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Abstract: The objective of this study was to evaluate the effect of radiant exposure on the chemical
and physical properties of four commercial dental resin composites. The four dental resin composites
used were Kalore, Admira, Tetric N-Ceram Bulk Fill, and Filtek Z350 XT. The composites were
subjected to three curing protocols: 1000 mW/cm2 for 5 s, 1000 mW/cm2 for 10 s, and 400 mW/cm2

for 25 s. The flexural strength, elastic modulus, water sorption, water solubility, degree of conversion,
and polymerization shrinkage were evaluated. The results were analyzed by means of ANOVA and
Tukey tests. For Admira and Kalore, significant differences between light exposure protocols were
observed for the elastic modulus (p < 0.001), which was higher when a higher amount of radiant
exposure was used. For Filtek Z350, differences were only observed for the degree of conversion
(p < 0.001), and a higher amount of radiant exposure allowed us to obtain higher values. The Tetric
N-Ceram Bulk Fill analysis showed significant differences for the elastic modulus and water sorption
(p < 0.001), and specimens that had been subject to a radiant exposure of 10 J/cm2 showed a higher
elastic modulus. In most cases, the physical and mechanical properties analyzed were not affected by
different radiant exposure values. Other resin-based composite (RBC) characteristics seem to have a
greater influence on material properties.
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1. Introduction

Due to their versatility and aesthetic advantages, photopolymerizable resin-based dental
composites (RBCs) have been widely used in the restoration of dental caries or other tooth defects [1].
In order to achieve optimal material properties throughout the entire restoration, RBCs are placed
using layering techniques [2]. The multi-increment technique is time-consuming, and there exists
significant demand for a reduction in cure time to minimize the time it takes to complete the chairside
procedure [3].
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The photopolymerization efficiency of RBCs is influenced by several factors [4]. Among them,
factors related to the photopolymerization unit have been widely studied; for example, with regard
to light irradiance, the use of at least 400 mW/cm2 has been recommended [5,6]. Another directly
related factor is radiant exposure, which is the product of irradiance (mW/cm2) and exposure time (s).
Radiant exposure (J/cm2) has a direct relationship with the degree of conversion and other important
mechanical properties of photopolymerizable RBCs [7,8]. The amount of radiant exposure required to
adequately polymerize an increment of an RBC varies greatly, and there is still much confusion over
which specific irradiance and time combination will provide optimal polymerization within a short
clinical timeframe [3].

Based on the principle known as the “exposure reciprocity law”, which describes a reciprocal
relationship between irradiance and exposure time to achieve equivalent polymerization of RBCs [9],
there exists a tendency among dentists and manufacturers to use or suggest a high-power illumination
to reduce the curing time [4]. It has been demonstrated that many resins appear to follow exposure
reciprocity with regard to the degree of conversion, elastic modulus, hardness, and cure depth [10–12].
However, the validity of this rule has been challenged by other studies [13,14]. The available evidence
for the exposure reciprocity law is contradictory because research groups have studied different resins,
ranges of irradiance, and radiant exposures to investigate this phenomenon.

Recently, new types of photopolymerizable RBCs have been introduced, including low stress
and low shrinkage composites, ormocer-based composites, and bulk-fill composites. These types of
materials include new monomer, filler, or photoinitiator technologies that have not been fully studied.
The introduction of new or modified dental products into the market requires a guarantee that these
materials have at least similar properties to other RBCs.

Little is known about the effect of radiant exposure on these new types of materials. Consequently,
the aim of this work was to evaluate the effect of radiant exposure on the physical and chemical
properties of four resin-based composites. The null hypothesis tested was that similar properties will
be achieved when composites are exposed to the same amount of radiant exposure (5 and 10 J/cm2) at
different irradiance and time levels.

2. Materials and Methods

In this study, four dental resin composites were used: a low-shrink, low-stress composite
(KaloreTM, GC Corporation, Tokyo, Japan), an ormocer-based composite (Admira®, Voco, Cuxhaven,
Germany), a bulk-fill composite (Tetric® N-Ceram Bulk Fill, Ivoclar-Vivadent, Schaan, Liechtenstein),
and a nanofilled composite (FiltekTM Z350 XT, 3M ESPE, St. Paul, MN, USA). Information on their
manufacture is listed in Table 1.

Table 1. Information on the manufacture of the resin-based composites.

Material Organic Matrix * Inorganic Filler * Filler Load
%Weight (Volume)

KaloreTM (GC Corp.,
Tokyo, Japan)

UDMA, Urethane
DX-511, dimethacrylate

comonomers

Fluoro-aluminium-silicate glass,
Prepolymerized filler, and Silicon

dioxide
82 (55)

Admira® (Voco, Cuxhaven,
Germany)

Polisiloxane, aliphatic
and aromatic monomers

Apatite-sulphate-phosphate and
inorganic glass particles 78 (56)

Tetric® N-Ceram Bulk Fill
(Ivoclar-Vivadent, Schaan,

Liechtenstein)
Bis-GMA, DMA

Barium-aluminium-silicate glass,
ytterbium fluoride, and spherical

mixed oxide
79 (60)

FiltekTM Z350 XT (3M
ESPE, St. Paul, MN, USA)

Bis-GMA, UDMA,
TEGDMA, Bis-EMA,

PEGDMA.

Silica, zirconia, and aggregated
zirconia/silica clusters 72.5 (63.3)

* Information provided by the manufacturer. UDMA, urethane dimethacrylate; Bis-EMA, bisphenol A-glycol
dimethacrylate; Bis-GMA, bisphenol A-glycidyl dimethacrylate; TEGDMA, triethylene glycol dimethacrylate;
Bis-EMA, ethoxylated bisphenol a dimethacrylate; PEGDMA, Poly(ethylene glycol) dimethacrylate.
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2.1. Curing Protocols and Radiant Exposures

Composites were cured with a commercial light-emitting diode (LED) photopolymerization
unit (LED Bluephase 16i, Ivoclar Vivadent, Schaan, Liechtenstein). They were subjected to three
radiant exposure levels: Group A (1000 mW/cm2 for 5 s (5 J/cm2)); Group B (1000 mW/cm2 for 10 s
(10 J/cm2)); and Group C (400 mW/cm2 for 25 s (10 J/cm2)). The intensity of light irradiation was
monitored using a digital radiometer (Bluephase meter, Ivoclar, Vivadent).

2.2. Degree of Conversion

The degree of conversion of the composite materials was determined by infrared spectroscopy
(Frontier, Perkin Elmer, Waltham, MA, USA). An infrared spectrum of the uncured and the cured
samples was obtained. The measurement was made in real time using an attenuated total reflection
(ATR) unit. For each spectrum, the height of the aliphatic C=C peak absorption at 1638 cm−1 and the
height of the C=O vibration at 1710 cm−1 were determined. The degree of conversion was determined
in accordance with the following equation:

Degree of conversion(%) = 100

1 −

(
A1638
A1710

)
polymer(

A1638
A1710

)
monomer

 (1)

where A1638 is the maximum height of the absorption peak at 1638 cm−1, A1710 is the maximum height
of the absorption peak at 1710 cm−1, “polymer” refers to the cured specimen, and “monomer” refers
to the uncured material.

2.3. Flexural Properties

The flexural strength of the materials was evaluated in accordance with the specifications provided
by the ISO-4049 International Standard, while the elastic modulus was evaluated using the square
section of the flexural mechanical properties [15,16]. Sixty bar-shaped specimens (25 mm × 2 mm ×
2 mm) were prepared by placing the uncured samples into a stainless steel mold that was placed on a
glass slide that was covered by a Mylar® strip. A second strip and a glass slide were used to cover
the mold. The samples were irradiated on both sides by the overlapping technique using the curing
protocol previously described. After the polymerization process was performed, irregularities were
removed using abrasive paper, and specimen dimensions were measured using a digital caliper (Mod.
CD-6”C Mitutoyo. Tokyo, Japan). After storage in distilled water at 37 ◦C for 24 h, the specimens
were placed in a universal mechanical test machine (Instron 4465, Norwood, MA, USA). A three-point
flexural test was performed with a 1 kN load cell at a crosshead speed of 1.00 mm/min until a fracture
occurred. The flexural strength (FS) and elastic modulus (EM) were calculated (in MPa and GPa,
respectively) using the following equations:

FS =
3Fl

2bh2 ; EM =
F1l3

4bh3d
(2)

where F1 represents the load (N) exerted on the specimen on the linear portion of the load–curve
deflection curve, F is the maximum load (N) exerted on the specimen at the point fracture, l is the
distance (mm) between the supports, h is the height (mm) of the specimen, b is the width (mm) of the
specimen, and d is the deflection corresponding to the load F1.
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2.4. Water Sorption and Solubility

The hydric behavior of the materials was evaluated according to the specifications that are
described in the ISO International Standard No. 4049. Sixty cylindrical discs (15 mm in diameter and
1 mm in thickness) were prepared in a stainless steel mold and polymerized following the curing
protocol previously described. The samples were transferred to a desiccator, and their mass was
monitored until a constant mass was obtained (m1; the loss in mass of each specimen was not more
than 0.1 mg in a 24-h period). Then, the volume (V) of each specimen was calculated by measuring
the thickness and diameter of the samples. The samples were immersed in distilled water at 37 ◦C for
7 days, and, after that, they were weighted to obtain m2. Finally, the samples were again placed in a
desiccator and were weighted until their mass was found to remain constant (m3). The water sorption
(WSP) and solubility (WSL) were calculated using the following equations:

Wsp =
m2 − m3

V
; Wsl =

m1 − m3

V
. (3)

2.5. Polymerization Shrinkage

The polymerization shrinkage (PS) was calculated using a linear transducer [17,18]. Disk-shaped
specimens were prepared by placing the uncured composite (0.17 ± 0.04 g) at the center of a square
cross-section brass ring (internal diameter 16 mm, height 1.24 mm), which was adhesively bonded
to a glass microscope slide. The disk specimen was then covered with a glass microscope cover-slip.
Then, the armature of a displacement transducer was carefully positioned to be in contact with the
center of the cover-slip. Samples were photopolymerized according to the protocol described in
Section 2.1. The cover-slip deflects when shrinkage occurs, so the deflection at the center of the
cover-slip was monitored over time by the transducer, which has a sensitivity that is better than
0.1 mm. The transducer was connected to a signal and data acquisition unit. The shrinkage–strain
deflection is defined by the following equation:

PS =
100(L0 − Lt)

L0
(4)

where L0 is the height of the unpolymerized specimen (1.24 mm), and Lt is thickness of the polymerized
specimen at the end of the polymerization process.

2.6. Statistical Analysis

The statistical analysis was performed using IBM SPSS Statistics 20 Software (Armonk, NY, USA).
The data were evaluated to check for a normal distribution and homogeneity in variance. Analysis of
variance was used to evaluate the effect of the experimental variables (radiant exposure and material)
on the degree of conversion, flexural strength, elastic modulus, water sorption, water solubility,
and polymerization shrinkage. The level of significance was set at p < 0.05.

3. Results

Figures 1–3 show the flexural properties, polymerization shrinkage, water sorption, solubility,
and degree of conversion for the dental resin composites and the three different light exposure protocols.
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Figure 1. The flexural strength (a) and the elastic modulus (b) from different curing protocols.
The columns under the same horizontal line are not statistically different.

Figure 2. The water sorption (a) and the solubility (b) from different curing protocols. The columns
under the same horizontal line are not statistically different.
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Figure 3. The degree of conversion (a) and the polymerization shrinkage (b) from different curing
protocols. The columns under the same horizontal line are not statistically different.

To analyze the effect of the radiant exposure and the applicability of the exposure reciprocity law,
an independent one-way ANOVA analysis was performed after pooling the data for each composite.
For the Admira® composite, statistically significant differences between the light exposure protocols
were observed for the elastic modulus (p < 0.001), and a higher elastic modulus was achieved when
a higher radiant exposure was used; this was also observed for the KaloreTM composite. For the
FiltekTM Z350XT composite, differences were only observed for the degree of conversion variable
(p < 0.001). In this case, a higher radiant exposure allowed us to obtain higher degree of conversion
values. The Tetric® N-Ceram Bulk Fill analysis showed statistically significant differences for the elastic
modulus and the water sorption (p < 0.001); specimens that had been exposed to radiant exposures of
10 J/cm2 showed higher values.

The preliminary results showed that most of the materials are governed by the exposure reciprocity
law. Considering that all composites that were analyzed in this study have identical clinical indications,
a one-way ANOVA analysis of the pooled data for each composite was conducted (Table 2). According
to this second analysis, the FiltekTM Z350XT composite showed the highest flexural strength, elastic
modulus, and water sorption values (p < 0.001), while the KaloreTM composite showed the lowest
solubility, degree of conversion, and shrinkage (p < 0.001).

Table 2. The pooled properties of the evaluated resin-based composites.

Material Flexural Strength
(MPa)

Elastic
Modulus (GPa)

Water Sorption
(µ/mm3)

Solubility
(µ/mm3)

Degree of
Conversion (%)

Shrinkage
(%)

FiltekTM Z350XT 80.52 (15.88)a 9.13 (0.66)a 15.93 (1.70)a 1.00 (0.60)ab 50.96 (2.77)ab 1.66 (0.15)b
KaloreTM 59.63 (10.13)b 7.85 (0.89)b 12.30 (1.01)bc 0.74 (0.36)b 33.72 (4.18)c 1.07 (0.08)d

Tetric® N-Ceram
Bulk Fill

60.37 (11.05)b 7.05 (0.60)b 11.85 (1.08)c 0.96 (0.26)ab 49.50 (1.53)b 1.36 (0.08)c

Admira® 54.17 (14.20)b 7.76 (1.11)b 13.49 (1.22)b 1.39 (0.47)a 53.36 (1.79)a 1.96 (0.15)a

The common corresponding letters (a–c) in a given column indicate that there are no significant differences.
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4. Discussion

According to the results, the exposure reciprocity law was upheld in the composites for almost
all of the evaluated properties. In almost all cases, no relationship was observed between the radiant
exposure and the analyzed chemical and physico-mechanical properties. Therefore, the null hypothesis
of this study can be partially accepted.

Our results are consistent with previous works in which the exposure reciprocity law was found
to be upheld for some properties [8,14,19]. In the photopolymerization process, the irradiance and
light-curing time are two important factors that have an impact on the number of photons that are
delivered to a specimen [20]. It has been accepted that the reciprocity law holds for most photochemical
processes at reasonable light intensities [21], while at higher irradiance levels this reciprocity does not
exist [19]. In this study, two levels of irradiance (400 and 1000 mW/cm2) have been used, and these
levels of light intensity were not found to have any significant effect on the evaluated properties.
It seems that the combinations of different irradiance and time protocols that have been used were not
enough to induce a decrease or an increase in the number of radical growth centers during the early
stages of polymerization, which could lead to differences in the material properties [4]. Consequently,
the similarity in flexural strength, water sorption, solubility, and polymerization shrinkage among
different curing protocols can be explained by the fact that the same degree of conversion was achieved
in all cases. The degree of conversion is considered to be a very important material feature, and it
is strongly correlated to some other material characteristics, including flexural strength and elastic
modulus [22], polymerization shrinkage [23], and water sorption and solubility [24].

Among all the evaluated properties, the elastic modulus increased when higher levels of radiant
exposure were delivered to the composite materials. During the photopolymerization of the dental
composites, the degree of conversion and the crosslinking density increase rapidly, resulting in a rapid
increase of the system’s viscosity that reaches a change of state called gelation, in which the polymer
matrix becomes rigid [25]. In this phase, the development of the elastic modulus is the basis for the
formation of shrinkage strains and stresses because the polymer shrinkage is directly transferred to
the tooth structure [26]. It has been accepted that the method by which light energy is delivered to
the material is capable of delaying the gelation of a composite, and therefore several methods of light
modulation have been proposed with the objective of minimizing the stress that is generated by the
volumetric shrinkage. In this study, the group with a radiant exposure of 5 J/cm2 presented lower
values of the elastic modulus, which indicates that lower rates of conversion would allow for a better
flow of the materials before they transition into the so-called gel state, which can lead to decreased
contraction stresses while maintaining the other mechanical properties. Also, it is worth mentioning
that the materials’ acquisition of the gel phase at early stages could be detrimental to the materials’
properties, since, once the materials are in the gel phase, the diffusion of free radicals through the
material could be affected.

Interestingly, the Tetric® N-Ceram Bulk Fill in Group B had the lowest values of water sorption.
Although the values could not be correlated with the degree of conversion, it should be emphasized that
the lower values achieved demonstrated a more cross-linked polymeric network, and more resistance
to hydrolytic degradation is expected [24]. Since bulk-fill-type materials possess more translucency
than conventional resin-based composites, the diffusion of light through the material is higher, and,
consequently, more efficiency from the polymerization material is expected [27]. This feature seems to
play an important role in the stability of these materials and should be further explored.

As the different curing protocols were not found to have any significant statistical differences
in most of the evaluated properties, a second analysis was performed in order to establish which
composite had a better performance. The results of this analysis are depicted in Table 2. With regard to
flexural properties, the FiltekTM Z350 XT composite had the highest flexural property (flexural strength
and elastic modulus) values when compared with the other composites. These results are in agreement
with previous studies, in which conventional composites had a higher flexural strength and a higher
flexural modulus than bulk-fill composites [28], low-shrink composites [29], and ormocer-based
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composites [30]. These properties are very important features to study in dental composites in order to
ensure that these materials, especially when used as posterior restorations, are not subject to the action
of chewing forces that might induce permanent deformation [31]. The elastic modulus is directly related
to the volume fraction of filler [32], so composites with higher filler volumes, such as the FiltekTM

Z350 XT composite, are expected to be stronger than those with lower filler volumes. Also, the use of
an organic matrix that is composed of monomers with stiffer backbones could probably help achieve
greater flexural properties [33]. KaloreTM, Admira®, and Tetric® N-Ceram Bulk Fill presented lower
flexural strength values when compared with FiltekTM Z350, which suggests that these restorative
materials require further study in order to fully understand the effect of their composition on their
mechanical performance.

The phenomena of water sorption and solubility are important properties to study, since they may
serve as precursors to a variety of chemical and physical processes, such as swelling, plasticization,
softening, and hydrolysis, which can compromise the long-term mechanical properties of the
materials [24]. The hygroscopic and hydrolytic characteristics of dental composites mainly depend
on many factors that are related to the polymeric network structure, including the hydrophilic
characteristics of the monomers it is built from [34]. The monomer TEGDMA has oxygen atoms
in its ether linkages that are strongly hydrophilic and this could be the reason that Tetric® N-Ceram
Bulk Fill achieved the lowest water sorption. This composite does not include the TEGDMA monomer
in its composition, and therefore water is not attracted to the polymer matrix composite. On the other
hand, the FiltekTM Z350XT composite achieved the highest values of water sorption. This behavior
could be explained by the presence of the poly(ethylene glycol) dimethacrylate monomer within its
polymeric matrix (Table 1), which possesses hydrophilic functional groups. In spite of the diversity
in the hygroscopic behavior of the materials, it is very important to mention that, regarding water
sorption and solubility, all evaluated materials exhibited values below 40 µg/mm3 and 7.5 µg/mm3,
respectively, thus satisfying the conditions that are established in Specification ISO 4049.

The polymerization shrinkage in composites is directly related to the degree of conversion [35].
The values obtained in this study are in accordance with the literature for studies in which
the polymerization shrinkage is evaluated through methods where the linear polymerization is
calculated [28,36,37]. The KaloreTM material exhibited the lowest polymerization shrinkage and
degree of conversion values. The organic matrix of this composite contains a mixture of urethane
dimethacrylate, dimethacrylate co-monomers, and the DX-511 monomer. The DX-511 monomer has a
molecular weight of 895 g/mol, which is twice the molecular weight of Bis-GMA or UDMA. It has been
shown that the magnitude of volumetric shrinkage is mainly determined by the number of covalent
bonds that are formed as well as by the size of these molecules [17]. The larger the molecules for a given
material volume, the smaller the number of double bonds, and, thus, the smaller the polymerization
shrinkage [38]. A reduction in the polymerization shrinkage values in KaloreTM is a desirable property,
and would ensure that there is less polymerization stress, and a lower number of marginal defects and
fractures, within the composite [39]. Nevertheless, lower values of double-bond conversion involve a
residual monomer being trapped in the composite, which may reduce its biocompatibility and clinical
serviceability [40].

5. Conclusions

Within the confines of this study, it can be concluded that, in most cases, the exposure
reciprocity law was upheld at values of 10 J/cm2 of radiant exposure. The different chemical and
physico-mechanical properties that have been analyzed were not affected by the different radiant
exposure values used in this study. It seems that other RBC characteristics, such as the organic matrix’s
composition, the type of photoinitiator, and the size and filler volume, have more of an influence on
the materials’ properties.



Dent. J. 2018, 6, 55 9 of 11

Author Contributions: Conceptualization, C.E.C.-S. and E.Z.-C.; Formal analysis, A.R.-G. and A.L.A.-M.; Funding
acquisition, E.Z.-C.; Methodology, B.P.-G., C.A.-G., and A.L.A.-M.; Project administration, E.Z.-C.; Supervision,
E.Z.-C.; Writing (original draft), C.E.C.-S., B.P.-G., A.R.-G., C.A.-G., and G.G.; Writing (review & editing), C.E.C.-S.,
C.A.-G., and G.G.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Society of Cariology and Endodontology, C.S.A. Guidelines for Direct Adhesive Composite Restoration.
Chin. J. Dent. Res. 2015, 18, 217–220. [CrossRef] [PubMed]

2. Devoto, W.; Saracinelli, M.; Manauta, J. Composite in everyday practice: how to choose the right material
and simplify application techniques in the anterior teeth. Eur. J. Esthet. Dent. 2010, 5, 102–124. [PubMed]

3. Rueggeberg, F.A. State-of-the-art: Dental photocuring—A review. Dent. Mater. 2011, 27, 39–52. [CrossRef]
[PubMed]

4. Leprince, J.G.; Palin, W.M.; Hadis, M.A.; Devaux, J.; Leloup, G. Progress in dimethacrylate-based dental
composite technology and curing efficiency. Dent. Mater. 2013, 29, 139–156. [CrossRef] [PubMed]

5. Rueggeberg, F.A.; Caughman, W.F.; Curtis, J.W. Effect of light intensity and exposure duration on cure of
resin composite. Oper. Dent. 1994, 19, 26–32. [PubMed]

6. Zorzin, J.; Maier, E.; Harre, S.; Fey, T.; Belli, R.; Lohbauer, U.; Petschelt, A.; Taschner, M. Bulk-fill resin
composites: Polymerization properties and extended light curing. Dent. Mater. 2015, 31, 293–301. [CrossRef]
[PubMed]

7. Peutzfeldt, A.; Asmussen, E. Resin composite properties and energy density of light cure. J. Dent. Res. 2005,
84, 659–662. [CrossRef] [PubMed]

8. Emami, N.; Söderholm, K.J.M. How light irradiance and curing time affect monomer conversion in
light-cured resin composites. Eur. J. Oral Sci. 2003, 111, 536–542. [CrossRef] [PubMed]

9. Feng, L.; Suh, B.I. Exposure reciprocity law in photopolymerization of multi-functional acrylates and
methacrylates. Macromol. Chem. Phys. 2007, 208, 295–306. [CrossRef]

10. Emami, N.; Söderholm, K.-J.M.; Berglund, L.A. Effect of light power density variations on bulk curing
properties of dental composites. J. Dent. 2003, 31, 189–196. [CrossRef]

11. Vandewalle, K.S.; Ferracane, J.L.; Hilton, T.J.; Erickson, R.L.; Sakaguchi, R.L. Effect of energy density on
properties and marginal integrity of posterior resin composite restorations. Dent. Mater. 2004, 20, 96–106.
[CrossRef]

12. Bortolotto, T.; Dagon, C.; Krejci, I. Light polymerization during cavity filling: Effect of “exposure reciprocity
law” and the resulted shrinkage forces on restoration margins. Acta Odontol. Scand. 2013, 71, 1296–1302.
[CrossRef] [PubMed]

13. Asmussen, E.; Peutzfeldt, A. Polymerization contraction of resin composite vs. energy and power density of
light-cure. Eur. J. Oral Sci. 2005, 113, 417–421. [CrossRef] [PubMed]

14. Selig, D.; Haenel, T.; Hausnerová, B.; Moeginger, B.; Labrie, D.; Sullivan, B.; Price, R.B.T. Examining exposure
reciprocity in a resin based composite using high irradiance levels and real-time degree of conversion values.
Dent. Mater. 2015, 31, 583–593. [CrossRef] [PubMed]

15. Ilie, N.; Hilton, T.J.; Heintze, S.D.; Hickel, R.; Watts, D.C.; Silikas, N.; Stansbury, J.W.; Cadenaro, M.;
Ferracane, J.L. Academy of Dental Materials guidance—Resin composites: Part I—Mechanical properties.
Dent. Mater. 2017, 33, 880–894. [CrossRef] [PubMed]

16. International Organization for Standarization. Available online: https://www.iso.org/standard/42898.html
(accessed on 6 October 2018).

17. Alvarez-Gayosso, C.; Barceló-Santana, F.; Guerrero-Ibarra, J.; Sáez-Espínola, G.; Canseco-Martínez, M.A.
Calculation of contraction rates due to shrinkage in light-cured composites. Dent. Mater. 2004, 20, 228–235.
[CrossRef]

18. Ferracane, J.L.; Hilton, T.J.; Stansbury, J.W.; Watts, D.C.; Silikas, N.; Ilie, N.; Heintze, S.; Cadenaro, M.;
Hickel, R. Academy of Dental Materials guidance—Resin composites: Part II—Technique sensitivity
(handling, polymerization, dimensional changes). Dent. Mater. 2017, 33, 1171–1191. [CrossRef] [PubMed]

http://dx.doi.org/10.3290/j.cjdr.a35145
http://www.ncbi.nlm.nih.gov/pubmed/26629554
http://www.ncbi.nlm.nih.gov/pubmed/20305875
http://dx.doi.org/10.1016/j.dental.2010.10.021
http://www.ncbi.nlm.nih.gov/pubmed/21122903
http://dx.doi.org/10.1016/j.dental.2012.11.005
http://www.ncbi.nlm.nih.gov/pubmed/23199807
http://www.ncbi.nlm.nih.gov/pubmed/8183730
http://dx.doi.org/10.1016/j.dental.2014.12.010
http://www.ncbi.nlm.nih.gov/pubmed/25582061
http://dx.doi.org/10.1177/154405910508400715
http://www.ncbi.nlm.nih.gov/pubmed/15972597
http://dx.doi.org/10.1111/j.0909-8836.2003.00082.x
http://www.ncbi.nlm.nih.gov/pubmed/14632692
http://dx.doi.org/10.1002/macp.200600480
http://dx.doi.org/10.1016/S0300-5712(03)00015-0
http://dx.doi.org/10.1016/S0109-5641(03)00124-6
http://dx.doi.org/10.3109/00016357.2012.762988
http://www.ncbi.nlm.nih.gov/pubmed/23796309
http://dx.doi.org/10.1111/j.1600-0722.2005.00239.x
http://www.ncbi.nlm.nih.gov/pubmed/16202030
http://dx.doi.org/10.1016/j.dental.2015.02.010
http://www.ncbi.nlm.nih.gov/pubmed/25804190
http://dx.doi.org/10.1016/j.dental.2017.04.013
http://www.ncbi.nlm.nih.gov/pubmed/28577893
https://www.iso.org/standard/42898.html
http://dx.doi.org/10.1016/S0109-5641(03)00097-6
http://dx.doi.org/10.1016/j.dental.2017.08.188
http://www.ncbi.nlm.nih.gov/pubmed/28917571


Dent. J. 2018, 6, 55 10 of 11

19. Hadis, M.; Leprince, J.G.; Shortall, A.C.; Devaux, J.; Leloup, G.; Palin, W.M. High irradiance curing and
anomalies of exposure reciprocity law in resin-based materials. J. Dent. 2011, 39, 549–557. [CrossRef]
[PubMed]

20. Baek, C.-J.; Hyun, S.-H.; Lee, S.-K.; Seol, H.-J.; Kim, H.-I.; Kwon, Y.H. The effects of light intensity and
light-curing time on the degree of polymerization of dental composite resins. Dent. Mater. J. 2008, 27,
523–533. [CrossRef] [PubMed]

21. Wydra, J.W.; Cramer, N.B.; Stansbury, J.W.; Bowman, C.N. The reciprocity law concerning light dose
relationships applied to BisGMA/TEGDMA photopolymers: Theoretical analysis and experimental
characterization. Dent. Mater. 2014, 30, 605–612. [CrossRef] [PubMed]

22. Palin, W.M.; Fleming, G.J.P.; Burke, F.J.T.; Marquis, P.M.; Randall, R.C. Monomer conversion versus flexure
strength of a novel dental composite. J. Dent. 2003, 31, 341–351. [CrossRef]

23. Münchow, E.A.; Meereis, C.T.W.; de Oliveira da Rosa, W.L.; da Silva, A.F.; Piva, E. Polymerization shrinkage
stress of resin-based dental materials: A systematic review and meta-analyses of technique protocol and
photo-activation strategies. J. Mech. Behav. Biomed. Mater. 2018, 82, 77–86. [CrossRef] [PubMed]

24. Ferracane, J.L. Hygroscopic and hydrolytic effects in dental polymer networks. Dent. Mater. 2006, 22,
211–222. [CrossRef] [PubMed]

25. Cramer, N.B.; Stansbury, J.W.; Bowman, C.N. Recent Advances and Developments in Composite Dental
Restorative Materials. J. Dent. Res. 2011, 90, 402–416. [CrossRef] [PubMed]

26. Sakaguchi, R.L.; Ferracane, J.L. Effect of light power density on development of elastic modulus of a model
light-activated composite during polymerization. J. Esthet. Restor. Dent. 2001, 13, 121–130. [CrossRef]
[PubMed]

27. Reis, A.F.; Vestphal, M.; do Amaral, R.C.; Rodrigues, J.A.; Roulet, J.-F.; Roscoe, M.G. Efficiency of
polymerization of bulk-fill composite resins: A systematic review. Braz. Oral Res. 2017, 31, e59. [CrossRef]
[PubMed]

28. Jung, J.H.; Park, S.H. Comparison of Polymerization Shrinkage, Physical Properties, and Marginal
Adaptation of Flowable and Restorative Bulk Fill Resin-Based Composites. Oper. Dent. 2017, 42, 375–386.
[CrossRef] [PubMed]

29. Goracci, C.; Cadenaro, M.; Fontanive, L.; Giangrosso, G.; Juloski, J.; Vichi, A.; Ferrari, M. Polymerization
efficiency and flexural strength of low-stress restorative composites. Dent. Mater. 2014, 30, 688–694.
[CrossRef] [PubMed]

30. Thomaidis, S.; Kakaboura, A.; Mueller, W.D.; Zinelis, S. Mechanical properties of contemporary composite
resins and their interrelations. Dent. Mater. 2013, 29, e132–e141. [CrossRef] [PubMed]

31. Wang, L.; D’Alpino, P.H.P.; Lopes, L.G.; Pereira, J.C. Mechanical properties of dental restorative materials:
relative contribution of laboratory tests. J. Appl. Oral Sci. 2003, 11, 162–167. [CrossRef] [PubMed]

32. Randolph, L.D.; Palin, W.M.; Leloup, G.; Leprince, J.G. Filler characteristics of modern dental resin
composites and their influence on physico-mechanical properties. Dent. Mater. 2016, 32, 1586–1599.
[CrossRef] [PubMed]

33. Azad, E.; Atai, M.; Zandi, M.; Shokrollahi, P.; Solhi, L. Structure–properties relationships in dental adhesives:
Effect of initiator, matrix monomer structure, and nano-filler incorporation. Dent. Mater. 2018, 34, 1263–1270.
[CrossRef] [PubMed]

34. Malacarne, J.; Carvalho, R.M.; de Goes, M.F.; Svizero, N.; Pashley, D.H.; Tay, F.R.; Yiu, C.K.; de Oliveira
Carrilho, M.R. Water sorption/solubility of dental adhesive resins. Dent. Mater. 2006, 22, 973–980. [CrossRef]
[PubMed]

35. Gonçalves, F.; Boaro, L.C.C.; Miyazaki, C.L.; Kawano, Y.; Braga, R.R. Influence of polymeric matrix on the
physical and chemical properties of experimental composites. Braz. Oral Res. 2015, 29, 1–7. [CrossRef]
[PubMed]

36. Han, S.H.; Sadr, A.; Tagami, J.; Park, S.H. Internal adaptation of resin composites at two configurations:
Influence of polymerization shrinkage and stress. Dent. Mater. 2016, 32, 1085–1094. [CrossRef] [PubMed]

37. Jang, J.-H.; Park, S.-H.; Hwang, I.-N. Polymerization Shrinkage and Depth of Cure of Bulk-Fill Resin
Composites and Highly Filled Flowable Resin. Oper. Dent. 2015, 40, 172–180. [CrossRef] [PubMed]

38. Soares, C.J.; Faria-e-Silva, A.L.; de Paula Rodrigues, M.; Vilela, A.B.F.; Pfeifer, C.S.; Tantbirojn, D.; Versluis, A.
Polymerization shrinkage stress of composite resins and resin cements—What do we need to know?
Braz. Oral Res. 2017, 31. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jdent.2011.05.007
http://www.ncbi.nlm.nih.gov/pubmed/21679742
http://dx.doi.org/10.4012/dmj.27.523
http://www.ncbi.nlm.nih.gov/pubmed/18833765
http://dx.doi.org/10.1016/j.dental.2014.02.021
http://www.ncbi.nlm.nih.gov/pubmed/24674341
http://dx.doi.org/10.1016/S0300-5712(03)00050-2
http://dx.doi.org/10.1016/j.jmbbm.2018.03.004
http://www.ncbi.nlm.nih.gov/pubmed/29573737
http://dx.doi.org/10.1016/j.dental.2005.05.005
http://www.ncbi.nlm.nih.gov/pubmed/16087225
http://dx.doi.org/10.1177/0022034510381263
http://www.ncbi.nlm.nih.gov/pubmed/20924063
http://dx.doi.org/10.1111/j.1708-8240.2001.tb00434.x
http://www.ncbi.nlm.nih.gov/pubmed/11499447
http://dx.doi.org/10.1590/1807-3107bor-2017.vol31.0059
http://www.ncbi.nlm.nih.gov/pubmed/28902239
http://dx.doi.org/10.2341/16-254-L
http://www.ncbi.nlm.nih.gov/pubmed/28402737
http://dx.doi.org/10.1016/j.dental.2014.03.006
http://www.ncbi.nlm.nih.gov/pubmed/24703547
http://dx.doi.org/10.1016/j.dental.2013.04.025
http://www.ncbi.nlm.nih.gov/pubmed/23790281
http://dx.doi.org/10.1590/S1678-77572003000300002
http://www.ncbi.nlm.nih.gov/pubmed/21394387
http://dx.doi.org/10.1016/j.dental.2016.09.034
http://www.ncbi.nlm.nih.gov/pubmed/27720423
http://dx.doi.org/10.1016/j.dental.2018.05.013
http://www.ncbi.nlm.nih.gov/pubmed/29801684
http://dx.doi.org/10.1016/j.dental.2005.11.020
http://www.ncbi.nlm.nih.gov/pubmed/16405987
http://dx.doi.org/10.1590/1807-3107BOR-2015.vol29.0128
http://www.ncbi.nlm.nih.gov/pubmed/26892355
http://dx.doi.org/10.1016/j.dental.2016.06.005
http://www.ncbi.nlm.nih.gov/pubmed/27372237
http://dx.doi.org/10.2341/13-307-L
http://www.ncbi.nlm.nih.gov/pubmed/25136904
http://dx.doi.org/10.1590/1807-3107bor-2017.vol31.0062
http://www.ncbi.nlm.nih.gov/pubmed/28902242


Dent. J. 2018, 6, 55 11 of 11

39. Narene, A.V.K.; Veniashok, B.; Subbiya, A.; Vivekanandhan, P.; Sukumaran, V.G. Polymerisation shrinkage
in resin composites—A review. Middle East J. Sci. Res. 2014, 21, 107–112. [CrossRef]

40. Ausiello, P.; Cassese, A.; Miele, C.; Beguinot, F.; Garcia-Godoy, F.; Di Jeso, B.; Ulianich, L. Cytotoxicity of
dental resin composites: An in vitro evaluation. J. Appl. Toxicol. 2013, 33, 451–457. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5829/idosi.mejsr.2014.21.01.82370
http://dx.doi.org/10.1002/jat.1765
http://www.ncbi.nlm.nih.gov/pubmed/22120598
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Curing Protocols and Radiant Exposures 
	Degree of Conversion 
	Flexural Properties 
	Water Sorption and Solubility 
	Polymerization Shrinkage 
	Statistical Analysis 

	Results 
	Discussion 
	Conclusions 
	References

