intelligence” or
Embase “machine learning techniques”/exp or “machine learning techniques” or

“deep learning approaches”/exp or “deep learning approaches” or
“diagnostic instruments” /exp or “diagnostic instruments” or “decision
support systems” /exp or “decision support systems” or “image
analysis” /exp or “image analysis”) and ([embase]/lim not ([embase]/lim
and [medline]/lim) and (2015:2022)

((“early childhood caries”) or (“pediatric dental caries”) or (“child dentistry”)
or (“young children”) or (“infants”) or (“pre-school age children”)) and

PubMed

Scopus

The Cochrane ((“artificial intelligence”) or (“machine learning techniques”) or (“deep
Library learning approaches”) or (“diagnostic instruments”) or (“decision support
systems”) or (“image analysis”)) and (Publication date >2014 and Publication
date <2023)

(“early childhood caries” or “pediatric dental caries” or “child dentistry” or
“young children” or “infants” or “pre-school age children”) and (“artificial

Google Scholar intelligence” or “machine learning techniques” or “deep learning
approaches” or “diagnostic instruments” or “decision support systems” or

“image analysis”) and (after 2014/12/31 and before 2023/01/01)

(AB (“early childhood caries”) or AB (“pediatric dental caries”) or AB (“child
dentistry”) or AB (“young children”) or AB (“infants”) or AB (“pre-school

. ProQt}est age children”)) and (AB (“artificial intelligence”) or AB (“machine learning
Dissertation and . " ” . ” T .
Thesis techniques”) or AB (“deep learning approaches”) or AB (“diagnostic

instruments”) or AB (“decision support systems”) or AB (“image analysis”))
and PD (2015-2022)

"o

Search terms related to population: “early childhood caries”, “pediatric dental caries”,

VZa7i

“child dentistry”, “young children”, “infants”, and “pre-school age children”;

a7

Search terms related to intervention: “artificial intelligence”, “machine learning tech-
A s

niques”, “deep learning approaches”, “diagnostic instruments”, “decision support sys-
tems”, and “image analysis”;
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Search terms related to outcome: “diagnostic accuracy”, “sensitivity”, “specificity”,

”ou

“treatment decision-making”, “clinical results”, and “quality of life”.

2.6. Study Selection

To identify studies that may be eligible, two separate reviewers screened the titles and
abstracts of the articles retrieved. The reviewers then carefully evaluated the full texts of
the articles based on pre-determined inclusion and exclusion criteria to determine if they
were suitable for inclusion in this study. In the event of any disagreements between the
reviewers, they resolved the issue by discussing it or consulting a third reviewer.

2.7. Data Collection Process and Data Items

To gather pertinent information from the studies that met the inclusion criteria, a
standardized data extraction form was utilized. The two reviewers worked independently
during the data extraction process, and any discrepancies were discussed and resolved
either between the two reviewers or by involving a third reviewer. The data extraction
form included a variety of items, such as the authors, publication year, study design, study
setting, population characteristics, sample size, Al algorithms used, diagnostic tools used,
accuracy measures, and clinical outcomes.

2.8. Summary Measures

The primary outcome measures used in this systematic review were the diagnostic
accuracy of Al-driven diagnostic tools compared to conventional methods, as well as the
impacts of Al-driven diagnostic tools on treatment decision-making and clinical outcomes
in children with ECC. Measures such as sensitivity, specificity, positive predictive value,
negative predictive value, and AUC were used to assess diagnostic accuracy. To evaluate the
impacts on treatment decision-making and clinical outcomes, measures such as treatment
success rates, patient satisfaction, and improvements in oral health-related quality of life
were considered.

In this analysis, the extracted data were synthesized using a narrative approach.
Potential sources of heterogeneity were explored and, if possible, subgroup analyses were
conducted to better understand the influence of various factors on the observed outcomes.
Due to the heterogeneity of the studies, no meta-analysis could be performed.

3. Results
3.1. Study Selection Process

To initiate the selection of studies regarding artificial intelligence techniques, databases
were searched, resulting in 1217 citations being retrieved. The first screening step eliminated
814 duplicates, leading to 403 unique titles and abstracts for further scrutiny. The criteria
for exclusion were irrelevance (n = 109), population (n = 41), intervention (n = 136), and the
type of publication (n = 48), leading to the removal of 334 studies.

After the initial screening, 99 unique full-text studies remained for detailed evaluation.
Upon reviewing the full texts, 94 publications were excluded due to population (n = 41),
intervention (n = 36), publication type (n = 11), and language (n = 6) issues. Therefore, five
studies were deemed to be appropriate for review, with an additional study added through
reference list checking, bringing the final number of included studies to six. The systematic
review assessed six studies in total.

Liu et al. [12] investigated the creation of a deep learning-based automatic screening
system to detect the ectopic eruption of maxillary permanent first molars from panoramic
radiographs. They utilized a sample of 1480 patients aged 4 to 9 years old and validated the
model using 100 additional panoramic images. The automatic screening system utilized
convolutional neural networks (CNNs) and demonstrated positive and negative predictive
values of 0.86 and 0.88, respectively, along with a specificity of 0.90 and a sensitivity of 0.86.

Park et al. [13] conducted a study with the goal of developing machine learning-based
prediction models for early childhood caries (ECC) and comparing their performance
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to those of traditional regression models. The study utilized data collected from the
Korea National Health and Nutrition Examination Survey (2007-2018), which included
4195 children aged 1 to 5 years old. The researchers developed prediction models using
four different algorithms: XGBoost, random forest, LightGBM, and logistic regression. The
study found that all four models displayed AUC values ranging between 0.774 and 0.785,
demonstrating that the machine learning-based models performed in a manner comparable
to that of the traditional logistic regression model in predicting ECC. Interestingly, all four
models displayed similar AUC values and misclassification rates, suggesting that machine
learning-based models can perform as well as traditional regression models in predicting
early childhood caries. This study’s findings are significant as the early detection of dental
caries is crucial for prompt treatment and the prevention of further oral health issues.
Machine learning-based models could potentially be utilized in clinical settings to provide
more accurate predictions and improve the early detection of dental caries.

Karhade et al. [14] aimed to develop and evaluate an automated machine learning
algorithm (AutoML) to classify children according to their early childhood caries (ECC)
status. The study involved 6404 children aged 3 to 5 years old, who participated in an
epidemiologic study of early childhood oral health in North Carolina. The researchers
used an AutoML deployment on Google Cloud to evaluate ten sets of ECC predictors to
determine classification accuracy, followed by internal validation and external replication.
The parsimonious model, which included two terms (children’s age and parent-reported
child oral health status), had the highest AUC (0.74), sensitivity (0.67), and positive predic-
tive value (0.64). The performance of the AutoML algorithm in classifying children based
on ECC status was comparable to that of the reference model, indicating its potential as a
valuable tool for performing ECC screening in young children.

In the study conducted by Ramos-Gomez et al. [15], the researchers explored the
use of machine learning algorithms in screening for dental caries in children. The study
focused on utilizing parent perceptions of their child’s oral health, which were assessed
via survey, as predictors of active caries and caries experience. The sample consisted
of 182 parents/caregivers and their children aged 2 to 7 years old living in Los Angeles
County, providing a diverse range of participants for analysis. The researchers used the
random forest algorithm to identify survey items that were strong predictors of active caries
and caries experience. The algorithm identified several significant predictors, including
the parent’s age, unmet needs, and the child being African American. These findings
emphasize the importance of considering various factors, including demographic factors,
when predicting dental caries risk in children. This research demonstrates the potential
of machine learning algorithms to perform dental caries screening and highlights the
usefulness of algorithm toolkits in helping dental professionals to assess children’s oral
health. By utilizing machine learning algorithms, healthcare providers may be able to
more effectively identify high-risk groups for dental caries and provide targeted preventive
measures.

Lastly, Wu et al. [16] examined the use of machine learning and 16s rRNA sequencing
to predict tooth decay by identifying bacterial communities present in an individual’s
oral cavity. The study used the oral microbiome of mother—child dyads (both healthy
and caries-active samples) in combination with demographic—environmental factors and
relevant fungal information to create a multifactorial machine learning model based on
the LASSO-penalized logistic regression method. The study identified several bacterial
species that were caries predictive, including Streptococcus mutans, Lactobacillus fermentum,
and Prevotella histicola. The model demonstrated an AUC of 0.84 for predicting caries in
children and 0.87 for predicting caries in mothers, indicating a strong predictive capacity.
The researchers found that incorporating demographic and environmental factors into the
model led to a slight improvement in caries prediction, emphasizing the importance of
considering multiple factors when predicting dental caries risk (Figure 1).
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Screening

Included

Identification of studies via databases and registers

Records identified from
Databases (n = 1217)

A4

Records screened
(n=403)

Reports assessed for eligibility
(n=199)

Records removed before
screening:
Duplicate records removed
(n=2814)

v

Records excluded

(n = 334) titles and abstracts
excluded after scanning titles
and abstracts

-lrrelevant: n = 109
-Population: n = 41
-Intervention: n = 136

-Type of publication: n = 48

AJ

Studies included in review
(n=5+1)

1 study was included through the
reference list checking

Figure 1. Study selection process.

3.2. Risk of Bias in Studies

To evaluate the risk of bias in the studies that met the inclusion criteria, appropri-
ate tools were used based on the study design, as indicated in Table 2. For randomized
controlled trials (RCTs), the Cochrane Risk of Bias tool [17] was used, while the Quality
Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool [18] was employed to per-
form diagnostic accuracy studies. The risk of bias assessment was conducted independently
by two reviewers, and any discrepancies that arose were resolved through discussion or
consultation with a third reviewer.

Table 2. Results of risk assessment.

94 publications excluded after
scanning full texts:
-Population: n = 41
-Intervention: n = 36

-Type of publication: n = 11
-Language: n =6

Risk of Bias Applicability Concerns
Study Patient Index Test Reference Flow and Patient Index Test Reference
Selection Standard Timing Selection Standard
Liuetal. [12] Low risk Unclear Low risk Low risk Low risk Low risk Low risk
Wu et al. [13] Low risk Low risk Low risk Unclear Low risk Low risk Low risk
Park et al. [14] Low risk Low risk Unclear Low risk Low risk Low risk Low risk
Pang et al. [15] Low risk Low risk Low risk Low risk Low risk Low risk Low risk
Karhade et al. [16] Unclear Low risk Low risk Low risk Low risk Low risk Low risk
Ramos-Gomez et al. [17] Low risk Low risk Low risk Low risk Low risk Low risk Low risk

Based on the risk analysis, no studies were excluded.
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3.3. Characteristics of Studies

Table 3 displays the findings of Liu et al. [12], who created a deep learning-based
automatic screening system to detect the ectopic eruption (EE) of maxillary permanent
first molars (PFMs) using panoramic radiographs. The researchers trained the model on
a sample of 1480 patients aged 4-9 years old and tested it on 100 additional panoramic
images, achieving positive and negative predictive values of 0.86 and 0.88, respectively, as
well as a specificity of 0.90 and a sensitivity of 0.86.

Table 3. Characteristics of studies.

. L Author’s
Author Year Study Type  Algorithm Objective Outcome Observation
Develop a .
semi-automatic model to ~ High sensitivity The algorlth'momay
Cross- detect ectopic eruption  and specificity in enhance clinical
1 Liuetal [12] 2022 . CNNs gctopie erup P Y diagnosis and
sectional of maxillary first molars automated
. , . management of
in 4-9-year-olds screening ectopic eruption
radiographs P p
Create an ML model to . Further refinement
Cross- identify caries-related Desirable results needed by
2 Wuetal [16] 2021 . ANNSs . . for both mothers .
sectional oral microbes in and children considering more
mother—child dyads variables
Predict early childhood Favorable . .Help.f ul. m
. . performance in identifying
Park et al Cross- caries using Ml -based dental caries high-risk groups
3 ' 2021 . ANNs Al models (XGBoost, - . .
[13] sectional prediction with and applying
random forest, and satisfactory AUC reventive
Light GBM algorithms) y p
values measures
Accurate Potential as a
Develop a caries risk identification of
dicti del f individuals at powerful tool for
Pang et al. Cross- prediction moce for m performing
4 2021 . ANNs teenagers by considering high and very .
[19] sectional . ) . community-level
environmental and high risk of . o
enetic factors developing high caries risk
& - identification
caries
Comparable
Evaluate the accuracy of ~ performance to
Karhade et al. Cross- an at.ltomated ML that of the Valuable tool for
5 [14] 2021 sectional ANNSs algorithm for early reference model ECC screenin
childhood caries (ECC) (AUC: 0.74, &
classification sensitivity: 0.67,
PPV: 0.64)
Identify survey items to Algorlthm
. . toolkits can help Demonstrates
Ramos- Cross- predict dental caries in dental otential for dental
6 Gomezetal. 2021 . ANNs children using a . pote .
sectional . : professionals to  caries screening in
[15] machine learning

algorithm

assess children’s
oral health

children

Park et al. [13] aimed to develop machine learning-based prediction models for early
childhood caries using data from 4195 children aged 1 to 5 years old. They utilized
XGBoost, random forest, LightGBM algorithms, and logistic regression, finding that all
four prediction models had AUC values ranging between 0.774 and 0.785.

In Pang et al.’s [19] prospective longitudinal study of 1055 adolescents aged 13 years
old, the authors created a caries risk prediction model using a random forest algorithm
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based on environmental and genetic factors. The model demonstrated an AUC of 0.78 in
the training cohort and an AUC of 0.73 in the testing cohort.

Karhade et al. [14] created an automated machine learning algorithm (AutoML) to
classify children according to their early childhood caries (ECC) status, using data from
6,404 children aged 3 to 5 years old. The model with the highest AUC, sensitivity, and
positive predictive value included two predictors: children’s age and parent-reported child
oral health status.

Ramos-Gomez et al. [15] used a machine learning algorithm to screen for dental caries
among children based on parent perceptions of their child’s oral health, as assessed via
survey. The study found that the parent’s age, unmet needs, and the child being African
American were strong predictors of active caries.

Lastly, Wu et al. [16] used machine learning and 16s rRNA sequencing to identify
bacterial communities present in an individual’s oral cavity and predict tooth decay. The
study’s model had an AUC of 0.84 for predicting caries in children and 0.87 for predict-
ing caries in mothers, incorporating demographic and environmental factors to improve
caries prediction. The study identified several caries-predictive bacterial species, including
Streptococcus mutans, Lactobacillus fermentum, and Prevotella histicola.

4. Discussion

The systematic review analyzed six studies that employed machine learning algo-
rithms in the prediction and detection of dental caries, with each study focusing on different
aspects of caries prediction and detection, populations, and interventions. In this study,
the key findings were discussed, namely populations, interventions, and other relevant
information from each study, while also exploring the similarities, differences, trends, and
patterns that emerged.

Liu et al. [12] developed a deep learning-based automatic screening system to detect
ectopic eruption of maxillary permanent first molars using panoramic radiographs. The
findings suggest that the model developed by Liu et al. has the potential to enhance the
clinical diagnosis and management of ectopic eruption by providing a reliable and efficient
method of detecting EE in children.

Park et al. [13] aimed to develop machine learning-based prediction models for early
childhood caries and compared their performances to those of traditional regression mod-
els. This study included a large sample of 4195 children aged 1 to 5 years old, and the
researchers created four prediction models using various algorithms: XGBoost, random
forest, LightGBM, and logistic regression. The models’ performances were evaluated using
AUC values and misclassification rates.

The study’s findings suggest that machine learning algorithms have the potential
to effectively identify groups at a high risk of developing early childhood caries. This
information can be used to inform targeted preventive measures, such as promoting oral
hygiene education and providing dental care to high-risk groups. By leveraging machine
learning techniques, it may be possible to create more accurate and reliable ECC risk
prediction models, which can be utilized to improve the overall oral health of young
children. Moreover, the study highlights the importance of utilizing diverse algorithms
to develop prediction models, as the performances of the different models can vary. The
use of multiple algorithms can help to ensure that the developed models are robust and
accurate, improving the reliability of ECC risk predictions. In summary, Park et al.’s study
provides valuable insights into the potential of machine learning algorithms in terms of
predicting ECC and highlights the need for continued research in this area.

In a separate study, Pang et al. (2021) constructed a caries risk prediction model for
teenagers using a machine learning algorithm that factored in both environmental and
genetic factors. The model’s high discrimination ability makes it a potentially valuable
tool for identifying high risk of developing caries at the community level. The study’s
findings are particularly significant since teenagers form a group that often exhibits high
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rates of dental caries, and early identification of high-risk individuals can lead to targeted
preventive interventions.

This study demonstrates the importance of considering various factors when predict-
ing risk of developing caries in teenagers and highlights the potential of machine learning
algorithms in identifying high-risk groups. Overall, the findings of this study could lead to
the development of more effective preventive measures to reduce the incidence of dental
caries in teenagers.

Karhade et al. [14] aimed to develop and assess an automated machine learning
algorithm (AutoML) to classify children based on their early childhood caries status. The
researchers utilized Google Cloud’s AutoML deployment to evaluate ten different sets of
predictors of ECC and found that the model with only two predictors, namely children’s age
and parent-reported child oral health status, had the highest AUC, sensitivity, and positive
predictive value. The study’s results suggest that AutoML may be a promising approach
for the classification of children based on their ECC status, particularly in resource-limited
settings.

Wu et al. [16] investigated the use of machine learning and 16s rRNA sequencing to
predict tooth decay by identifying bacterial communities present in an individual’s oral
cavity. The study’s multifactorial model demonstrated strong predictive capacity, indicating
that considering demographic and environmental factors, in addition to bacterial species,
could improve caries prediction accuracy. The study’s results have significant implications
for the development of personalized preventive interventions that target bacterial species,
as well as demographic and environmental factors associated with an individual’s risk of
developing dental caries.

Upon examining the six studies, several similarities and differences emerge. All
studies employed machine learning algorithms to perform dental caries prediction or
detection, but the specific algorithms and methods used varied. Liu et al. [12] and Karhade
et al. [14] focused on utilizing deep learning and AutoML algorithms, respectively, while
Park et al. [13], Pang et al. [19], and Ramos-Gomez et al. [15] employed ensemble learning
algorithms, such as random forest and gradient boosting. Wu et al. [16] used a LASSO-
penalized logistic regression approach.

Another difference between the studies concerns the varied diverse age groups tar-
geted. Liu et al. [12] focused on children aged 4 to 9 years old, Park et al. [13] studied
children aged 1 to 5 years old, and Pang et al. [19] targeted teenagers aged 13 years
old. Karhade et al. [14] and Ramos-Gomez et al. [15] included children aged 3 to 5 and
2 to 7 years old, respectively, while Wu et al. [16] analyzed mother—child dyads.

The studies also differed in terms of the interventions used and the specific dental
caries issues addressed. Liu et al. [12] developed a screening system to detect ectopic
eruption, while Park et al. [13], Pang et al. [19], and Karhade et al. [14] focused on predicting
early childhood caries and the risk of developing caries in children and teenagers. Ramos-
Gomez et al. [15] aimed to identify survey items used to predict dental caries in children,
and Wu et al. [16] explored the potential use of the oral microbiome to predict tooth decay.

Despite these differences, all studies demonstrated the potential of machine learning
algorithms in dental caries prediction and detection, with most models showing high
accuracy, sensitivity, specificity, and AUC values. The studies highlighted the importance
of considering multiple factors, such as demographic, environmental, and genetic factors,
when predicting dental caries risk. Furthermore, the studies emphasized the potential
benefits of using machine learning algorithms to implement targeted preventive measures
and improved clinical decision-making in dental caries management.

In comparing the outcomes of the individual studies, it is evident that the machine
learning models generally achieved satisfactory predictive performances. Liu et al.’s [12]
automatic screening system for detecting ectopic eruption had high sensitivity and speci-
ficity, while the machine learning-based prediction models for early childhood caries in
Park et al.’s [13] study displayed AUC values comparable to those of traditional regression
models. Pang et al.’s [19] caries risk prediction model for teenagers demonstrated high
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discrimination ability, and Karhade et al.’s [14] AutoML algorithm performed compa-
rably to the reference model in terms of classifying children based on their ECC status.
Ramos-Gomez et al.’s [15] random forest algorithm successfully identified survey items as
predictors of active caries, and Wu et al.’s [16] LASSO-penalized logistic regression model
had strong capacity to predict caries in both children and mothers.

The populations studied in these research projects varied not only in terms of age, but
also other demographic factors. For instance, Ramos-Gomez et al. [15] found that certain
demographic factors, such as the child being African American, played a significant role in
predicting active caries. This issue highlights the importance of considering demographic
factors when developing dental caries prediction models, as these factors may influence
the accuracy and generalizability of the models.

In terms of interventions, the studies employed different machine learning algorithms
to address specific dental caries issues. Some studies focused on early detection of dental
issues, such as Liu et al. [12], who developed a screening system for ectopic eruption. Other
authors, such as Park et al. [13] and Pang et al. [19], aimed to predict early childhood caries
or caries risk. The interventions used in these studies showcase the versatility of machine
learning algorithms in addressing various dental caries-related issues.

In summary, the six studies analyzed in this systematic review highlight the potential
of machine learning algorithms to predict and detect ECC across different populations and
interventions. Despite the differences in the algorithms used, populations studied, and
interventions employed, the studies collectively demonstrate the effectiveness of machine
learning algorithms in dental caries prediction and detection.

The models generally achieved high accuracy, sensitivity, specificity, and AUC values,
emphasizing their potential in informing targeted preventive measures and improving clin-
ical decision-making in dental caries management. Furthermore, these studies underscore
the importance of considering multiple factors, such as demographic, environmental, and
genetic factors, when developing dental caries prediction models.

Ngnamsie Njimbouom et al. developed a decision support system based on machine
learning algorithms to assist in treatment planning for dental caries [8]. A similar study of
the use of Al was also reported on the regarding the detection of fluoride concentration
in drinking water in Turkey, and the results showed that the use of Al was cheaper,
faster, and more feasible than the use of many chemical analysis techniques available in
the laboratory [20].

Despite the promising findings of this systematic review, there are several limitations
that should be acknowledged. Firstly, the number of studies included in this review is
relatively small, as most researchers tend to avoid dealing with children. As machine
learning applications in dental caries prediction and detection is an emerging area of
research, the limited number of studies may not comprehensively cover all aspects of
this field.

Secondly, the populations studied in these research projects vary not only in terms
of age, but also other demographic factors. This issue may limit the generalizability of
the findings, as the performances of machine learning models may differ across diverse
populations with different demographic characteristics.

Thirdly, the studies included in this review employed different machine learning algo-
rithms, which could affect the comparability of their results. The variations in algorithms
used and the specific dental caries-related issues addressed make it challenging to draw
definitive conclusions regarding the optimal machine learning algorithm for dental caries
prediction and detection.

Lastly, the studies analyzed in this review primarily focused on the predictive per-
formances of machine learning models. While these models demonstrated high accuracy,
sensitivity, specificity, and AUC values, the implementation of these models in real-world
clinical settings and their impacts on patient outcomes require further investigation. Future
studies should continue to explore the potential of machine learning algorithms in dental
caries prediction and detection, with a focus on improving the generalizability and appli-
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cability of these models in diverse populations and settings. Furthermore, they should
explore the feasibility, acceptability, and effectiveness of integrating machine learning
algorithms into dental practice to better understand their potential benefits and challenges.

5. Conclusions

The systematic review and analysis of the six studies demonstrate the potential of
artificial intelligence algorithms to predict and detect ECC across different populations
and interventions. Due to the heterogeneity of the studies, no meta-analysis could be
performed. The findings reveal that machine learning algorithms can be a promising way
to enhance the prediction, detection, and management of ECC by achieving high accuracy,
sensitivity, specificity, and AUC values. It seems that the versatility of these algorithms
can allow targeted preventive measures, improved clinical decision-making, and tailored
interventions for ECC management. Moreover, these studies emphasize the importance
of considering multiple factors, such as demographic, environmental, and genetic factors,
when developing dental caries prediction models. This comprehensive approach can better
inform the development of ECC prediction models, contributing to their generalizability
and applicability in diverse populations and settings. However, further research is needed
to explore the feasibility, acceptability, and effectiveness of integrating these algorithms
into dental practice. This approach would ultimately contribute to more effective and
personalized dental caries management and improved oral health outcomes for diverse
populations.
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