
publications

Conference Report

White Paper on Research Data Service Discoverability

Costantino Thanos 1,*, Friederike Klan 2, Kyriakos Kritikos 3 and Leonardo Candela 1

1 Institute of Information Science and Technologies, National Research Council of Italy, 56124 Pisa, Italy;
leonardo.candela@isti.cnr.it

2 Institute of Computer Science, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2-4, 07743 Jena,
Germany; Friederike.Klan@uni-jena.de

3 Institute of Computer Science, Foundation for Research and Technology—Hellas (FORTH), N. Plastira 100,
Vasilika Voytwn, GR-700 13 Heraklion, Crete, Greece; kritikos@ics.forth.gr

* Correspondence: costantino.thanos@isti.cnr.it; Tel.: +39-050-3152910

Received: 12 December 2016; Accepted: 19 December 2016; Published: 23 December 2016

Abstract: This White Paper reports the outcome of a Workshop on “Research Data Service
Discoverability” held in the island of Santorini (GR) on 21–22 April 2016 and organized in the context
of the EU funded Project “RDA-E3”. The Workshop addressed the main technical problems that
hamper an efficient and effective discovery of Research Data Services (RDSs) based on appropriate
semantic descriptions of their functional and non-functional aspects. In the context of this White
Paper, by RDSs are meant those data services that manipulate/transform research datasets for the
purpose of gaining insight into complicated issues. In this White Paper, the main concepts involved
in the discovery process of RDSs are defined; the RDS discovery process is illustrated; the main
technologies that enable the discovery of RDSs are described; and a number of recommendations are
formulated for indicating future research directions and making an automatic RDS discovery feasible.

Keywords: Research Data; Research Data Service (RDS); RDS Metadata; RDS Publication; RDS
Catalogue; Service-Level Agreement (SLA)

1. Introduction

New high-throughput scientific instruments, telescopes, satellites, accelerators, supercomputers,
sensor networks, and running simulations are generating massive amounts of research data. We are
entering a new era characterized by the production of huge volumes of data. Big Data—datasets
whose size is beyond the ability of typical database software tools to capture, store, manage, and
analyze—are revolutionizing the way research is carried out, which results in the emergence of a
new fourth paradigm of science based on data-intensive computing [1]. The new availability of huge
amounts of data, along with advanced tools and services, offers a whole new way of understanding the
world. Indeed, the inferential techniques (Big Data Analytics) being used on Big Data can offer great
insight into many complicated issues. The quality of scientific research can potentially be improved
by using advanced correlation techniques and analyzing data in better ways; data analysts can sift
through massive swaths of data to predict conditions, behaviors, and events in ways unimagined only
years earlier.

Instrumental in making this happen is the realization of the principles of Open Science, i.e., the
sharing of results, ideas, methods, tools, services, and data between researchers much earlier and much
more extensively than previously.

One of the challenges faced by researchers, in a globally networked scientific world, is to be able
to discover research data services that fulfill their research needs. By Research Data Service (RDS)
discoverability we mean the capability of automatically locating, in open and distributed environments,
research data services that fulfill a researcher’s goals.

Publications 2017, 5, 1; doi:10.3390/publications5010001 www.mdpi.com/journal/publications

http://www.mdpi.com/journal/publications
http://www.mdpi.com
http://www.mdpi.com/journal/publications


Publications 2017, 5, 1 2 of 27

Making a research data service discoverable enables the service reuse. Service reuse has some
important advantages: (i) it avoids replication of software that already exists; (ii) it makes savings as
the software development is expensive; and (iii) it enables the development of composite research
data services by combining existing research data services for the purpose of carrying out complex
research tasks.

In addition, the data service discoverability facilitates the reproducibility of a research result.
In fact, in order to reproduce a scientific result, it is necessary to know the exact version of the software
used to generate that result.

The effectiveness and efficiency of the discovery of appropriate services and the possibility of
composing them in order to build complex scientific workflows is a requirement of modern science.

The EC acknowledged the importance of this requirement and has inserted explicitly a request
for making all the data services developed by EC-funded projects discoverable in the “Horizon
2020—Work Programme 2016-2017 (European Research Infrastructures (including e-Infrastructures))”:

“all services developed by projects should be made discoverable on-line, e.g., by including them in
searchable catalogues or registries of (digital) research services with the metadata for describing and
accessing the service”.

Enabling automated location of RDSs that adequately fulfil a given research need presents several
technological challenges.

The objective of the Santorini Workshop was to address some of these challenges that hamper
effective and efficient research data service discoverability.

This White Paper gathers the ideas presented and discussed by the participants in the Workshop
and organizes them as an organic whole.

The remainder of this paper is organized as follows. Section 2 introduces and defines the main
concepts involved in the discovery process of RDSs. Section 3 describes the scientific context within
which an RDS operates. Section 4 describes the process of discovering RDSs. Section 5 describes
the main technologies that enable the discovery of RDSs. Finally, Section 6 concludes the paper by
presenting the main recommendations that emerged during the live discussions at the Workshop.

2. Concepts and Definitions

In this section the main concepts involved in the lifecycle of an RDS are introduced and defined.

2.1. Research Data

By research data we mean scientific or technical measurements, values calculated, and
observations or facts that can be represented by numbers, tables, graphs, models, text, or symbols, and
that are used as a basis for reasoning or further calculation [2]. Such data may be generated by various
means, including observation, computation, or experimentation. Scientists regard data as accurate
representations of the physical world and as evidence to support claims [3]. Data can be referred to
as raw, verified, or derivative [4] (Figure 1). Raw data consist of original observations, such as those
collected by satellite and beamed back to earth or generated by an instrument or sensor or collected
by conducting an experiment. For example, see National Aeronautics and Space Administration
(NASA) level 0 data [5]. Verified data are generated by curatorial activities. Their quality and accuracy
have, thus, been assured. Derivative data are generated by processing activities. The raw data
are frequently subject to subsequent stages of refinement and analysis, depending on the research
objectives. For example, see NASA level 1 data [5].



Publications 2017, 5, 1 3 of 27
Publications 2017, 5, 1  3 of 27 

 

 

Figure 1. Research Data Lifecycle. 

2.2. Research Dataset 

There is no single well‐defined concept of research dataset. Informally speaking, we can think 

of a research dataset as a meaningful collection of research data that is published and maintained by 

a  single  provider,  deals  with  a  certain  topic,  and  originates  from  a  certain 

experiment/observation/process  that  was  conducted  for  research  purposes.  According  to  the 

International Organization for Standards (ISO), a dataset  is an “identifiable collection of data that 

may be accessed individually or in combination or managed as a whole entity”. In the context of the 

Linked Data world, by dataset is meant a set of Resource Description Framework (RDF) triples that 

are published, maintained, or aggregated by a single provider. A dataset, once accepted for deposit, 

is undergoing a registration process during which a “Digital Object Identifier” (DOI) is assigned to 

the dataset by a Registration Agency [6]. A research dataset,  in order to be citable and (re)usable, 

must be accompanied by appropriate “metadata” information.   

2.3. Description of a Research Data Service (RDS)  

The description of a RDS should be expressive and detailed enough to enable RDS discovery 

with high precision and recall. At the same time, it should make the task of annotating an RDS as 

well as formulating a request feasible. At present, RDS descriptions do not or insufficiently capture 

the defining characteristics of an RDS: what does it do, how is it implemented, and how does it relate 

to other data and services?   

Service  descriptions  are  declarative  descriptions  of what  is  provided  (output)  and what  is 

required (input) by the RDS they describe.   

In cognitive science, it has become commonplace to separate three distinct levels of analysis of 

information processing systems [7]. We have adopted this approach  in the description of an RDS. 

This three‐level description of an RDS is appropriate as we need to know what an RDS is doing at a 

higher level in order to find out how at the lower level it accomplishes that task, that is, we need to 

know the function of the RDS being analyzed  in order to know which  lower‐  level properties are 

important to understanding the overall working of the RDS.   

Understanding  the  behavior  of  an RDS  requires  knowing which  aspects  of  the  lower‐level 

properties are significant in making a contribution to the overall behavior of the RDS; this depends 

on having some sense of the higher‐level functioning of the RDS.   

Therefore, we have  identified  the  following  three distinct  levels at which an RDS  should be 

described: computational, algorithmic, implementational.   

At computational level:   

 An RDS is a computation characterized as a mapping from one kind of information structure to 

another (input/output datasets). � 

 What the goal (functionality) is of the computation (RDS) is described. � 

 This goal is described as a relationship or dependency between input and output datasets. � 

 

In essence, at this level, the logic of the abstract computational model of the RDS is described. 

This is the level of what the RDS does. This level is the most abstract.   

Figure 1. Research Data Lifecycle.

2.2. Research Dataset

There is no single well-defined concept of research dataset. Informally speaking, we can think of a
research dataset as a meaningful collection of research data that is published and maintained by a single
provider, deals with a certain topic, and originates from a certain experiment/observation/process that
was conducted for research purposes. According to the International Organization for Standards (ISO),
a dataset is an “identifiable collection of data that may be accessed individually or in combination
or managed as a whole entity”. In the context of the Linked Data world, by dataset is meant a set
of Resource Description Framework (RDF) triples that are published, maintained, or aggregated by
a single provider. A dataset, once accepted for deposit, is undergoing a registration process during
which a “Digital Object Identifier” (DOI) is assigned to the dataset by a Registration Agency [6].
A research dataset, in order to be citable and (re)usable, must be accompanied by appropriate
“metadata” information.

2.3. Description of a Research Data Service (RDS)

The description of a RDS should be expressive and detailed enough to enable RDS discovery with
high precision and recall. At the same time, it should make the task of annotating an RDS as well
as formulating a request feasible. At present, RDS descriptions do not or insufficiently capture the
defining characteristics of an RDS: what does it do, how is it implemented, and how does it relate to
other data and services?

Service descriptions are declarative descriptions of what is provided (output) and what is required
(input) by the RDS they describe.

In cognitive science, it has become commonplace to separate three distinct levels of analysis of
information processing systems [7]. We have adopted this approach in the description of an RDS.
This three-level description of an RDS is appropriate as we need to know what an RDS is doing at
a higher level in order to find out how at the lower level it accomplishes that task, that is, we need
to know the function of the RDS being analyzed in order to know which lower- level properties are
important to understanding the overall working of the RDS.

Understanding the behavior of an RDS requires knowing which aspects of the lower-level
properties are significant in making a contribution to the overall behavior of the RDS; this depends on
having some sense of the higher-level functioning of the RDS.

Therefore, we have identified the following three distinct levels at which an RDS should be
described: computational, algorithmic, implementational.

At computational level:

• An RDS is a computation characterized as a mapping from one kind of information structure to
another (input/output datasets).

• What the goal (functionality) is of the computation (RDS) is described.
• This goal is described as a relationship or dependency between input and output datasets.

In essence, at this level, the logic of the abstract computational model of the RDS is described.
This is the level of what the RDS does. This level is the most abstract.



Publications 2017, 5, 1 4 of 27

At algorithmic level:

• The representation of the input parameter (input dataset) is specified, i.e., the extensional and
intensional information of the input dataset is specified.

• The representation of the output parameter (output dataset) is specified, i.e., the extensional and
intensional information of the output dataset is specified.

• The pre-conditions, i.e., assertions about certain properties taken by the values of the input
parameter before the RDS execution are specified.

• The post-conditions, i.e., assertions about certain properties taken by the values of the output
parameter are specified.

• The procedure (algorithm) by which the computational model of the RDS may actually be
accomplished is specified.

In essence, at this level, it is described how the computational model, described at the upper
level (computational level), is implemented, i.e., this is the level of how the RDS is implemented.
In particular, the representation of the input and output datasets and the description of the operations
defined over them are specified.

The specification of the extensional and intensional information of the input/output datasets
guarantees that: (i) the algorithm can execute on the provided input dataset; and (ii) the requester can
accept the delivered output dataset with respect to their syntactic types.

At implementational level:

• A RDS is a software, with a discoverable and invocable interface. A service interface enabling
users to invoke the RDS using standard protocols is specified.

• An Institutional Commitment on the RDS, in the form of a Service-Level Agreement (SLA),
is specified; in the Service-Level Agreement (see below) the non-functional aspects of the RDS,
mainly related to the Quality of Service (QoS )provided by the RDS, are specified.

• The software deployment, including scalability and fault tolerance issues (in the case that the RDS
provision model is “as-a-software” – see below), is described.

At this level, an RDS is a software developed by applying software engineering practices on the
algorithm described at the upper level. It delivers value to researchers by facilitating outcomes they
want to achieve without the ownership of specific costs and risks.

The relationship between the three levels has the property of multiple realizability (one-to-many
relationship), i.e., for any computational description of a particular RDS there may be several
algorithms for executing that computation, and any algorithm may be implemented in several ways.

2.4. Research Data Service Profile/Metadata

The main purpose of RDS profile/metadata is to facilitate the service discovery and use.
Metadata assists in service discovery by allowing services to be found by means of relevant criteria.
In addition, it allows to bring similar services together, distinguish dissimilar services, and give
location information. The RDS profile/metadata definitions should be structured at multiple levels
in order to reflect the layered structure of the RDS description. In particular, they have to describe:
(i) the semantics of the input/output datasets; (ii) the semantics of the operations over them; (iii) the
non-functional aspects of RDS; and (iv) information about the provider of the service.

2.5. Type of Research Data Service

By type of a RDS is intended a named group of RDSs that have a similar computational model
(functionality) but can have different implementations.



Publications 2017, 5, 1 5 of 27

2.6. Research Data Service Classification

This is the act of assigning a category, or more than one category, to an RDS, since there might be
several disjoint classifications; moreover, an RDS might be used for several purposes. Classification
is used to ensure a more effective and efficient retrieval of the sought data service. Data Service
classification is very much domain-specific.

For example, INSPIRE defined a “Classification of Spatial Data Services” as part of the European
Commission Regulation (EC) No 1205/2008.

Concluding this paragraph on the Description of RDS, we like to highlight some additional
characteristics of RDSs:

• They are, in general, stateless.
• Their course of action affects only the input dataset.
• They are a specialization of Web services. Indeed, although all Web services use data, they are

essentially a programmatic layer on top of distributed systems, while RDSs serve as “fronts” for
data and are based on a richer model of that data [8].

• In contrast to traditional Web services, RDSs need to be model-driven.
• They are, according to the definition given in this paragraph, essentially “research dataset

transformation services”.
• They may or may not be implemented as a Web service.
• They are applicable in scenarios implementing some part of a research process.
• They are a subclass of service in a general sense.

We also give an informal definition of RDS (actually, of Research Software) extracted from [9]:

“software that is developed within academia and used for the purposes of research: to generate,
process and analyze results. This includes a broad range of software, from highly developed packages
with significant user bases to short (ten of lines of code) programs written by researchers for their
own use”.

2.7. Research Data Service Provision Models

A Provision model describes the modality with which a research data service is provided.
The following two provision models are envisaged:

• “as-a-Service”: such modality implies that the RDS is hosted, operated, and delivered over the
Internet by the service provider.

• “as-a-software”: such modality implies that the RDS is a software entity that is maintained by a
service provider and can be invoked and deployed in the user computational environment before
being actually used.

Currently, there is a growing interest toward a hosted-services world. This trend is evidenced
by the number of contexts within which RDSs have been utilized in recent years: service-oriented
architectures (SOA), “as-a-service”, and most recently, cloud computing. However, increasingly, the
volumes of data produced by high-throughput instruments and simulations are so large that it is much
more economical to move computation to the data rather than moving the data to the computation, i.e.,
the “as-a-software” provision modality of the data service is more appropriate. In this case, the RDS
deployment must be compatible with the target computational environment.

2.8. The Main Actors in the RDS Discovery and Use Process

The following actors are envisaged:

• RDS Provider: A person or authority who commits to have the service executed.



Publications 2017, 5, 1 6 of 27

• RDS Producer: A person or organization that actually performs the actions constituting the
delivery of the service.

• RDS Customer: One that requests the data service and then negotiates for its customized delivery.
• RDS Consumer: A person who is the direct beneficiary of the service.
• RDS Provider and RDS Producer may coincide, but this is not always the case.
• RDS Customer and RDS Consumer may coincide, but not necessarily.
• RDS Consumer and RDS Producer may also coincide, in very particular situations.

2.9. Service-Level Agreement (SLA)

A Service-Level Agreement is an agreement between an RDS Provider and an RDS Customer that
details the nature, quality, and scope of the service to be provided, i.e., what services the provider will
furnish and which performance standards the provider is obligated to meet. An SLA can be a legally
binding formal or an informal “contract”.

2.10. Composite Research Data Service

This is an RDS that results from the composition of several research data services for the purpose
of carrying out a complex research task. In essence, it is a chain of single data services. Three types of
service chains are distinguished in (ISO/TC-211 2002):

• User-defined chaining: the user manually composes the service chain.
• Workflow-managed chaining: a pre-defined service chain is executed and controlled by a

workflow service.
• Opaque chaining: the service chain appears to the user as a single service.

2.11. Scientific Workflow

This is a precise description of a scientific multi-step process in order to coordinate multiple tasks.
Each task represents the execution of a computational process. Scientific workflows orchestrate RDSs
so that they cooperate to efficiently perform a scientific application.

2.12. Research Data Service Registration

By RDS registration capability we mean a capability enabling researchers to make RDSs citable as
a unique piece of work. RDSs should be assigned a “Digital Service Identifier” (DSI) by a Registration
Agency. A DSI is a unique name within a scientific domain and provides for persistent and actionable
identification of RDSs. The data service registration capability should include a specified numbering
syntax, a resolution service, a metadata model, and an implementation mechanism determined by
policies and procedures for the governance and application of DSIs.

2.13. Domain-Specific Research Data Service Catalogue/Registry/Directory

RDS catalogues1 /registries/directories are used to publish registered RDSs. They are called to:

• Contain an organized and curated collection of domain-specific RDS descriptions (service
metadata and DSI).

• Categorize RDSs according to their type.
• Clearly state how each RDS is delivered.
• Constitute a means of centralizing domain-specific descriptions of RDSs that are available on

the Internet.

1 From this point on, with the term catalogue we refer to registries and directories too.



Publications 2017, 5, 1 7 of 27

• Support search of RDSs that provide a set of requested functionalities.
• Act as a knowledge management tool allowing researchers to route their requests for and about

RDSs to appropriate service providers who own, are accountable for, and operate them.

In essence, RDS catalogues implement a function of service indexation.

2.14. Research Data Service Publication/Advertisement

By RDS publication/advertisement is intended a process that allows the research community to
discover and make assertions about the suitability of a RDS to fulfil a research need. The ultimate
aim of RDS publication/advertisement is to make RDSs available for reuse both within the original
disciplines and the wider community.

In addition, it should allow, for those who create data and develop data services, to receive
academic credit for their work.

The service publication/advertisement process is a two-step process: first, the service is registered,
i.e., it is endowed with a DSI; then, the DSI together with the RDS metadata are stored in a publicly
accessible data service registry/catalogue/directory.

Figure 2 shows a graphical representation of the main characteristics of an RDS.

Publications 2017, 5, 1  7 of 27 

 

 Contain  an  organized  and  curated  collection  of  domain‐specific  RDS  descriptions  (service 

metadata and DSI). � 

 Categorize RDSs according to their type. � 

 Clearly state how each RDS is delivered.   

 Constitute a means of centralizing domain‐specific descriptions of RDSs that are available on 

the Internet.   

 Support search of RDSs that provide a set of requested functionalities.   

 Act as a knowledge management tool allowing researchers to route their requests for and about 

RDSs to appropriate service providers who own, are accountable for, and operate them.   

In essence, RDS catalogues implement a function of service indexation.   

2.14. Research Data Service Publication/Advertisement 

By RDS publication/advertisement is intended a process that allows the research community to 

discover and make assertions about the suitability of a RDS to fulfil a research need. The ultimate 

aim of RDS publication/advertisement is to make RDSs available for reuse both within the original 

disciplines and the wider community. 

In addition,  it  should allow,  for  those who create data and develop data services,  to  receive 

academic credit for their work. 

The  service  publication/advertisement  process  is  a  two‐step  process:  first,  the  service  is 

registered, i.e., it is endowed with a DSI; then, the DSI together with the RDS metadata are stored in 

a publicly accessible data service registry/catalogue/directory. 

Figure 2 shows a graphical representation of the main characteristics of an RDS. 

 

 
Figure 2. RDS (Research Data Service) Main Concepts. 

3. Research Data Service in Context   

The research ecosystem is composed of:   

 Research teams distributed worldwide; � 

 Research data produced, collected, and/or observed by researchers and distributed worldwide; 

and � 

 RDSs developed by researchers and distributed worldwide.   

 

These  components of  the  research  ecosystem  are networked  through  the  Internet.  In  such a 

networked  scientific  environment,  a  challenge  faced  by  researchers  is  to  be  able  to pinpoint  the 

location  of  research  data  and  data  services  that  fulfil  their  research  needs. An  emerging  “best 

Figure 2. RDS (Research Data Service) Main Concepts.

3. Research Data Service in Context

The research ecosystem is composed of:

• Research teams distributed worldwide;
• Research data produced, collected, and/or observed by researchers and distributed worldwide; and
• RDSs developed by researchers and distributed worldwide.

These components of the research ecosystem are networked through the Internet. In such a
networked scientific environment, a challenge faced by researchers is to be able to pinpoint the location
of research data and data services that fulfil their research needs. An emerging “best practice” in the
scientific method is the process of publishing research data and data services. The data publication
takes place in domain-specific Data Centers or (Institutional) Repositories [10], while the publication of
RDSs takes place in domain-specific Registries. Publishing research data and services implies that both



Publications 2017, 5, 1 8 of 27

are endowed with identifiers and metadata. Often, data/service understandability and accessibility is
enforced by the use of domain-specific ontologies, taxonomies, and/or classifications.

Several types of RDSs can be distinguished, e.g., services that acquire data, curate data, store
data, access data, retrieve data, move data, discover data, preserve data, analyze data, visualize data,
transform data. Some of these RDSs (for example, data curation, data storage, data preservation) are
used by professionals, i.e., database administrators and data curators. Some others (for example, data
access, data retrieval) are facilities offered by the systems that contain the data, i.e., database systems,
and are used by generic users and researchers. Lastly, some others, i.e., data processing services,
implement algorithms developed by data scientists that analyze, visualize, and transform research
datasets for the purpose of gaining insight into complicated issues. In the context of this paper, by RDS
we consider only this last category.

All RDSs have a few things in common [11]:

• They are information providing services. This means that there is no “real world” counterpart to
the computation performed. The execution of the service does not affect the real world but only
the information space in which the service is executed.

• After the RDS execution, either a new fact becomes known or a known fact is updated.

A research data software in order to become a service requires a commitment on behalf of the
service provider, be it a public institution or a private organization. The commitment can take the
form of a Service-Level Agreement (SLA). However, in the scientific context, this is not always the case.
An RDS can be provided also by an individual and not just by an institution or organization. In this
case, often the service is offered for free. In such a case, a simplified version of the SLA can be used.

Some criteria for the selection of the service provider must be established, for example:

• Do we trust the provider?
• How reliable is the provider with respect to her/his promises?
• Does the provider comply with security standards and has been security-assessed?

As stated in the previous section, there are two ways of delivering RDSs: (i) the service, invoked
by the user, runs in the service provider’s premises (“as-a- service”); (ii) the service is transported in
the user premises, and downloaded in the local platform (“as-a-software”).

An example of the first way of delivering services is the cloud computing level of service provision
“Software as a Service (SaaS)”; in this case, clouds deliver special-purpose software that is remotely
accessible by consumers through the Internet with a usage-based pricing model.

The second way of data service delivery is made possible through service-oriented architectures
(SOA) that encapsulate computation into transportable compute objects that can be run on computers
that store targeted data. SOA compute objects function like applications that are temporarily installed
on a remote computer, perform an operation, and then are uninstalled.

From an organizational point of view, moving data services to data stores calls for the creation of
service stations (science data centers).

An RDS can be the result of a composition of individual RDSs. The composability of RDSs is of
great value as it enables more complex data services. However, in order to create a composite RDS,
the single components must be composable. Indeed, some inconsistencies between the descriptions
of two services to be composed may arise. When these inconsistencies are resolved, the two services
are composable.

In ISO terminology, the new complex service is called “service chain”, which is defined as a
sequence of services where, for each adjacent pair of services, occurrence of the first action is necessary
for the occurrence of the second action. A service chain consists of several services, each of which
constitutes one part of the overall functionality. During service composition, a number of services have
to be discovered which, altogether, provide the required functionality. Service discovery is, hence, a
very important part of service composition.



Publications 2017, 5, 1 9 of 27

At present, RDSs are generally isolated applications. Nevertheless, several services may be
composed to create a new service.

Science becomes increasingly reliant on the analysis of massive datasets and the use of distributed
data services. The workflow programming paradigm is seen as a means of managing the complexity
in defining a complex scientific procedure.

The workflow systems constitute an efficient technology for creating and running composite RDSs.
A further consideration to be kept in mind when addressing the RDS discoverability problem is

the tight connection between research data and services.
RDSs are domain-specific. Of course, there are a few (e.g., Fourier transform, string matching) that

are quite general and could somehow be discovered by their functionality/type, but these are rather
few, and even when one does use them, they are often tailored for a specific domain. For example, the
Fourier transform will often be set up to accommodate the kind of boundary conditions one finds in
plasma physics; the string matching program will be tuned for genetic search; and so on.

In essence, there is not much point in separating the RDS from the domain of research data it
operates on. Useful RDSs are nearly always domain-specific, and therefore finding them could be
linked to the problem of finding the data.

In other words, whatever ontologies, schemas, or metadata are used for describing data could
also be used for describing RDSs.

4. The Research Data Service Discovery Process

The mission of the RDS discovery process is to seek an appropriate RDS for a service requester
on the basis of the service descriptions in-service advertisements and the requester’s requirements.
It enables researchers to locate the most suitable RDSs for their scientific inquiry among a large number
of published services. Effectively locating relevant RDSs and efficiently performing the discovery
operation in a scalable way is what is required in order to enable researchers to efficiently conduct
their research activities.

A typical data service discovery scenario is the following:
A researcher has produced or has access to a specific type of research dataset on which she/he

wants to apply an algorithm with a precise functionality in order to conduct a research activity.
Therefore, she/he has to search in the network to find a data service that provides the needed
functionality, and it can operate on the type of dataset in her/his possession with QoS and costs
acceptable by her/him. In the case that the service is provided in the “as-a-software” modality, the
software deployment should be compatible with the hosting computational environment.

The RDS discovery process is enabled by:

• The RDS description.
• The RDS publication.
• The RDS matchmakers.

The RDS description is a major pre-requisite or enabler of the RDS discovery process. As the
publication of the service relies on extended service descriptions going beyond a mere specification
of the service interface, the RDS description is a pre-requisite of the RDS publication. In turn, the
publication is an essential pre-requisite of the RDS discovery. If a service is not published, it cannot be
actually discovered and used. In this case, the only way the service can be discovered would be its
unique identifier that could be circulated via friend-of-a-friend schemes. Such an identifier should
map to a location from which more information about the service can be retrieved.

The RDS matchmakers are programs designed to implement the task of RDS discovery based on
the service functionality.

RDS discovery is a process that includes the following steps (cf. Figure 3):

• First, the service requester submits a query to an RDS registry in order to locate an RDS suitable
for her/his research needs.



Publications 2017, 5, 1 10 of 27

• Second, a functionality-based matchmaking is performed to discover those services that
functionally match the service requester requirements.

• Third, in case of a match, non-functional matchmaking is employed in order to filter the matches
according to the service requester’s non-functional requirements (QoS, availability, security,
reliability, privacy, pricing).

• Finally, if there are still results retained after the filtering, these results are ranked according to
preferences given by the user to respective non-functional terms.

1 

 

 

 

 

 

 

Func onality	
Based	

Matchmaking	

Service	Provider	
Research	Data	

Service	
Descrip on	

Service	Catalog	/	
Registry	

Selected	
Research	Data	

Service	

Descrip on	of	Research	
Data	Service	
Requirements	

Researcher	

Non-Func onal	
Matchmaking	

Figure 3. Research Data Service Discovery Process.

The first step requires a language to express the functionality of the service. The second step
requires the specification of a matching algorithm between service advertisements and service requests
that recognizes when a request matches an advertisement. The RDS selection, i.e., the last two steps of
the discovery process, is almost as important as the service discovery. After discovering RDSs whose
functionality match the functionality of the requirement, the next step is to select the most suitable
service. Each service can have a different quality aspect and hence service selection involves locating
the service that provides the best quality criteria match.

In the RDS discovery scenario, the tasks of the three actors of the discovery process, service
consumer, service provider, and service catalogue, are the following:

The service consumer must be able to precisely describe:

• The service functionality.
• The intensional and extensional information about the dataset in her/his possession (input

dataset) as well as this type of information about the expected output dataset.
• The pre- and post-conditions.
• The computational environment that will host the data service (in the case of “as-a-software” modality).

The service provider must be able to advertise an RDS in service registries by precisely specifying:

• The RDS profile/metadata.
• A Service-Level Agreement.

The RDS catalogues must handle service discovery requests by identifying suitable RDSs matching
the requests.

These three actors have to collaborate in RDS discovery.
The RDS discovery process can be either fully automatic or manual. This means that both

humans (researchers) as well as automated programs or agents acting on behalf of researchers can be
considered as service requesters. A fully automatic RDS discovery process involves a service consumer
(researcher), a service provider, a search agent, and a reasoning support.



Publications 2017, 5, 1 11 of 27

A problem can arise when the requester is not able to formally specify the service functionality.
This could depend on the fact that she/he is not an expert in semantic formalisms and ontologies
and does not know how to describe her/his requirements. In this case, a different approach in the
specification of the functionality of a RDS must be followed. For example, the requester could be
guided to specify her/his requirements by an appropriate interface, i.e., a question–answering interface,
provided by the service catalogue/registry.

The RDS discovery is initiated by users/agents by invoking the Application Programming
Interface (API) or exploiting the graphical User Interface (UI) of a service registry. Once the researcher
has selected the most appropriate RDS, she/he has to invoke it using standard protocols.

5. RDS Discovery: Enabling Technologies

In this section, the main technologies that enable the RDS discovery are concisely described:
(i) the knowledge representation languages designed for describing RDSs (cf. Section 5.1); (ii) the
semantic RDS matchmaking, i.e., programs designed to implement the task of semantic RDS discovery
(cf. Section 5.2); (iii) the RDS metadata models, i.e., the descriptive information about a RDS that enables
metadata-based RDS discovery (cf. Section 5.3); (iv) the mediation, i.e., a technology that enables the
overcoming of data heterogeneities and functional inconsistencies (cf. Section 5.4); (v) domain-specific
ontologies that provide the semantic underpinning for RDS discovery (cf. Section 5.5); (vi) the RDS
identification that makes an RDS citable (cf. Section 5.6); and (vii) the data service catalogues that
enable data service providers to publish their RDSs (cf. Section 5.7).

5.1. Knowledge Representation Languages

Various languages for the formal and machine-comprehensive representation of conceptual
models have been developed. In this section, we focus on formal models of the semantics of services
offered over the Web via a well-defined interface (Web services) and the knowledge representation
languages that have been designed for describing services using these models. Those models,
languages, and their accompanying mechanisms for the matching of service offers and request
descriptions have been investigated by the Semantic Web Service community since the early 2000s and
are promising candidates for describing RDSs in order to enable their effective and efficient discovery.

Semantic service models typically specify what a service does by means of a service profile. Such
a profile can comprise a semantic specification of the input and output of a service, a description of its
preconditions and effects, and a declaration of non-functional service properties such as availability
or pricing. Semantic process models specify how a service achieves a certain functionality, e.g., by
making the internal data and control flow explicit. Given a certain input and given that the stated
preconditions (assumptions about the state of the world before service execution) hold, a successful
service invocation results in a certain output and a certain effect (the state of the world after execution).

Prominent representatives of this class of approaches are OWL-S (Web Ontology Language for
Web Services) [12] and WSMO (Web Service Modeling Ontology). OWL-S is an upper-level ontology
describing the semantics of services. It is based on W3C Semantic Web Standards like OWL (Web
Ontology Language) [13]. The WSMO framework specifies a conceptual model of service semantics,
the Web Service Modelling Ontology [14], and the formal language WSML (Web Service Modeling
Language) [15] for the semantic description of services based on this model. With WSMO-Lite [16],
a lightweight variant of WSMO, which is compliant to any ontology language with an RDF syntax [17],
has been developed. In contrast to these top-down approaches to service modeling, the W3C
recommendation, SAWSDL (Semantic Annotations for WSDL and XML Schema) [18], provides means
for annotating WSDL [19] components by referencing concepts from semantic service models. SAWSDL
does not specify a semantic service model nor does it make any assumptions on such a model or its
underlying (ontology) representation language. Together with microformats for service annotation,
such as hRESTS [20], SA-REST (Semantic Annotation of Web Resources) [21], and MicroWSMO [22],



Publications 2017, 5, 1 12 of 27

this allows for modeling service semantics in a bottom-up manner, i.e., adding pieces of semantics on
an if-needed basis, and in compliance with W3C standards.

Along similar lines go recent efforts on Schema.org2, which provide the vocabulary needed to
describe services (called Actions) that can be executed. First efforts have been made to automatically
link objects to the actions that may be performed on them via the potentialAction property
(see e.g., [23]).

In addition to this, there have been efforts to unify existing service models into a minimal model
and expose service descriptions in RDF. This makes service descriptions query-able, like "ordinary"
linked data using SPARQL [24,25]. For a comprehensive discussion of existing service description
approaches, see also e.g., [26–28].

Finally, existing service models and annotation mechanisms could potentially be adopted and/or
adapted for the description of RDSs.

5.2. Reasoning/Matchmaking Support

Service matching is the process of comparing the description of a requested service functionality
(service request) with the descriptions of advertised services. The result is a list of service offers ranked
by their matching degree (the degree of suitability for the considered request).

Existing service matchmaking and selection approaches differ with respect to:

• The supported service description language(s) and underlying service model(s).
• The way service matchmaking is accomplished.
• The parts of the service semantics that are considered.
• Whether service composition is supported or not.

There are also differences regarding:

• Scalability and retrieval performance in terms of correctness and response time.
• The type of service search which is supported.
• Whether user preferences are considered or not.
• Whether a matchmaker can deal with incomplete or inaccurate information.

While the majority of approaches for semantic service matchmaking are designed for a specific
type of service description, (e.g., OWL-S- [29,30] or WSML-based [31]), some can deal with
different formats [25]. With regard to the techniques used for determining a matching degree,
Klusch [32] distinguishes between logic-based matchmakers, non-logic-based and hybrid matchmakers.
Logic-based approaches compute a matching degree using logical reasoning on service descriptions.
Typical matching degrees are exact, plugin, or subsumes. Non-logic-based matchmakers apply
text similarity measures or graph matching techniques to determine a matching degree (e.g., [33]).
Hybrid matchmakers combine several matchmaking techniques and aggregate their results [29]. They
often employ learning techniques to optimize their aggregation strategy. According to Klusch [32],
matchmaking can consider a service's profile or its process model. Profile matching may be based
on functional or non-functional service properties such as QoS, or both. Functional matchmaking
might take inputs and outputs, preconditions and effects, or both, into account. Based on the results of
the S3 Contest, a comparative evaluation of the performance of semantic service matchmakers [34],
Klusch concludes that most of the matchmaking approaches consider input and output only; just
a few matchmakers take preconditions and effects into account. Hybrid matchmaking seems to
produce results of higher precision. Matching both input and output and preconditions and effects
comes, however, at the price of higher response times. While most of the approaches to Semantic

2 http://schema.org/.

http://schema.org/


Publications 2017, 5, 1 13 of 27

Web Service selection are designed for the largely automatic retrieval of services, there are also
solutions that support an interactive and incremental style, which involves humans in the selection
process (e.g., [35,36]). The latter account for the fact that service requirements are often incomplete or
inaccurate at the time a service is searched for. Human users would rather construct their requirements
when being faced with available choices in terms of service alternatives and their characteristics [37].
This requires means to deal with uncertain service requests and offers. Approaches that model and
consider user preferences during service matchmaking and ranking are particularly helpful to rank
advertised services in scenarios where the number of matching service offers is potentially high
(e.g., [38,39]). There are also solutions for service selection that can handle the opposite case, where no
matching service offers can be found. For instance, query relaxation techniques can be applied in those
situations to identify service offers that do not exactly fit a certain request, but might be an appropriate
alternative [40].

5.3. Research Data Service Metadata/Profile

The RDS metadata/profile is the descriptive information about the functionality that a RDS wants
to provide to a research community. Each published RDS must be endowed with metadata information.
The main purpose of the RDS metadata/profile is to enable service discovery. In metadata-based RDS
discovery, the RDS metadata/profile is matched against the requirements in order to find an RDS that
better meets the user needs. The service metadata/profile also helps potential users know what is in
the services, who created them, and what usage restrictions they might carry.

At present, formal metadata/profile models for RDSs are missing. There are no metadata/profile
models for describing, e.g., the functionality provided by a data mining tool, a data visualization tool,
a data analysis tool, etc.

As already said, the RDS profile/metadata definitions should be structured at multiple levels in
order to reflect the layered structure of the RDS description. In particular, the RDS metadata/profile
should be described at the following levels [41]:

• At the data semantics level, the semantics of the input/output datasets is described; their logical
structure (schema) is described as well as the relationship between them. If a standard data
model (e.g., the relational model) is considered, the relational schema is appropriate; otherwise,
descriptions of standard domain-specific data formats should be used.

• At the operation semantics level, the semantics of the data operations of the RDS is described.
This description must be expressed by using appropriate knowledge representation languages
based on domain-specific ontologies.

• At the execution semantics level, the non-functional aspects of the RDS are described. This
demands management of QoS metrics for RDS. RDSs in different domains can have different
quality aspects. QoS metrics need shared semantics for interpreting them as intended by the
service provider. This can be achieved by having an ontology that defines domain-specific QoS
metrics. The non-functional aspects of an RDS could also be included in a kind of standardized
contract (Service-Level Agreement) between the service provider and the potential consumers that
specifies specific and measurable aspects related to the service offerings. Appropriate languages,
like the WSLA, can be used to specify the SLAs.

• At the operational semantics level, the computational environment where the RDS can run
must be described using a shared ontology (in the case where the RDS is delivered with the
“as-a-software” modality).

The first two levels, essentially, describe the semantics of the RDS description at the computational
and algorithmic levels, while the last two levels describe the semantics of its description at the
implementational level. This layered RDS metadata/profile description allows a more precise
description of the input/output datasets, the data operations and the non-functional aspects of the
RDS. The RDS metadata descriptions are stored in domain-specific catalogues.



Publications 2017, 5, 1 14 of 27

Finally, we stress the fact that the quality of data service metadata/profile is the most important
factor for an effective and efficient RDS discovery.

Valuable examples of existing metadata models for data service are ISO 19119 and W3C
WS-MetadataExchange. The INSPIRE Directive builds on ISO 19119 to specify how to describe shared
data services, enabling their cataloguing and discovery. The Directive defined a set of well-known
spatial data service types.

Additionally, we present the structure of the Service metadata adopted by the Biodiversity
Catalogue (cf. Table 1).

Table 1. Biodiversity Catalogue Service Metadata.

Section Field

Profile Documentation URL
Profile Description of endpoints/operations License
Profile Cost
Profile Contact info
Profile Usage conditions
Profile How to cite
Profile Publications about service
Profile Example workflows
Profile Maturity

Technical Description of endpoints/operations example endpoints
Technical Documentation URLs

Technical Input parameters (description, default values, constrained values, example data,
required or optional)

Technical Output representations (content type (e.g., text/csv), example data, data formats,
data schemas, tag)

Technical Description of endpoints/operations example endpoints

5.4. Mediation Support

In the RDS discovery process, several kinds of heterogeneity and logical inconsistencies can arise
that must be overcome in order to successfully carry out this process.

The first kind of heterogeneity can arise between the dataset in possession of the researcher and
the dataset on which a given data service can act, in the case that different data models are adopted
to represent these two datasets. By resolving this kind of heterogeneity we say that a structural
exchangeability between the two datasets has been achieved.

A second kind of heterogeneity can arise between the “semantic universe of discourse” of the two
datasets (differences in granularity, differences in scope, temporal differences, synonyms, homonyms,
etc.). By resolving this kind of heterogeneity, we say that a semantic exchangeability between the two
datasets has been achieved.

Structural and semantic exchangeability guarantee that the two datasets are exchangeable, i.e.,
it is possible to transform the researcher’s dataset structured under a schema into a dataset (the dataset
on which the data service can operate) structured under another schema. The exchangeability between
the two datasets enables the data service to act on the researcher’s dataset.

A logical inconsistency problem can arise at the functional level when the functionality provided
by a service provider does not precisely match with the one requested by a user. In this case, some
inconsistencies arise between the logical relationships of the two descriptions expressed in some
logic-based languages: the one that describes the functionality offered by a published data service
and the other that describes a service need of a researcher. This means that the logical relationships
between the two functionality descriptions do not share a logical framework. In this case, we have
functional inconsistency between two service descriptions. When these inconsistencies are resolved
we say that the two services are compatible, i.e., the published service is suitable for satisfying the user
service need.



Publications 2017, 5, 1 15 of 27

The main concept that enables the overcoming of data heterogeneities and functional inconsistencies
is mediation [42]. We can distinguish two levels of mediation:

• Mediation of data structures that permits data to be exchanged according to structural and
semantic matching.

• Mediation of functionalities that makeit possible to overcome logical inconsistencies between
representations of service functionality.

Automated intermediary services heavily rely on adequate modeling of both the exchanged
information and the user needs. In essence, the intermediary services must translate languages, data
structures, logical representations, and concepts between two systems. The effectiveness, efficiency,
and computational complexity of the intermediary service very much depend on the characteristics
of the information models (expressiveness, levels of abstraction, semantic completeness, reasoning
mechanisms, etc.) and languages adopted by the server provider–researcher entities.

Intermediary services are implemented by mediators, sometimes also called brokers. They are
software modules that exploit encoded knowledge about certain sets or subsets of data, data services
and user needs in order to implement an intermediary service.

Ontologies have also been extensively used to support intermediary functions because they
provide an explicit and machine-understandable conceptualization of a domain.

It is worthwhile to mention that some international programs have adopted mediation-based
approaches for data and service discovery and access, including GEOSS (Global Earth Observation
System of Systems) [43], US NSF Earth Cube [44], and ICSU WDS [45].

5.5. Domain-Specific Ontologies

Ontologies constitute a key technology enabling a wide range of research data services. They
provide the semantic underpinning that enables data access, discoverability, understandability,
usability, RDS discovery, and the implementation of intermediary services.

Ontologies were initially developed by the Artificial Intelligence community to facilitate
knowledge sharing and reuse. An ontology consists of a set of concepts, axioms, and relationships.
It constitutes an explicit specification of a conceptualization of a domain of interest, i.e., an abstract
view of the objects, concepts, and other entities that are assumed to exist in a domain of interest
and the relationships that hold among them [46]. The abstract view of a domain of interest can be
represented by a declarative formalism and the set of objects that can be represented is called the
domain of discourse.

A community of practice has to establish its own domain of discourse and choose a formalism, i.e.,
a knowledge representation language, in order to create its own domain-specific ontology. In addition,
a set of linguistic terms by which the members of the community will refer to these objects must
be identified. Building this set of terms is difficult because words often have multiple synonyms
and because the meanings of words in natural language always depend heavily on the contexts in
which the words are used. To overcome this difficulty, explicit lexicons should be created which
offer the members of a community of practice a set of terms with which to refer to specific concepts.
Another difficulty in creating a domain-specific ontology involves the ability to identify an appropriate
level of abstraction at which to view the objects, concepts, and relationships in a domain. Several
domain-specific ontologies are being developed (e.g., Gene Ontology, Sequence Ontology, Cell Type
Ontology, Biomedical Ontology, CIDOC).

The relationship between data in domain-specific data collections and instances of objects and
concepts in a domain-specific ontology is expressed by means of mappings. On top of the data layer
of the data collection(s) of a scientific domain, a conceptual view of data, expressed in terms of an
ontology, should be created [47]. As data layer and conceptual view are at different levels of abstraction,
they are expressed in terms of different formalisms. For example, while logical languages are nowadays
used to specify the ontology, the data layer is usually expressed in terms of the relational data model.



Publications 2017, 5, 1 16 of 27

Specific mechanisms for mapping the data in the collections to the elements of the ontology should
be developed.

The main reason to build an ontology-based conceptual view of a data collection is to improve
data intelligibility and, thus, usability, as well as to provide high-level services to the clients of the
system that manages that collection.

In the context of a networked scientific world, domain-specific ontologies are not standalone
artifacts. They relate to each other in ways that might affect their meaning, and are inherently
distributed in a network of interlinked semantic resources, taking into account, in particular, their
dynamics, modularity, and contextual dependencies. The alignment of domain-specific ontologies is
crucial for research data service discovery. It is achieved through a set of mapping rules that specify a
correspondence between various entities, such as objects, concepts, relations, and instances. Several
concept and relation constructors are offered to construct complex expressions to be used in mappings.

The role of ontologies in the RDS discovery is very important as they allow ontological descriptions
of the functionality provided by an RDS. The use of ontologies to describe the semantics of the
operations of an RDS makes them machine-interpretable, allows the users to pose concise and
expressive queries, and supports a logical reasoning in order to discover a relationship between
user queries and service descriptions in RDS registries.

A “functional ontology” must be used in order to specify the functionality of an RDS. In functional
ontologies, each concept represents a well-defined functionality. The intended functionality of each
service can be represented as annotations using this ontology. If an RDS is annotated using a functional
ontology, the service discovery algorithms can exploit these annotations for a better search result set.
The functional ontology is different from the typical ontology.

To effectively perform discovery of RDS, the semantics of the input/output datasets has to be
taken into account. Hence, if the data involved in RDS operation is annotated using an ontology, then
the added data semantics can be used in matching the semantics of the input/output dataset of the
requirements. The ontology used to represent data semantics is a typical ontology. These ontologies
can be replaced with standard vocabularies, taxonomies, etc.

The ontologies used for making the semantics of RDSs explicit can be organized in two ways:

• Multiple ontology approach: each service or query is described by its own ontology. It cannot be
assumed that several local ontologies share the same vocabulary. In this case, the alignment of the
local ontologies with the ontology used to annotate a published RDS is of crucial importance.

• Single ontology approach: a global ontology is used, which provides a shared vocabulary for
specifying the semantics of all services and queries. Such an approach can be adopted when all
service descriptions in the catalogue have been created with a view on a scientific domain that is
shared by all the requesters. Such a common ontology is called domain ontology.

In conclusion, we can affirm that two background ontologies are necessary to support the RDS
discovery process: one that formally defines the possible data types of the RDS’s arguments and one
that formally describes the possible operations performed by RDSs. The RDS provider and requester
use terms from these ontologies in order to specify what types the arguments have, what operation is
performed on them, and how the input parameters relate to the output parameters.

5.6. Digital Service Identifier (DSI)

The identification and citation of an RDS is of paramount importance in the scientific field for the
following reasons:

• Discoverability: endowing a research data service with an identifier provides an actionable,
interoperable, and persistent link to this service that makes the service discovery much easier.

• Reusability: reusing an RDS instead of replicating it has two main advantages: (i) it allows
researchers to invest more time into research and avoid wasting time by replicating software



Publications 2017, 5, 1 17 of 27

that already exists; and (ii) it permits to save a significant amount of resources, as software is
expensive to develop, which could then be invested into new research.

• Reproducibility: it is very important, in order to reproduce a research result, to know the
exact version of the RDS used to generate it; therefore, there is a need for making a data
service identifiable.

• Credit attribution: each RDS should be recognized as a valuable research object. Therefore,
it should become a citable scientific deliverable of equivalent value to researchers as that of a
publication. Software citation would allow researchers to gain credit for developing software;
after all, most research data services are developed by researchers. When a researcher publishes a
scientific result generated by using someone else’s data service it could be a good practice to cite
it in the publication. It is also important that publishers recognize the need to cite research data
services as a vital part of the publication process.

Unfortunately, currently, methods for RDS citation are missing. A similar problem has been with
data, where identifiers such as Handles, DOIs, URNs, and other identifiers are used to provide an
actionable, interoperable, and persistent link to a specific dataset. The same system could be used to
identify software.

A Digital Service Identifier (DSI) should contain, at a minimum, the following components
(although practices could vary from field to field):

• The developer of the RDS.
• The date the RDS was published.
• The name of the RDS.
• A unique global identifier, which is a short name or character string, guaranteed to be unique

among such names, which permanently identifies the RDS, independent of its location. The unique
identifier should resolve to a page containing the functional and non-functional description of
the data service (data service metadata). This data service metadata should include a link to the
actual RDS.

5.7. Data Service Catalogues

RDS catalogues enable data service providers to publish their RDSs. They contain a curated
collection of domain-specific RDS descriptions. They constitute a means of centralizing domain-specific
data descriptions of services that are highly distributed. The main mission of the RDS Catalogues is to
facilitate RDS discoverability. To this end, they define standard methods for publishing, discovering,
and managing information about RDS providers, RDSs, and the technical interfaces of RDSs. Registries
are the dominating technological basis for RDS publishing and discovery. In essence, they act as
knowledge management tools, allowing researchers to route their requests for and about data services
to the service providers who own, are accountable for, and operate them. They allow researchers to
query RDS descriptions, select an RDS, and invoke it, regardless of where it exists in the scientific world.

To efficiently support RDS discovery, catalogues should include the following elements for
each RDS:

• A description of the RDS.
• An identifier of the RDS (DSI).

Data and information that help service providers set expectations for their service requestors
(Service-Level Agreement).

• Who is entitled to request the RDS.
• The cost of the RDS (if any).
• How to request the RDS.



Publications 2017, 5, 1 18 of 27

• How the service delivery is fulfilled (RDS provision model).
• Service categorization or type that allows it to be grouped with other similar services.

RDS catalogues, in order to efficiently and effectively achieve their mission, should:

• Adopt a formal registration process that allows RDSs to be properly registered in the registry.
• Adopt a generic model to store all the information.
• Support specifications of services and/or ontology-based annotations used to enrich the service

specifications. Mechanisms that enable the enrichment of service specifications with ontological
annotations can include user input (either guided or based on a specific ontology of his/her
choice), semi-automatic annotation (the registry proposes the ontology concept that matches
service functionality), as well as automatic semantic annotation (the catalogue alone performs the
atomic annotation and selects the best possible match from the alternative ones).

• Encompass smart algorithms which efficiently organize the service advertisement space. In the
case of a functionality-based discovery process, the service space is organized according to
domain-specific concepts. The discovery process relies on the subsumption relationships between
these concepts in order to infer the exact semantic relationship between a service request and a
service (functional) advertisement. In the case that the discovery process is based on a service
non-functional specification, different approaches have been proposed which rely either on the
limits that are posed on quality terms or on relationships between the different non-functional
service advertisements [48,49].

• Provide meaningful results to the user even if there are no perfect matches to the user query.
Concerning functionality-based service discovery, an interesting categorisation of service matches
has been proposed [50] encompassing five main categories, going from the most accurate to
the less accurate one. Concerning non-functional service discovery, four main service result
categories have been proposed [48]: (i) super: the non-functional service offer promises even
better results than those expected by the non-functional service demand/request (e.g., better
availability values); (ii) exact: the service offers exhibit the same or a more strict service level
than the one expected by the service request; (iii) partial: the service offers solutions that partially
satisfy the service request. This means that some quality term constraints of the service request
are respected but others are not; and (iv) failed: the service supplies solutions that are totally
unacceptable by the service request, meaning that each quality term constraint in the service
request is not satisfied/respected.

• Rank the service discovery results according to specific criteria that can include non-functional
quality terms (e.g., response time and cost). Such a ranking can really assist the user in selecting
the most appropriate service but requires that user preferences are already in place, thus either
collected from the user or derived and stored in its user profile.

• Be scalable to handle the publication and discovery of a high number of services. In this respect,
decentralised and peer-to peer architectures are advocated in order to also overcome the single
point of failure issue. In such decentralized architectures, there should be mechanisms that
partition the service advertisement space accordingly by also allowing for some degree of
replication for fault-tolerance reasons.

• Be robust enough to deal with change. Different types of changes might occur: (i) the semantic
(functional) specification of the service is modified; (ii) the non-functional specification of the
service is modified; and (iii) domain ontologies are evolved.

• Be able to monitor the status of the RDS specifications in order to keep them updated. There
can be two main approaches that can be followed, either alternatively or in combination: (a) the
service providers are responsible for updating the specification of their services; (b) the service
catalogue constantly looks for changes in the functional and non-functional RDS specification
and applies them. However, this approach is certainly harder than the previous one.



Publications 2017, 5, 1 19 of 27

• Allow that service specifications can be specified in different languages and different (domain)
ontologies may be used. Language and ontology heterogeneity can be overcome by adopting
mediation techniques (see subsection 5.3).

• Support, when functional service discovery fails (i.e., no single service can satisfy the user
request), service composition, i.e., a combination of data services that can still satisfy the functional
requirements of the user. Different approaches can be used for service composition, e.g., AI-based
approaches, graph-based approaches, etc.

• Support data service advertisement. This means that RDS catalogues proactively send to potential
users information about newly published RDSs, changes in data service specifications, etc.

• Provide visual facilities which will guide the users in order to provide for their requirements.
Indeed, we have assumed that service discovery relies on ontology-based languages to express
service requirements, but it is not certain that such languages can be exploited by users as they
might not possess the needed expertise and skills. We cannot also expect that agents are employed
by scientists to interact with the registry and obtain the respective discovery results.

• Adopt strong stewardship and security controls.
• Finally, provide the description of platforms and infrastructures which can provide support to

the execution and provisioning of RDSs. Infrastructure services can include well-known cloud
computing and grid computing services, which provide the respective resources to support the
software provisioning. Such services can be essential in case of a software that has to be deployed
somewhere and run as a service but the scientist/researcher does not have the resources to support
this deployment. Before discovering and using infrastructural services, they have to be described
in an appropriate manner. While they seem to share common characteristics, the semantics can be
sometimes different while also there are some characteristics that are more suitable for one type
over the other. In this sense, the catalogue/registry should have the capability to cope with this
type of heterogeneity.

A catalogue is an authoritative, centrally controlled store of information [51]. A lightweight
version of a catalogue is the centralized service of indexes. An index is a compilation or guide to
information that exists elsewhere. It is not authoritative and does not centrally control the information
that it references.

The key difference between the two approaches is not just the difference between a catalogue itself
and an index. The key difference is one of control. Who controls what and how do RDS descriptions get
discovered? In the catalogue model, it is the owner of the catalogue who exercises this control. In the
index model, since anyone can create an index, the research communities or the market determine
which indexes become popular.

Here, below, we briefly describe some notable examples of service Catalogues.
The Universal Description, Discovery and Integration (UDDI)3 is an XML-based registry for

registering and locating Web service applications. The UDDI specification defines a standard method
for publishing, discovering, and managing information about Web service providers, Web services,
and the technical interfaces of Web services. In a UDDI registry, a data model is used to describe
the business function and provider of the service, the technical details of the service (including a
reference to the interface of the service), various attributes or metadata, such as taxonomies, transports,
digital signatures, and so on, relationships among entities in the registry, and standing requests to track
changes to a list of entities. UDDI servers are classified into three categories: (i) a node, which is a single
UDDI server that is the member of exactly one UDDI registry and is used for supporting interactions
with UDDI data through one or more API sets; (ii) a registry, which is composed of one or more nodes
and is used for collectively managing a well-defined set of UDDI data; and (iii) affiliates registries,

3 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uddi-spec.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uddi-spec


Publications 2017, 5, 1 20 of 27

which are individual registries that are used to implement policy-based sharing of information among
them and to share a common namespace for UDDI keys that uniquely identify data records.

The Biodiversity Catalogue4 is a centralized, curated catalogue of Web services. Entries in the
catalogue describe a Web service from both an informative level and a technical level. The informative
level describes such things as the overall functionality, terms of use, contact information, and scientific
topics. The technical level provides the manner in which a client can implement an interface with a
service, including such things as endpoint descriptions, parameter options, output representations,
and templates. The manner in which entries can be registered in the catalogue is via a web form
submission; this can be done by members of the community or by dedicated curators. Service Object
Access Protocol (SOAP) services with WSDL documents can be parsed automatically and can be
amended with additional metadata later. Other types of Web service, such as REST must be entered
manually. The Biodiversity Catalogue provides a monitoring service that asserts whether a service is
reachable each day. This data, over time, forms a metric for the availability of a Web service over time.

SwaggerHub5 is a catalogue of indexed Web services. Similar to UDDI, Web service providers
document their APIs using a specification called Swagger. The specification provides a means to
describe the set of technical functionalities and non-technical metadata of a Web service. These
documents can then be registered in SwaggerHub, which parses and displays the information for
prospective clients to utilize. SwaggerHub comes with tools to automatically generate client code
to interface with an API in a wide variety of programming languages, expediting the development
process of utilizing an API.

6. Recommendations

Here, below we list a number of recommendations that can help to make the RDS discovery
process more efficient and effective.

Concerning the description of a RDS, we suggest the following recommendations:

• At present, guidelines for appropriately describing an RDS are not available. An RDS description
must be based on a systematic analysis aimed at revealing those characteristics of RDSs that must
be considered in an appropriate RDS model. There is a need for an investigation to be conducted
among the members of the research communities in order to collect information about the way
researchers are willing to describe their needs for a RDS. Existing approaches to Semantic Web
Service description and selection must be evaluated in light of the results derived from such
investigation. Similar approaches have been successfully pursued in the Semantic Web Service
community. In addition, attempts to catalog research-related services [52,53] and to model and
share scientific workflows [54–56] can deliver valuable insights and solutions that shall be taken
into account.

• RDS models should be compliant with existing and upcoming W3C standards to benefit from the
rich set of tools that have been and will be developed.

• Service models for RDSs shall support the architectural style (SOAP-based [57], REST-based, etc.)
of services that are prevalent in the Research Data Services domain.

• An RDS should be described at three levels: the computational level, the algorithmic level, and
the implementational level (cf. Section 2).

• Ontology-based languages must be used for the description of an RDS as well as for formulating
an RDS need. Alternatively, domain-specific vocabularies must be used for annotating RDSs.

• In order to support ontology-based RDS description, each scientific domain must develop its
own domain-specific ontologies: one that formally defines the possible data-types of the RDS’s

4 www.biodiversitycatalogue.org.
5 https://swaggerhub.com/.

www.biodiversitycatalogue.org
https://swaggerhub.com/


Publications 2017, 5, 1 21 of 27

arguments; one that formally describes the possible operations performed by RDSs (functional
ontology); and one that describes QoS metrics.

• RDSs should be, like Linked Data, self-describing.
• Existing service models have to be extended to address domain-specific characteristics of RDSs.
• A layered RDS metadata/profile description must be adopted, as it allows a more precise

description of the input/output datasets, the data operations, and the non-functional aspects of
the RDS.

Concerning the RDS discovery process, we suggest the following recommendations:

• Again, we emphasize the need for an investigation aimed at collecting information about the RDS
discovery mechanisms adopted by researchers in order to identify promising candidate solutions
for the selection of RDSs among the existing approaches and to track down necessary extensions
to these.

• Initiatives similar to the Semantic Web Service challenge [58] that compare existing approaches
with respect to their functional capabilities are required. These should be complemented
by the creation of domain-specific test collections that allow for a performance analysis of
developed solutions.

• Potential knowledge representation languages for the description of RDSs must provide
appropriate means to describe aspects of such services that are relevant to their discovery.

• Service models and representation languages for which matchmaking tools with appropriate
capabilities and performance are available should be preferred. This choice depends on the kind
of search mechanism that shall be supported, e.g., automatic discovery, keyword search, faceted
search over service types, or query by example) and whether service composition shall be enabled.

• For an efficient RDS discovery process, it is required that the same domain ontology (or
vocabulary) be used by both service providers and requesters. Therefore, the basis for specifying
operations and input/output data must be widely agreed upon international standards.

• Functionality-based RDS discovery must be the main approach to the RDS discovery.
• A fully automatic RDS discovery process must be put in action.
• There is a need for developing efficient RDS matchmakers.

Concerning the compatibility between RDS description and RDS request we suggest the
following recommendation:

• In order to enable compatibility and reuse, RDS models must integrate smoothly with knowledge
representation languages and models used to describe (the semantics of) research data (as the
input/output of RDSs), metadata, and domain-specific knowledge. These might differ from
domain to domain.

Finally, concerning the RDS publication, we suggest the following recommendations:

• Each RDS must be assigned a “Digital Service Identifier” by a registration agency.
• Each scientific domain has to create its own RDS registry where RDSs relevant for this domain

are published.
• An institutional commitment must exist on every published RDS. In particular, the non-functional

aspects of an RDS must be included in a kind of standardized contract (Service-Level Agreement)
between the service provider and the potential consumers that specifies specific and measurable
aspects related to the service offerings.

Acknowledgments: This White Paper is the outcome of a Workshop on “Research Data Service Discoverability”
held in the Island of Santorini (Greece) on 21-22 April 2016. The Workshop was carried out in the context of the
“Research Data Alliance – Europe 3” (RDA-E3) Project. This project has received funding from the European



Publications 2017, 5, 1 22 of 27

Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 653194”. We would like
to thank all the participants in this Workshop for their contribution, in terms of ideas and suggestions, in the
preparation of this White Paper. The Workshop description and the list of participants (only by invitation) are
included in the Appendix A.

Author Contributions: Costanrino Thanos authored Sections 2–4 and 5.3–5.6; Friederike Klan authored
Sections 5.1 and 5.2; Kyriakos Kritikos authored Section 5.7; Costantino Thanos and Leonardo Candela are
the editors of the White Paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

A.1. Workshop on “Research Data Service Discoverability”

A.1.1. Rationale

Acceptance of the open science principle entails open access not only to research data but also to
data services, tools, analyses, and methods that enable researchers to conduct efficiently and effectively
their research activities.

Researchers, scientists, data scientists, and practitioners have developed several data services
and tools, including data mining, data visualization, data analysis tools, etc. One of the challenges
faced by researchers, in a globally networked scientific world, is to be able to locate data services/tools
that fulfil their research needs. Efficiency of discovering appropriate data services/tools and possibly
composing them to build complex scientific workflows is a requirement of modern science. A crucial
aspect in making this happen is the ability to semantically describe the functionality of a service/tool.
It becomes increasingly necessary to create registries that maintain semantically enriched descriptions
(metadata/profiles) of data services/tools. It is also necessary to develop discovery mechanisms that
match the service/tool description against the description of a user need.

Unfortunately, at present, semantic descriptions (metadata) of data service/tools are missing.
The Santorini Workshop will address the problems that hamper efficient data service/tool

discoverability and the building of appropriate registries. In particular, the focus of the meeting
will be on the different levels of description of a data service/tool, modeling approaches, and discovery
mechanisms based on semantic descriptions.

A.1.2. Outcome

We expect that such a workshop will contribute to promote a research activity in a very relevant
topic that so far, unfortunately, has not been adequately addressed.

A report will be produced that will identify research problems to be addressed and directions to
be followed in order to solve them.

A.1.3. Place

Island of Santorini (Greece) Date: 21–22 April 2016

A.2. List of Participants

Peter Buneman (University of Edinburgh), Oscar Corcho (Universidad Politecnica de Madrid),
Mathieu D’Aquin (The Open University UK), Anna Fensel (University of Innsbruck), Nicola Guarino
(ISTC-CNR), Friederike Klan (University Jena), Kyriakos Kritikos (ICS-FORTH), Eric Mannens
(University of Ghent), Ioan Toma (Semantic Technologies Institute) Yannis Velegrakis (University
of Trento).

Research Data Infrastructures: GEOSS (by Stefano Nativi), ELIXIR (by Kristoffer Rapacki)
Biodiversity Catalogue (by Niall Beard), OpenAIRE (by Paolo Manghi).



Publications 2017, 5, 1 23 of 27

RDA Working Groups: Metadata Standards Catalog (by Alex Ball), Brokering Governance (by
Stefano Nativi), Data Type Registries (by Daan Broeder), Metadata Standards Directory (by Alex Ball),
RDA/WDS Publishing Data Services (by Paolo Manghi).

Service Providers: EUDAT (by Daan Broeder).

Appendix B Additional readings

Becker, J.; Mueller, O.; Woditsch, M. An Ontology-Based Natural Language Service Discovery
Engine—Design and Experimental Evaluation. In Proceedings of the European Conference on
Information Systems (ECIS), Pretoria, South Africa, 7–9 June 2010; p. 166.

Bianchini, D.; De Antonellis, V.; Merchiori, M. Flexible semantic-based service matchmaking and
discovery. World Wide Web 2008, 11, 227–251.

Carenini, A.; Cerizza, D.; Comerio, M.; Della valle, E.; De Paoli, F.; Maurino, A.; Turati, A. GLUE2:
A Web Service Discovery Engine with Non-Functional Properties. ECOWS Sixth European Conference
on Web Services, Dublin, Ireland, 12–14 November 2008.

Dong, H.; Hussain, F.K.; Chang, E. Semantic Web Service Matchmakers: state of the art and
challenges. Concurr. Comput. Pract. Exp. 2013, 25, 961–988.

Fensel, D.; Bussler, C. The Web Service Modeling Framework WSMF. Electron. Commer. Res. Appl.
2002, 1, 113–137.

Fitzner, D.; Hoffmann, J.; Klein, E. Functional Description of Geoprocessing Services as
Conjunctive Datalog Queries. Geoinformatica 2011, 15, 191–221.

Gonzalez-Castillo, J.; Trastour, D.; Bartolini, C. Description logics for matchmaking of services.
In Proceedings of the KI-2001 Workshop on Applications of Description Logics, Vienna, Austria,
18 September 2001.

Keller, U.; Lara, R.; Lausen, H.; Polleres, A.; Fensel, D. Automatic Location of Services.
In Proceedings of the Semantic Web: Research and Applications—Second European Semantic Web
Conference, ESWC 2005, Heraklion, Crete, Greece, 29 May–1 June 2005.

Keller, A.; Ludwig, H. The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services. J. Netw.Syst. Manag. 2003, 11, 57–81.

Kifer, M.; Lara, R.; Polleres, A.; Zhao, C.; Keller, U.; Lausen, H.; Fensel, D. A Logical Framework for
Web Service Discovery. Workshop on Semantic Web Services: Preparing to Meet the World of Business
Applications. In Proceedings of the IEEE International Conference on Web Services, Hiroshima, Japan,
6–9 July 2004.

Klein, E.; Einspanier, U.; Lutz, M.; Hubner, S. An Architecture for Ontology-Based Discovery and
Retrieval of Geographic Information. In Proceedings of the 7th AGILE Conference on Geographic
Information Science, Heraklion, Greece, 29 April–1 May 2004.

Klein, M.; Koenig-Ries, B.; Mussig, M. What is Needed for Semantic Service Descriptions? Int. J.
Web Grid Serv. 2005, 1, 328–364.

Klusch, M.; Fries, B.; Sycara, K. Automated semantic web service discovery with OWLS-MX.
In Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems AAMAS ’6, Hakodate, Japan, 8–12 May 2006.

Lagares Lemos, A.; Daniel, F.; Benatallah, B. Web service Composition: A Survey of Techniques
and Tools. ACM Comput. Surv. 2015, 18, 33.

Lara, R.; Binder, W.; Constantinescu, I.; Fensel, D.; Keller, U.; Pan J.; Pistore, M.; Polleres, A.; Toma, I.,
Traverso, P.; and Zaremba, M. Semantics for Web Service Discovery and Composition; Technical Report,
2004, Available online: http://www.knowledgeweb.semanticweb.org/semanticportal/deliverables/
D2.4.2.pdf (accessed on 12 December 2016)

Paolicci, M.; Kawamura, T.; Payne T.; Sycara, K. Semantic Matching of Web Services Capabilities.,
In Proceedings of the First International Semantic Web Conference (ISWC2002), Sardinia, Italy,
June, 2002.

http://www.knowledgeweb.semanticweb.org/semanticportal/deliverables/D2.4.2.pdf
http://www.knowledgeweb.semanticweb.org/semanticportal/deliverables/D2.4.2.pdf


Publications 2017, 5, 1 24 of 27

Plebani, P.; Pernici, B. URBE: Web Service Retrieval Based on Similarity Evaluation. IEEE Trans.
Knowl. Data Eng. 2009, 21, 1629–1642.

Renear, A.; Sacchi, S.; Wickett, K. Definitions of Dataset in the Scientific and Technical Literature.
In Proceedings of the ASIST 2010, Pittsburgh, PA, USA, 22–27 October 2010.

Roman, D.; Keller, U.; Lausen, H.; et al. Web Service Modeling Ontology. Appl. Ontol. 2005,
1, 77–106.

Schulte, S. Web Service Discovery Based on Semantic Information—Query Formulation and
Adaptive Matchmaking. Ph.D. Thesis. Technische Universität Darmstadt, Darmstadt, Germany, 2010.

Verborgh, R.; Steiner, T.; Van Deursen, D.; Coppens, S.; Mannens, E.; Van de Walle, R.;
Gabarrò Vallès, J. Integrating Data and Services through Functional Semantic Service Descriptions.
In Proceedings of the W3C Workshop on Data and Services Integration, Bedford, MA, USA,
20–21 October 2011.

Yau, S.; Liu, J. Service Functionality Indexing and Matching for Service-based Systems.
In Proceedings of the IEEE International Conference on Services Computing, Honolulu, HI, USA,
7–11 July 2008.

Yau, S.; Liu, J. Functionality-Based Service Matchmaking for Service-Oriented Architecture.
In Proceedings of the Eighth International Symposium on Autonomous Decentralized Systems
(ISADS’07), Sedona, AZ, USA, 21–23 March 2007.

References

1. Hey, T.; Tansley, S.; Tolle, K. (Eds.) The Fourth Paradigm: Data Intensive Scientific Discovery; Microsoft Research:
Redmond, WA, USA, 2009.

2. National Research Council. Bits of Power: Issues in Global Access to Scientific Data; National Academy Press:
Washington, DC, USA, 1997.

3. Committee for a Study on Promoting Access to Scientific and Technical Data for the Public Interest;
Commission on Physical Sciences, Mathematics, and Applications; Division on Engineering and Physical
Sciences; National Research Council. A Question of Balance: Private Rights and the Public Interest in Scientific
and Technical Databases; National Academy Press: Washington, DC, USA, 1999.

4. National Science Board. Long-Lived Digital Data Collections: Enabling Research and Education in the 21st Century;
National Science Foundation: Washington, DC, USA, 2005.

5. Parkinson, C.L.; Ward, A.; King, M.D. (Eds.) Earth Science Reference Handbook—A Guide to NASA’s Earth
Science Program and Earth Observing Satellite Missions; National Aeronautics and Space Administration:
Washington, DC, USA, 2006.

6. Paskin, N. Digital Object Identifier for Scientific Data. In Proceedings of the 19th International CODATA
Conference, Berlin, Germany, 7–10 November 2004.

7. Marr, D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information;
MIT Press: Cambridge MA, USA, 1982.

8. Carey, M.J.; Onose, N.; Petropoulos, M. Data Services. Commun. ACM 2012, 55, 86–97. [CrossRef]
9. Hettrick, S. Research Software Sustainability; Report on a Knowledge Exchange Workshop; KE: Berlin, Germany,

3 March 2016.
10. Assante, M.; Candela, L.; Castelli, D.; Tani, A. Data Science Journal. Are Scientific Data Repositories Coping

with Research Data Publishing? Data Sci. J. 2016, 1–24. [CrossRef]
11. Lutz, M. Ontology-Based Descriptions for Semantic Discovery and Composition of Geoprocessing Services.

Geoinformatica 2007, 11, 1–36. [CrossRef]
12. Martin, D.; Burstein, M.; Hobbs, J.; Lassila, O.; McDermott, D.; McIlraith, S.; Narayanan, S.; Paolucci, M.;

Parsia, B.; Payne, T.; et al. OWL-S: Semantic Markup for Web Services. 2004. Available online: http://www.
w3.org/Submission/OWL-S (accessed on 30 August 2016).

13. McGuinness, D.L.; Harmelen, F.V. OWL Web Ontology Language Overview. 2004. Available online:
http://www.w3.org/TR/owl-features (accessed on 30 August 2016).

http://dx.doi.org/10.1145/2184319.2184340
http://dx.doi.org/10.5334/dsj-2016-006
http://dx.doi.org/10.1007/s10707-006-7635-9
http://www.w3.org/Submission/OWL-S
http://www.w3.org/Submission/OWL-S
http://www.w3.org/TR/owl-features


Publications 2017, 5, 1 25 of 27

14. Lausen, H.; Polleres, A.; Roman, D. (Eds.) Web Service Modeling Ontology (WSMO). 2005. Available online:
http://www.w3.org/Submission/WSMO (accessed on 30 August 2016).

15. De Bruijn, J.; Lausen, H. (Eds.) Web Service Modeling Language (WSML). 2005. Available online: http://www.
w3.org/Submission/WSML (accessed on 30 August 2016).

16. Fensel, D.; Fischer, F.; Jacek Kopecký, J.; Krummenacher, R.; Lambert, D.; Vitvar, T. WSMO-Lite: Lightweight
Semantic Descriptions for Services on the Web. 2010. Available online: http://www.w3.org/Submission/
WSMO-Lite (accessed on 30 August 2016).

17. Cyganiak, R.; Wood, D.; Lanthaler, M. (Eds.) RDF 1.1 Concepts and Abstract Syntax. 2014. Available online:
http://www.w3.org/TR/rdf11-concepts (accessed on 30 August 2016).

18. Farrell, J.; Lausen, H. Semantic Annotations for WSDL and XML Schema. 2007. Available online: http://www.
w3.org/TR/sawsdl (accessed on 30 August 2016).

19. Christensen, E.; Curbera, F.; Meredith, G.; Weerawarana, S. Web Services Description Language (WSDL) 1.1.
2001. Available online: http://www.w3.org/TR/wsdl (accessed on 30 August 2016).

20. Kopecký, J.; Gomadam, K.; Vitvar, T. hRESTS: An HTML Microformat for Describing RESTful Web Services.
In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent
Technology, Sydney, Australia, 9–12 December 2008; pp. 619–625.

21. Gomadam, K.; Ranabahu, A.; Sheth, A. SA-REST: Semantic Annotation of Web Resources 2010. Available
online: www.w3.org/Submission/SA-REST (accessed on 30 August 2016).

22. Kopecký, J.; Vitvar, T. D38v0.1 MicroWSMO. 2008. Available online: www.wsmo.org/TR/d38/v0.1 (accessed
on 30 August 2016).

23. Stavrakantonakis, I.; Fensel, A.; Fensel, D. Matching Web Entities with Potential Actions. In Proceedings
of the Poster and Demo Paper track International Conference on Semantic Systems (I-SEMANTICS 14),
CEUR-WS, Leipzig, Germany, 4–5 September 2014; pp. 35–38.

24. Prud’hommeaux, E.; Seaborne, A. (Eds.) SPARQL Query Language for RDF. 2008. Available online:
www.w3.org/TR/rdf-sparql-query (accessed on 30 August 2016).

25. Klusch, M.; Nesbigall, S.; Zinnikus, I. Model-Driven Semantic Service Matchmaking for Collaborative
Business Processes. In Proceedings of the 2nd International Workshop on Semantic Matchmaking and
Resource Retrieval, CEUR-WS, Karlsruhe, Germany, 27 October 2008; Volume 416.

26. Klusch, M.; Kapahnke, P.; Schulte, S.; Lecue, F.; Bernstein, A. Semantic Web Service Search: A Brief Survey.
Künstliche Intelligenz; Springer: Berlin, Germany, 2016; Volume 30, pp. 139–147.

27. Ngan, L.D.; Kanagasabai, R. Semantic Web service discovery: State-of-the-art and research challenges.
Pers. Ubiquitous Comput. 2013, 17, 1741–1752. [CrossRef]

28. Klusch, M. Semantic Web Service Description. CASCOM: Intelligent Service Coordination in the Semantic Web;
Birkhäuser: Basel, Switzerland, 2008; pp. 31–57.

29. Klusch, M.; Kapahnke, P. The iSeM matchmaker: A flexible approach for adaptive hybrid semantic service
selection. J. Web Semant. 2012, 15, 1–14. [CrossRef]

30. Masuch, N.; Hirsch, B.; Burkhardt, M.; Heler, A.; Albayrak, S. SeMa2: A Hybrid Semantic Service Matching
Approach. Semantic Web Services; Springer: Berlin, Germany, 2012.

31. Junghans, M.; Agarwal, S.; Studer, R. Towards practical semantic web service discovery. In Proceedings
of the 9th International Semantic Web Conference, Shanghai, China, 7–11 November 2010; Springer: Berlin,
Germany, 2010.

32. Klusch, M. Semantic Web Service Coordination. In CASCOM: Intelligent Service Coordination in the
Semantic Web; Birkhäuser: Basel, Switzerland, 2008; pp. 59–104.

33. Küster, U.; König-Ries, B.; Klein, M.; Stern, M. DIANE—An Integrated Approach to Automated Service
Discovery, Matchmaking and Composition. In Proceedings of the 16th International World Wide Web
Conference, Banff, AB, Canada, 8–12 May 2007.

34. Klusch, M. Overview of the S3 Contest: Performance Evaluation of Semantic Service Matchmakers.
In Semantic Web Services; Springer: Berlin, Germany, 2012; pp. 17–34.

35. Klan, F.; König-Ries, B. A Conversational Approach to Semantic Web Service Selection. In Proceedings
of the 12th International Conference on Electronic Commerce and Web Technologies, Toulouse, France,
30 August–1 September 2011.

http://www.w3.org/Submission/WSMO
http://www.w3.org/Submission/WSML
http://www.w3.org/Submission/WSML
http://www.w3.org/Submission/WSMO-Lite
http://www.w3.org/Submission/WSMO-Lite
http://www.w3.org/TR/rdf11-concepts
http://www.w3.org/TR/sawsdl
http://www.w3.org/TR/sawsdl
http://www.w3.org/TR/wsdl
www.w3.org/Submission/SA-REST
www.wsmo.org/TR/d38/v0.1
www.w3.org/TR/rdf-sparql-query
http://dx.doi.org/10.1007/s00779-012-0609-z
http://dx.doi.org/10.1016/j.websem.2012.07.003


Publications 2017, 5, 1 26 of 27

36. Colucci, S.; Di Noia, T.; Di Sciascio, E.; Donini, F.M.; Ragone, A.; Rizzi, R. A semantic-based fully visual
application for matchmaking and query refinement in B2C e-marketplaces. In Proceedings of the 8th
International Conference on Electronic Commerce, Fredericton, NB, Canada, 13–16 August 2006; pp. 174–184.

37. Payne, W.; Bettman, J.R.; Johnson, E.J. Behavioral decision research—A constructive processing perspective.
Annu. Rev. Psychol. 1992, 43, 87–131. [CrossRef]

38. Küster, U.; König-Ries, B.; Margaria, T.; Steffen, B. Comparison: Handling Preferences with DIANE and
miAamics. In Semantic Web Service Challenge—Results from the First Year; Springer: Berlin, Germany, 2008.

39. García, M.; Ruiz, D.; Ruiz-Cortés, A. A Model of User Preferences for Semantic Services Discovery
and Ranking. In Proceedings of the 7th International Conference on the Semantic Web: Research and
Applications—Volume Part II, Heraklion, Greece, 30 May–2 June 2010; Springer: Berlin, Germany, 2010; pp. 1–14.

40. Balke, W.-T.; Wagner, M. Towards personalized selection of web services. In Proceedings of the Twelfth
International World Wide Web Conference, Budapest, Hungary, 20–24 May 2003.

41. Sivashanmugam, K.; Sheth, A.; Miller, J.; Verma, K.; Aggarwal, R.; Rajasekaran, P. Metadata and
Semantics for Web Services and Processes. In Datenbanken und Informationssysteme, Festscrift zum 60;
von Gunter Schlageter, G., Ed.; Praktische Informatik I: Hagen, Germany, 2003.

42. Thanos, C. Mediation: The Technological Foundation of Modern Science. Data Sci. J. 2014, 13, 88–105.
[CrossRef]

43. Nativi, S.; Mazzetti, P.; Santoro, M.; Papeschi, F.; Craglia, M.; Ochiai, O. Big Data challenges in building the
Global Earth Observation System of Systems. Environ. Model. Soft. 2015, 68, 1–26. [CrossRef]

44. Khalsa, S.J.; Pearlman, J.; Nativi, S.; Pearlman, F.; Parsons, M.; Browdy, S.; Duerr, R. Brokering for EarthCube
Communities: A Road Map, Earth Cube Document. 2013. Available online: http://earthcube.org/
document/2012/brokering-earthcube-communities-road-map (accessed on 31 August 2012).

45. ICSU World Data System. “Trusted Data Services for Global Science”. Available online: https://www.icsu-
wds.org/organization/intro-to-wds (accessed on 12 December 2016).

46. Gruber, T. Towards Principles for the Design of Ontologies Used for Knowledge Sharing. Int. J. Hum.-Comput. Stud.
1995, 43, 907–928. [CrossRef]

47. Poggi, A.; Lembo, D.; Calvanese, D.; De Giacomo, G.; Lenzerini, M.; Rosati, R. Linking Data to Ontologies.
In Journal on Data Semantics X; Springer: Berlin, Germany, 2008.

48. Kritikos, K.; Plexousakis, D. Mixed-Integer Programming for QoS-Based Web Service Matchmaking.
IEEE Trans. Serv. Comput. 2009, 2, 122–139. [CrossRef]

49. Kritikos, K.; Plexousakis, D. Novel Optimal and Scalable Nonfunctional Service Matchmaking Techniques.
IEEE Trans. Serv. Comput. 2014, 7, 614–627. [CrossRef]

50. Klusch, M.; Fries, B.; Sycara, K. Automated semantic web service discovery with OWLS-MX. In Proceedings
of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, Hakodate,
Japan, 8–12 May 2006; pp. 915–922.

51. Garofalakis, J.; Panagis, Y.; Sakkopoulos, E.; Tsakalidis, A. Contemporary Web Service Discovery Mechanisms.
J. Web Eng. 2006, 5, 265–290.

52. Bhagat, J.; Tanoh, F.; Nzuobontane, E.; Laurent, T.; Orlowski, J.; Roos, M.; Wolstencroft, K.; Aleksejevs, S.;
Stevens, R.; Pettifer, S.; et al. BioCatalogue: A universal catalogue of web services for the life sciences.
Nucleic Acids Res. 2010, 38, W689–W694. [CrossRef] [PubMed]

53. Goble, C.A.; Bhagat, J.; Aleksejevs, S.; Cruickshank, D.; Michaelides, D.; Newman, D.; Borkum, M.;
Bechhofer, S.; Roos, M.; Li, P.; et al. myExperiment: A repository and social network for the sharing
of bioinformatics workflows. Nucleic Acids Res. 2010, 38, W677–W682. [CrossRef] [PubMed]

54. Belhajjame, K.; Wolstencroft, K.; Corcho, O.; Oinn, T.; Tanoh, F.; William, A.; Goble, C. Metadata Management
in the Taverna Workflow System. In Proceedings of the 8th IEEE International Symposium on Cluster
Computing and the Grid (CCGRID’08), Lyon, France, 19–22 May 2008; pp. 651–656.

55. Altintas, I.; Berkley, C.; Jaeger, E.; Jones, M.; Ludäscher, B.; Mock, S. Kepler: An extensible system for design
and execution of scientific workflows. In Proceedings of the 16th International Conference on Scientific and
Statistical Database Management, Santorini Island, Greece, 21–23 June 2004; pp. 423–424.

56. McPhillips, T.; Song, T.; Kolisnik, T.; Aulenbach, S.; Belhajjame, K.; Bocinsky, R.K.; Cao, Y.; Cheney, J.;
Chirigati, F.; Dey, S.; et al. YesWorkflow: A User- Oriented, Language-Independent Tool for Recovering
Workflow Information from Scripts. Int. J. Digit. Curation 2015, 10, 298–313. [CrossRef]

http://dx.doi.org/10.1146/annurev.ps.43.020192.000511
http://dx.doi.org/10.2481/dsj.14-016
http://dx.doi.org/10.1016/j.envsoft.2015.01.017
http://earthcube.org/document/2012/brokering-earthcube-communities-road-map
http://earthcube.org/document/2012/brokering-earthcube-communities-road-map
https://www.icsu-wds.org/organization/intro-to-wds
https://www.icsu-wds.org/organization/intro-to-wds
http://dx.doi.org/10.1006/ijhc.1995.1081
http://dx.doi.org/10.1109/TSC.2009.10
http://dx.doi.org/10.1109/TSC.2013.11
http://dx.doi.org/10.1093/nar/gkq394
http://www.ncbi.nlm.nih.gov/pubmed/20484378
http://dx.doi.org/10.1093/nar/gkq429
http://www.ncbi.nlm.nih.gov/pubmed/20501605
http://dx.doi.org/10.2218/ijdc.v10i1.370


Publications 2017, 5, 1 27 of 27

57. Mitra, N.; Lafon, Y. SOAP Version 1.2 Part 0: Primer (Second Edition). 2007. Available online: http://www.
w3.org/TR/soap12-part0 (accessed on 30 August 2016).

58. Petrie, C.; Margaria, T.; Lausen, H.; Zaremba, M. (Eds.) Semantic Web Services Challenge: Results from the
First Year; Springer: Boston, MA, USA, 2009.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.w3.org/TR/soap12-part0
http://www.w3.org/TR/soap12-part0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Concepts and Definitions 
	Research Data 
	Research Dataset 
	Description of a Research Data Service (RDS) 
	Research Data Service Profile/Metadata 
	Type of Research Data Service 
	Research Data Service Classification 
	Research Data Service Provision Models 
	The Main Actors in the RDS Discovery and Use Process 
	Service-Level Agreement (SLA) 
	Composite Research Data Service 
	Scientific Workflow 
	Research Data Service Registration 
	Domain-Specific Research Data Service Catalogue/Registry/Directory 
	Research Data Service Publication/Advertisement 

	Research Data Service in Context 
	The Research Data Service Discovery Process 
	RDS Discovery: Enabling Technologies 
	Knowledge Representation Languages 
	Reasoning/Matchmaking Support 
	Research Data Service Metadata/Profile 
	Mediation Support 
	Domain-Specific Ontologies 
	Digital Service Identifier (DSI) 
	Data Service Catalogues 

	Recommendations 
	
	Additional readings 

