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Abstract: High-throughput scientific instruments are generating massive amounts of data. Today,
one of the main challenges faced by researchers is to make the best use of the world’s growing
wealth of data. Data (re)usability is becoming a distinct characteristic of modern scientific practice.
By data (re)usability, we mean the ease of using data for legitimate scientific research by one or
more communities of research (consumer communities) that is produced by other communities of
research (producer communities). Data (re)usability allows the reanalysis of evidence, reproduction
and verification of results, minimizing duplication of effort, and building on the work of others.
It has four main dimensions: policy, legal, economic and technological. The paper addresses the
technological dimension of data reusability. The conceptual foundations of data reuse as well as
the barriers that hamper data reuse are presented and discussed. The data publication process is
proposed as a bridge between the data author and user and the relevant technologies enabling this
process are presented.
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1. Introduction

New high-throughput scientific instruments, telescopes, satellites, accelerators, supercomputers,
sensor networks and running simulations are generating massive amounts of scientific data.
Often referred to as a data deluge, massive datasets are revolutionizing the way research is carried
out, which results in the emergence of a new fourth paradigm of science based on data-intensive
computing [1]. This data-dominated science will lead to a data-centric way of thinking, organizing
and conducting research activities that could lead to new approaches to solve problems that were
previously considered extremely hard or, in some cases, even impossible to solve and also lead to
serendipitous discoveries [2]. Today, one of the main challenges faced by researchers is to make the
best use of the world’s growing wealth of data.

By data (re)usability, we mean the ease of using data for legitimate scientific research by one or
more communities of research (consumer communities) that is produced by other communities of
research (producer communities). We use the term data reusability to mean the ease of use of data
collected for one purpose to study a new problem [3]. This term denotes the reutilization of existing
datasets in significantly different contexts. Data reusability is becoming a distinct characteristic of
modern scientific practice, as it allows the reanalysis of evidence, reproduction and verification of
results, minimizing duplication of effort, and building on the work of others.

Data (re)usability can be effectively implemented in the Open Science framework, as the ultimate
goal of the Open Science is to make research data publicly available and (re)usable. The European
Commission is moving decisively towards the implementation of an Open Science framework in
Europe: In 2012, the European Commission encouraged all European Union EU Member States to
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put public-funded research results in the public sphere in order to make science better and strengthen
their knowledge-based economy, via a Recommendation [4]. A recent document The Amsterdam Call
for Action on Open Science advocates “full open access for all scientific publications” and endorses
an environment where data sharing and stewardship is the default approach for all publicly funded
research. This document was produced at an Open Science meeting organized by the Dutch Presidency
of the Council of the European Union (4–5 April 2016) [5].

Another initiative of the European Commission that is worthwhile to mention is the publication
of Guidelines on FAIR Data Management in Horizon 2020, that is, a set of guiding principles to make data
Findable, Accessible, Interoperable and Reusable [6].

Data reusability has four main dimensions: policy, legal, economic and technological. A legal and
policy framework should favor the open availability of scientific data and allow legal jurisdictional
boundaries to be overcome; the economics concern how the costs associated with the process of making
scientific data reusable are distributed among the stakeholders; and technology should render physical
and semantic barriers irrelevant. In this paper, we will concentrate on the technological dimension of
data reusability.

The paper is organized in the following way: Section 2 describes the research-data universe
composed of different types of research data, different kinds of data collections, of many data actors
and different data uses. Section 3 introduces the conceptual foundations of data reusability, i.e.,
relational thinking, knowledge boundaries, data abstraction/levellism and representation. Section 4
discusses the barriers that hamper data reuse. In Section 5, the data publication process, that spans
the distance between the data author and the data user, is described. In Section 6, the technologies
that enable this process are briefly described. Section 7 stresses the important role of standards in
making data usable. Finally, Section 8 summarizes the main points to be taken into consideration when
addressing the pressing need to reuse large datasets produced by the research communities.

2. The Research Data Universe

The research data universe is complex, involving many actors using many types of data for many
different scientific purposes. Recent years have witnessed the rise of a multitude of data collections
that are robust and flexible, while allowing for heterogeneous data types and associated metadata
developed to satisfy the wide range of requirements of diverse research communities.

Research Data

By research data, we mean scientific or technical measurements, values calculated, and
observations or facts that can be represented by numbers, tables, graphs, models, text, or symbols and
that are used as a basis for reasoning or further calculation [7]. Such data may be generated by various
means, including observation, computation, or experimentation. Scientists regard data as accurate
representations of the physical world and as evidence to support claims [8].

Data can be distinguished by their origins—whether they are observational, computational,
or experimental.

Observational data are collected by direct observations and a particular feature of these data is that
they cannot be recollected.
Computational data are produced by executing a computer model or simulation; their feature is that
they can be reproduced.
Experimental data are collected by conducting experiments; in principle, data from experiments can
be accurately reproduced. In practice, however, it may not be possible to reproduce precisely all of the
experimental conditions.

Data can be referred to as raw, derivative, or verified [8].

Raw data consist of original observations, such as those collected by satellite and beamed back to earth
or generated by an instrument or sensor or collected by conducting an experiment.
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Derivative data are generated by processing activities. The raw data are frequently subject to
subsequent stages of refinement and analysis, depending on the research objectives. There may
be a succession of versions. While the raw data may be the most complete form, derivative data may
be more readily usable by others as processing usually makes data more usable, ordered or simplified,
thus increasing their intelligibility.
Verified data are generated by curatorial activities. Their quality and accuracy have, thus, been assured.

Data Collections/Databases

Scientific data are stored into managed data collections/databases. Data collections fall into one
of three functional categories as reported in [9]:

Research Data Collections are the products of one or more focused research projects and typically
contain data that are subject to limited processing or curation. They may or may not conform
to community standards, such as standards for file formats, metadata structure, and content
access policies.
Resource or Community Data Collections serve a single science or engineering community.
These digital collections often establish community-level standards either by selecting from among
preexisting standards or by bringing the community together to develop new standards where they
are absent or inadequate.
Reference Data Collections are intended to serve large segments of the scientific and educational
community. Characteristic features of this category of digital collections are the broad scope and
diverse set of user communities including scientists, students, and educators from a wide variety of
disciplinary, institutional, and geographical settings. In these circumstances, conformance to robust,
well-established, and comprehensive standards is essential, and the selection of standards by reference
collections often has the effect of creating a universal standard.

Data Actors

The main actors in the scientific data universe are [9]:

Data Authors are individuals or teams involved in research activities that generate digital data that are
subsequently deposited in a data collection. Their interests lie in ensuring that they enjoy the benefits
of their own work, including gaining appropriate credit and recognition, and that their results can be
broadly disseminated and safely archived.
Data Users are representatives of the scientific communities. Their interests lie in having ready access
to data sets that are discoverable and intelligible, i.e., well defined and well documented.
Data Managers are individuals responsible for the operation and maintenance of the data
collections/databases.
Data Scientists are information and computer scientists developing innovative concepts in database
technology and information sciences, including scientific data modeling, data discovery, data
visualization, etc., and applying these to the fields of science relevant to the data collection/database.

Data Uses

Data are used in different ways according to their contexts. Two broad categories of data use can
be defined:

End Use is defined as the ability of accessing a dataset to verify some fact or perform some job-related
or personal task.
Derivative Use is defined as the ability of building on a preexisting dataset by extracting information
from one or more datasets in order to create a new dataset that can be used for the same, similar, or an
entirely different purpose with respect to the original dataset(s).
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Diversity in the Research Data Universe

In conclusion, we can affirm that research data exist in many different types and formats subject
to varying legal, cultural, protective, and practical constraints. Data authors, managers, and users
often come from different disciplinary, professional, cultural, and other settings with different needs,
expectations, responsibilities, authorities, and expertise. These experts are subject to varying legal,
physical, scientific, cultural, and other constraints.

The diversity in data, individuals, disciplines, contexts, and cultures is the big challenge faced
by researchers in order to harness the accumulating data and knowledge produced by the research
communities and make them reusable.

3. The Conceptual Foundations of Data Reusability

In this section, we introduce a conceptual framework within which to address the data (re)usability
problem from a more theoretical point of view. We have borrowed some concepts from other theoretical
fields, i.e., relational thinking, levellism and knowledge sharing in order to create this conceptual
framework. We have identified these three fields because data (re)usability implies a relationship
between the data author and data user; it requires that data must be made available at different levels
of abstraction and representation, and it also requires that data be semantically enriched in order to be
able to cross semantic barriers without semantic distortions.

3.1. Relational Thinking

The definition of data usability assumes that the two entities, data author and data user, are neatly
separated from one another and considers the properties attached to these entities as independent
of the relationships with which they interact and exist. Therefore, it tends to reify the attributes of
these entities by detaching them from their scientific context. This often takes place, as substantive
attributes are easier to identify or more convenient to count and so are assumed to be more concrete or
“real” than relational attributes. However, such a substantialist approach is not appropriate to address
data reusability issues. We think that an approach based on relational thinking is more appropriate.
By relational thinking, we mean a loosely structured framework or scaffold around which various
practice theories and methods are being developed (10).

In relational thinking found in practice theory, subjects, social groups, networks, or even artifacts
develop their properties only in relation to other subjects, social groups, or networks. Social objects
derive their significance from the relations that link them, rather than from the intrinsic features of
individual elements.

A dataset cannot be understood and used in and of itself (isolation), and cannot be transferred
from one scientific context to another without changes to its properties. Relational thinking entails
that a dataset produced by a community of practice in order to be used by another community of
practice must be endowed with properties (auxiliary information) that take into consideration the
characteristics of the “usability relation” between the two communities.

Several kinds of usability relations can be established between two communities of practice.
For example, a “confirmation relation” is established when the consumer community tries to find a
confirmation of some scientific expectation by gathering enough evidence from a data set produced by
the producer community. Another kind of usability relation is the “reproduction/verification relation”
that is established when the consumer community tries to reproduce/verify a scientific result by using
a data set produced by the producer community. One more kind of usability relation is the “discovery
relation” that is established when the consumer community tries to discover new insights from a data
set produced by the producer community.

Therefore, a community of practice that produces a data set, in order to make it (re)usable
by another community of practice, must complement it with appropriate metadata information.
The properties of the metadata information (provenance, context, quality, uncertainty, etc.) heavily
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depend on the “usability relation” established between the producer and consumer communities
of practice.

Thus, if a dataset is to be used by different communities of practice, different metadata information
must be provided to these diverse communities of practice depending on the characteristics of the
“usability relations” that link the producer community of practice with them. For example, for one
consumer community, it could be enough to know who, where and when a given dataset was produced;
for another, it could be important to know how this dataset was produced.

As a consequence, a data producer community of practice must define metadata models based on
the usability relations established between this community and the communities that consume the
data produced by it.

Relational thinking makes it possible to choose and organize the metadata information so as to
overcome the semantic and pragmatic boundaries between communities of research and, thus, increase
the understandability and reusability of the data.

In order to apply the relational thinking approach to improving data reusability, we have
to characterize the “usability relation” between data producer and data consumer communities.
In particular, we have to consider [10]:

(a) Differences characterizing the relation. A first characterization entails delineating what
are the differences associated with a “usability” relation between the data author and data
user. It would be important, for example, to be able to characterize the differences in the
knowledge and perspectives of a data author and a data user when working in the context
of a multidisciplinary/interdisciplinary collaborative research activity.

(b) Dependencies characterizing the relation. A second characterization entails delineating what
are the dependencies associated with a “usability” relation between the data author and data
consumer. The knowledge developed by the data producer is not inconsequential to the data
consumer but develops in dependency of the perspectives promoted by the data consumer.
It would be important to be able to delineate the dependencies that characterize the “usability”
relation between data producer and data consumer.

(c) Changes characterizing the relation. Differences and dependencies characterizing a “usability”
relation between data producer and data consumer change over time. We must assume that
the “usability” relation undergoes continuous refinement and/or revision through interactions
between the two entities (data author, data user).

The above characterizations should be taken into consideration when defining metadata models.
They should guide the definition of good quality metadata models (purpose-oriented, community-specific)
that can increase data reusability.

As the quality of metadata is probably the most important factor that determines the reusability
of data, we can affirm that the relational thinking approach is decisive in achieving a good level of
data reusability.

3.2. Knowledge Boundaries

In all the research activities, experimental, observational, or computational together with the
production of scientific data, a rich body of knowledge is also created. This knowledge can be of
two types: explicit knowledge and tacit knowledge.

In order to make the scientific data effectively reusable, the underpinning explicit and tacit
knowledge also has to be made reusable. The notion of knowledge reuse refers to the concepts
of transferring and reutilizing existing knowledge bases in significantly different contexts. Ideally,
it would be desirable to be able to handle these two types of knowledge as a commodity that can be
extracted, represented and packaged within a given context (data producer context) and transferred
and easily inserted in another context (data user context) [11].
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This means that both types of knowledge should be part of the data publishing process, that is,
the process through which scientific data are made sharable and usable.

The difficulty in making knowledge reusable consists in the fact that what is codified in one
discipline may not be understood to those in other fields because of the intellectual content and amount
of background needed.

3.2.1. Explicit Knowledge Reuse

By explicit knowledge, we mean knowledge that can be encoded in some language and exchanged
between distributed research teams.

Building a knowledge base also implies to endow it with a number of components that help to
generate knowledge from the knowledge base. Part of the complexity of reusing knowledge stems
from the multiple components of knowledge that should be reused. In fact, making a knowledge base
reusable implies that these components should also be reusable. Among these components, we identify
two that are particularly important [11]:

Reusable Lexicons: In building a knowledge base, an important step is the establishment of the domain
of discourse. It consists of identifying the objects in the world about which an inference engine will
reason and the set of linguistic terms, which have a precise and invariant meaning, by which both the
engine and the users will refer to those objects. A lexicon is reusable if it contains a set of reusable
terms. By reusable terms, we mean that an equivalence can be established among these terms and the
terms of other different lexicons.
Reusable Ontologies: In many cases, it is important to share more than a common vocabulary; it is
required to specify also the relationships among the objects in the world to which the term refers,
to understand how classes of objects can be defined and what are the rules that allow the assignment of
individual objects to particular classes. In essence, it is necessary to create ontologies. A domain-specific
ontology is reusable if it can be aligned with other domain-specific ontologies (see Section 6.2).

3.2.2. Tacit Knowledge

By tacit knowledge, we mean knowledge that is confined within specific practices and
interpersonal exchanges and bound up with a set of communications, tools, etc. The main characteristic
of this type of knowledge is its embeddedness [12]. This characteristic of tacit knowledge makes its
codification in some language very difficult.

In order to make tacit knowledge reusable, we must transform it into a “mobile knowledge”,
that is, a knowledge that can be codified in some language and easily transported or translated from
one working context to another one.

Unfortunately, there are several difficult problems that hinder the knowledge transformation
from tacit into mobile.

The main conceptual problem is how to transform knowledge that is embedded within
highly specific scientific domains into mobile knowledge that can cross several scientific domains.
The literature in many scientific fields addresses the tension between rich knowledge that is embedded
in interpersonal contexts, and the need to make knowledge mobile when it must be shared and reused
by distributed teams of researchers. Factors that can influence the effectiveness and efficiency of the
knowledge transformation from tacit to mobile include [13]:

(i) the characteristics of the knowledge,
(ii) the functionality of the data and communications infrastructures that support the data publishing

process and the mobilization of knowledge, and
(iii) the characteristics of the working contexts involved in a distributed collaborative effort (data

producer context, data consumer context).
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The mobile knowledge derived from tacit knowledge is highly contextualized. Therefore, in order
to make the mobile knowledge shareable among different teams, it is essential to create an interpretative
context shared by all the actors involved in collaborative efforts.

As a conceptual framework within which knowledge can be embodied, mobilized and shared
has been proposed, the concept of “boundary object” [13] is relevant. Boundary objects are those
objects that both inhabit several communities of practice and satisfy the informational requirements of
each of them. Boundary objects are thus both plastic enough to adapt to local needs and constraints
of several parties employing them, yet robust enough to maintain a common identity across sites.
They are weakly structured in common use and become strongly structured in individual-site use.
These objects may be abstract or concrete. Such objects have different meanings in different social
worlds but their structure is common enough to more than one world to make them recognizable,
a means of translation.

Boundary objects could play a key role in the successful translation of knowledge between
different communities. Unfortunately, boundary objects are not well understood or easily identified,
so their use as a translation tool is not widely implemented.

3.3. Data Abstraction and Data Representation

Research data provide an account of the results of a scientific work and therefore they must be
intelligible to those wishing to understand or scrutinize them. Therefore, data communication must be
differentiated for different categories of audiences with different scientific and cognitive backgrounds.
This means that effective data communication should enable recipients to scrutinize a dataset at a level
of abstraction and at a level of representation that are more appropriate for their scientific background
and research interests.

3.3.1. Data Abstraction

There are two main varieties of abstraction: ontological and epistemological [14]. The ontological
approach to abstraction, is concerned with the different levels of organization of a system that can be
identified and defined. For example, a database can have conceptual, semantic, syntactic and physical
levels of organization.

The epistemological approach to abstraction is concerned with the different levels of observation
or interpretation at which a system can be studied. For example, a database can be observed and
analyzed at different levels of abstraction, consisting of data related by time, place, instrument,
or object of observation. Examples of epistemological levels of abstraction are spatial and temporal
data abstractions.

Basic Concepts: In order to be able to describe the “method of abstraction”, three concepts are
introduced [14]:
Typed Variable: A “typed variable” is a uniquely-named conceptual entity (the variable) and a set
(called its type), consisting of all the values that the entity may take. Two typed variables are regarded
as equal if and only if their variables have the same name and their types are equal as sets. A variable
that cannot be assigned well-defined values is said to constitute an ill-typed variable.

The degree to which a type is appropriate depends on its context and use.

Observable: An “observable” is an interpreted typed variable, that is, a typed variable together with
a statement of which feature of a scientific data collection (for example, spatial, temporal, graphical,
visual) under consideration it represents.

The definition of an observable reflects a “particular view” or “attitude” towards the data
collection being studied. Most commonly, it corresponds to a simplification.
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Level of Abstraction: A level of abstraction (LoA) is a finite but non-empty set of observables. No order
is assigned to the observables. Different LoAs may be appropriate for different purposes. The definition
of observables is the first step in studying a data collection at a given LoA. The second step consists in
deciding what relationships are held between the observables.

The Method of Abstraction

As scientific databases should be studied at different levels of abstraction, a method for specifying
these different levels of abstraction must be defined [14].

In order to be able to specify a level of abstraction, first, the range of queries which can be
meaningfully asked by the target audience, and that are answerable in principle, must be identified.
The input of a level of abstraction consists of the scientific database under analysis; its output is an
abstract view of the database. The type and amount of data vary with the level of abstraction: a
lower level of abstraction produces a view that contains more data than a view produced at a higher,
or more abstract level. Therefore, type and quantity of data that must be taken into consideration when
specifying a level of abstraction is predetermined by the choice of this level. In essence, a given level of
abstraction provides a quantified commitment to the kind and amount of data that can be extracted
from a scientific database. The observables at a given level of data abstraction can be obtained as a
result of a query issued against a database.

The method of abstraction is ideally suited to the study and analysis of large and complex
databases derived from experiments and from upcoming petascale and exascale simulation systems.
They are best understood stepwise, that is, by their gradual disclosure at increasingly fine levels
of abstraction.

Several data abstraction approaches are currently used by data scientists in order to improve data
accessibility and understandability; among them, we list the most relevant:

Metadata. An ontological data abstraction level that is of paramount importance in the domain
of scientific data is the metadata abstraction level. This abstraction level captures the information
content of the underlying data independent of representational details. Metadata descriptions enable
representation of domain knowledge describing the information domain to which the underlying
data belong.
Data Virtualization. An important ontological data abstraction level is data virtualization; it hides all
the technical aspects of data storage; the data users do not have to know where all the data have been
stored physically, where the database servers run, what the source Application Programming Interface
API and database language is, and so on.
Data Clustering. An epistemological data abstraction approach is data clustering. It allows the grouping
of the data into clusters; the data contained in a cluster are similar to each other while data belonging
to different clusters are dissimilar.

In conclusion, we argue that (i) epistemological abstraction should be retained as a proper
abstraction method for increasing data reusability as it supports the definition of several levels of
explanation and interpretation of a scientific database; and (ii) ontological abstraction should be
retained as a proper abstraction method for increasing data accessibility and understandability as it
supports the definition of several levels of organization of a scientific database.

Finally, we argue that the right level of abstraction to be communicated to a given data consumer
community should be based on the “usability” relation established with the data producer community.

3.3.2. Data Representation

Appropriate data representation is essential for enabling scientists to correctly interpret data and
use them appropriately as the same information content can be represented differently in different data
description languages. A major problem is that we have no shared formal conceptual model of data
representation that is both accurate and sufficiently detailed to support the data needs of scientists
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belonging to different scientific disciplines [15]. The traditional relational data model is not adequate
to represent the data needs of most of the scientific disciplines [16]. For some scientific disciplines
(astronomy, oceanography, fusion, and remote sensing), an array data model is more appropriate.
Some other disciplines, i.e., biology and genomics, consider graphs and sequences more appropriate
for their needs. Lastly, solid modelling applications want a mesh data model. In the big data era,
pictorial representation of data is of paramount importance. It makes the presentation of data more
intelligible, and allows investigators to easily see the salient features of the data, and bring out the
hidden pattern and trends of the complex datasets. Two of the main approaches to the pictorial
representation of data are shown below:

Visual Representation of Data. Effective data visualization improves interpretation of data and helps
scientists in analyzing and reasoning about data and evidence. Visual data analysis enables the
detection and validation of expected results while also enabling unexpected discoveries in science.
Data visualization makes complex data more accessible, understandable and usable. In the big data
era, data visualization is an indispensable technique for extracting meaning from large and complex
scientific datasets.
Graphical Representation of Data. Graphical methods are also well suited for digesting great amounts
of data. Investigators can have a better look at the information collected and the distribution of data.
The graphic method of the representation of data enhances our understanding, makes the comparisons
easy and creates an imprint on the mind for a longer time.

4. Barriers That Hamper Data Reuse

Despite the importance, it is not easy to reuse data. There are several obstacles. We have identified
five main obstacles:

Heterogeneity of Representations

There are four critical impediments to data reuse due to the heterogeneity of representations [17].

Heterogeneous Data Representations: there is a wide variety of scientific data models and formats
and scientific information expressed in one formalism cannot directly be incorporated into
another formalism.
Heterogeneity of Query Languages: Data collections are managed by a variety of systems that support
different query languages. It is difficult to share data if they are encoded in different dialects.
Lack of Communication Conventions: Data reuse does not necessarily require a shared database.
If separate systems can communicate with one another, they can benefit from each other’s database
without sharing a common database. Unfortunately, this approach is not generally feasible for today’s
scientific database systems and file repositories as these systems are not based on formal data models
and thus, making them interoperable is very difficult. We lack an agreed-on protocol specifying how
these systems are to query each other and in what form answers are to be delivered. Similarly, we lack
standard protocols that would provide interoperability between research data infrastructures.
Vocabulary Mismatching: another barrier to data reuse is when a common vocabulary and domain
terminology is lacking.

Discovering Data

Researchers must be aware of who has the data they need or where the data are located. In a
networked scientific multidisciplinary environment, pinpointing the location of relevant data is a
big challenge for researchers. A data discovering capability requires the support of appropriate
metadata descriptions and registries, data classification/categorization schemes, as well as definitions
of researcher profiles and goals.

In addition, after finding appropriate data, researchers must often negotiate with the owner or
develop trusting relationships to gain access.
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Understanding Data

Once in possession of a data set, the next problem regards the capacity of the data user to
understand the information/knowledge embodied in it. Data understandability must be built on
a fundamental premise: a data set is intelligible only when its metadata relates to its intended use.
An additional difficulty arises when providing the same data set for different user communities. In this
case, appropriate abstractions of the data set must be created for the different communities.

To make data understandable, they must be endowed with auxiliary information, including
metadata, community-specific ontologies or taxonomies, and terminologies.

However, much of the knowledge needed to make sense of a data set is tacit. Scientists are not
necessarily able to explicate all of the information that is required to understand someone else’s work.

Moving Data

In the scientific data universe, actors and data collections inhabit multiple contexts. There is the
risk, when data are moving across contexts, of interpreting data representations in different ways
caused by the loss of the interpretative context. This can lead to a phenomenon called “ontological drift”
as the intended meaning becomes distorted as the data move across semantic boundaries (semantic
distortion). This risk arises when a shared vocabulary and domain terminology are lacking.

Data Mismatching

There are several data mismatching problems that hamper data reusability:
Quality mismatching occurs when the quality profile associated with a data set does not meet the

quality expectations of the user of this data set.
Data-incomplete mismatching occurs when a data set is lacking some useful information

(for example, provenance, contextual, uncertainty information) to enable a data user to fully exploit it.
Data abstraction mismatching occurs when the level of data abstraction (spatial, temporal,

graphical, etc.) created by a data author does not meet the expected level of abstraction by the
data user.

5. Data Publishing: A Process for Bridging the Gap between Data Author and Data User

An emerging approach in the scientific communication is Data Publication. By Data Publication,
we mean a process that allows the research community to discover, understand, and make assertions
about the trustworthiness and fitness for purpose of the data. In addition, it should allow for those who
create data, to receive academic credit for their work [18,19]. The ultimate aim of Data Publication is to
make scientific data available for reuse both within the original disciplines and the wider community.
Many of the issues regarding data availability and usability can be addressed if the principles of
publication rather than sharing are applied [20]. The Data publication approach imitates the scholarly
literature publication and generally emerges from the culture of academic research and scholarly
communication [21].

The Data Publication process should perform the following main functions:

• Data Peer-Reviewing
The purpose of peer review is to ensure a certain level of quality assurance. In fact, a peer-reviewed
dataset can be considered to have been through a process of scientific quality assurance.

• Data Registration
The purpose of registration is to make data citable as a unique piece of work and to allow claims
of precedence of a scholarly finding. Data registration should facilitate data discoverability.

• Data Semantic Enrichment
The purpose of semantic enrichment is to make data understandable. The published data should
be endowed with appropriate discipline-specific metadata information. The metadata information
improves data understandability.
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• Data Archiving
The purpose of archiving is to preserve data over time.

• Awareness
Publishing data allows scholars to remain aware of new claims and findings.

• Rewarding
The purpose of rewarding is to bring scholarly credit to the data authors.

In conclusion, we can say that Data Publication is a process that guarantees the “right to know” of
scholars and the “right to be known” of the data authors [22].

Data publication is enabled by data curation and data stewardship that are two fields of practice
of paramount importance for the data (re)usability.

Data curation is the active and on-going management of data through its entire lifecycle of interest
and usefulness to scholarship [23]. Data curation activities maintain data quality, add value, and
provide for reuse over time and also include authentication, archiving, management, preservation, and
representation. Curation, in essence, is concerned with availability and future use of data, including
the enhancement, extension, and improvement of data for reuse beyond a single scientific community.

Data stewardship is concerned with the management of shared data collections. It is essential
to their preservation and persistence. Stewardship is the process of overseeing and enforcing these
activities in accordance with policies defined by data collections’ owners. The stewardship function is
often primarily an administrative workflow [24].

The focus of data curation is on the “interest and usefulness” of data to scholarship; in essence,
it addresses the data quality criterion of relevance, while data stewardship is mainly concerned with
data trustworthiness [24].

Both data curation and stewardship address the critical function of helping users take confidence
in data usability based on various criteria of its quality, and thus, are instrumental to the data
publication. In fact, they constitute the two pillars that bear data publication.

An instrument that effectively supports the Data Publication process and therefore the data
reusability is the Data Management Plan (DMP). A DMP is a formal document that states what data
will be created and how, and outlines the plans for sharing and preservation. In addition, it also states
any restrictions that may need to be applied on the collected data. All the data organizations that
maintain data collections as well as the research projects that create data collections must be endowed
with a DMP.

6. Enabling Technologies

There are several technologies that can be employed to effectively implement the Data Publication
procedures and, thus, to overcome the impediments to data reuse. Some of them enable data
discoverability, some others data understandability, and others make data assessable. Altogether,
these technologies contribute to make scientific data reusable. We have identified seven main enabling
technologies: modeling metadata information, building and aligning domain-specific ontologies,
discovering data, enabling data exchangeability, linking data to publications, linking open data,
and applying standards.

6.1. (Meta) Data Modeling

In order to facilitate data understandability, it is necessary to define and develop formal models
that adequately describe:

• data representation needs of a given scientific discipline;
• data provenance information;
• data contextual information;
• data uncertainty;
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• data quality information.

All this information is collectively called metadata information. If scientists are to reuse data
collected by others, then the data must be carefully documented. Metadata is the descriptive
information about data that explains the measured attributes, their names, units, precision, accuracy,
data layout and ideally a great deal more. Most importantly, metadata should include the data lineage,
i.e., how the data was measured, acquired, or computed. The use of purpose-oriented metadata
models is of paramount importance to achieve data reusability. Data is incomprehensible and hence
useless unless there is a detailed and clear description of how and when it was gathered, and how
the derived data was produced [25]. The type of descriptive information to be provided by the data
author depends very much on the usability relations established between the data authors and users.

Data Provenance Modeling: In its most general form, provenance (also sometimes called lineage)
captures where data came from, and how it has been updated over time. Provenance can serve a
number of important functions [26]: explanation, verification, re-computation and repeatability. In the
long-term, a standard open representation and query model is needed. A promising example is the
“Open Provenance Model” [27], a community-driven model, which allows provenance to be exchanged
between systems.
Data Context Modeling: Context is a poorly used source of information in our computing
environments. As a result, we have an impoverished understanding of what context is and how
it can be used.

Contextual information is any information that can be used to characterize the situation of a
digital information object. In essence, this information documents the relationship of the data to
its environment. Context is the set of all contextual information that can be used to characterize the
situation of a digital information object.

Several context modelling approaches exist and are classified by the scheme of data structures
which are used to exchange contextual information in the respective system [28]: Key-value Models,
Mark-up Scheme Models, Object Oriented Models, Logic Based Models, and Ontology Based Models.

Data Uncertainty Modeling: As models of the real world, scientific datasets are often permeated with
forms of uncertainty. Uncertainty is the quantitative estimation of error; all measurements contain
some uncertainty generated through systematic error and/or random error. Acknowledging the
uncertainty of data is an important component of reporting the results of scientific investigation.

There has been a significant amount of work in areas variously known as “uncertain, probabilistic,
fuzzy, approximate, incomplete and imprecise” data management.

Unfortunately, current data management products do not support uncertainty [16]. Undoubtedly,
the development of suitable database theory to deal with uncertain database information remains a
challenge that has yet to be met.

Data Quality Modeling: The quality of data is a complex concept, difficult to define. There is no
common or agreed upon definition or measure for data quality, apart from such a general notion as
fitness for use.

The consequences of poor data quality are often experienced in all scientific disciplines,
but without making the necessary connections to its causes [29]. Awareness of the importance of
improving the quality of data is increasing in all scientific fields.

In order to fully understand the concept, researchers have traditionally identified a number
of specific quality dimensions. A dimension or characteristic captures a specific facet of quality.
The more commonly referenced dimensions include accuracy, completeness, consistency, currency,
timeliness and volatility.
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For specific categories of data and for specific scientific disciplines, it may be appropriate to have
specific sets of dimensions.

Metadata is as valuable as the data itself [30]. The use of metadata and their accuracy have
increased over the past several decades. The quality of metadata is probably the single most important
factor that enables the reusability of scientific data.

Data Paper. Recently, a mechanism, the data paper, able to improve data understandability and,
thus, data reusability has been proposed. A data paper can be defined as a scholarly publication
of a searchable metadata document describing a particular on-line accessible dataset, or a group of datasets,
published in accordance to the standard academic practices [31]. In essence, a data paper is a journal
publication whose primary purpose is to describe data, rather than to report a research investigation.
As such, it contains facts about data, not hypotheses, and arguments in support of those hypotheses
based on data, as found in a conventional research article. Its purpose is threefold: (i) to provide a
citable journal publication that brings scholarly credit to data authors; (ii) to describe the data in a
structured human-readable form; and (iii) to bring the existence of the data to the attention of the
scholarly community.

A data paper should describe how the data sets were collected/created, who collected/created
them and who owns these data sets, which software was used to create the data sets, the spatial and
temporal coverage of the data sets, etc. It could also include sections summarizing the history of the
data set, e.g., original purpose, funding body, etc., as well as its perceived value and usefulness to
scientific research (fundamental and/or applied).

An important feature of data papers is that they should always be linked to the published datasets
they describe, and that this link (an URL, ideally resolving a digital object identifier, DOI) should be
published within the paper itself.

6.2. Domain-Specific Ontologies

Ontologies constitute a key technology enabling a wide range of data services [32]. The growing
availability of data has shifted the focus from closed, relatively data-poor applications, to mechanisms
and applications for searching, integrating and making use of the vast amounts of data that are now
available. Ontologies provide the semantic underpinning that enables reuse of research data [33,34].
Current research is exploring the use of formal ontologies for specifying content-specific agreements
for a variety of data/knowledge reuse activities.

A community of practice has to establish its own domain of discourse and choose a formalism, i.e.,
a knowledge representation language, in order to create its own domain-specific ontology. In addition,
a set of linguistic terms by which the members of the community will refer to these objects must be
identified. Building this set of terms is difficult because words often have multiple synonyms and
because the meanings of words in natural language always depend heavily on the contexts in which
the words are used. To overcome this difficulty, explicit lexicons should be created which offer the
members of a community of practice a set of terms with which to refer to specific concepts.

In the context of a networked scientific world, domain-specific ontologies are not standalone
artifacts. They relate to each other in ways that might affect their meaning, and are inherently
distributed in a network of interlinked semantic resources, taking into account in particular their
dynamics, modularity and contextual dependencies. The alignment of domain-specific ontologies is
crucial for data reusability. It is achieved through a set of mapping rules that specify a correspondence
between various entities, such as objects, concepts, relations, and instances. Several concept and
relation constructors are offered to construct complex expressions to be used in mappings [35].

6.3. Data Discovering

By Data Discovery, we mean the capability to quickly and accurately identify and find data
that supports research requirements. The process of discovering data that exist within a data
collection/database is supported by search and query functionality which exploits data registration and
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citation capabilities; and metadata descriptions contained in data categorization/classification schemes,
data dictionaries, data inventories, and metadata registries.

Data Registration. By Data Registration capability, we mean a capability enabling researchers to
make data citable as a unique piece of work. Once accepted for deposit, data should be assigned a
“Digital Object Identifier” (DOI) for registration. A DOI [36] is a unique name (not a location) within
the scientific data universe and provides a system for persistent and actionable identification of data.
Identifiers should be assigned at the level of granularity appropriate for an envisaged functional use.
The Data Registration capability should include a specified numbering syntax, a resolution service,
a model and an implementation mechanism determined by policies and procedures for the governance
and application of DOIs.

Data Citation. Data can also be identified and accessed through a publication by means of a
data citation capability. By data citation capability, we mean a capability providing a reference to
data in the same way as researchers routinely provide a bibliographic reference to printed resources.
A Data Citation capability should include a minimum of five components [37]: the author of the
dataset, the date the data set was published, the data set title, a Unique Global Identifier system
(Life Science Identifiers (LSID), Digital Object Identifier (DOI), Uniform Resource Name (URN), etc.)
and a Universal Numeric Fingerprint (UNF). The UNF is a short, fixed-length string of numbers
and characters that summarize the content of the data set, such that a change in any part of the data
would produce a completely different UNF. The fifth component is necessary because unique global
identifiers do not guarantee that the data do not change in any meaningful way when the data storage
formats change. Together, the Global Unique Identifier and UNF ensure permanence, verifiability,
and accessibility, even in situations where the data are confidential, restricted, or proprietary.

Data Classification. Data Classification is the categorization of data for its most effective and
efficient use. Data can be classified according to any criteria. A well-planned data classification
system makes essential data easy to find. This can be of particular importance in data discovery.
A classification scheme should allow/help scientists to effectively answer the following questions:

• What data types are available?
• Where are certain data located?
• What access levels are implemented?
• What protection level is implemented and does it adhere to compliance regulations?

Although data classification is typically a manual process, there are many tools from different
vendors that can help gather information about the data. They help to categorize data for
several purposes.

Data Dictionary. Data Dictionaries contain the information about the data contained in large
data collections. Each data element is defined by its data type, the location where it can be found, and
the location where it came from. Often, the data dictionary includes the logic when a field is derived.
Typically, each data collection has its own data dictionary.

Metadata Registry. By domain-specific Metadata Registry, we mean a registry used to describe,
document, protect, control and access informational representations of a scientific domain. There are
two types of metadata registry: (i) metadata schema registries which are databases containing metadata
schemas relative to the data collections/databases of a scientific domain; (ii) metadata registries that
hold metadata and reference information, a kind of index of terms regarding the data stored in the
data collections/databases of a scientific domain. These two types of registry can be components of a
2-tiered metadata registry architecture.

A Metadata Registry supports data reuse as it:

• holds precise data definitions and descriptions;
• holds documentation of data characteristics;
• provides guidance for the identification of data elements stored in data collections/databases;
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• provides means for organizing standard shareable data elements; and
• sets up common standards between communities of practice

6.4. Data Exchangeability

By data exchangeability we mean the ability of two entities, i.e., data author and data user,
to exchange meaningful data sets. Data exchangeability is a prerequisite for data reuse. During the
data exchange process, especially when data are moving between scientific disciplines, three types of
“heterogeneity” must be addressed.

First, heterogeneity between the native data/query language (of the data author) and the target
data/query language (of the data user). When this heterogeneity is resolved, we say that syntactic
exchangeability between the two entities has been achieved.

Second, heterogeneity between the data models adopted by data author and user to represent
information objects. When this heterogeneity is resolved, we say that structural exchangeability between
the two entities has been achieved.

Third, heterogeneity between the domain of discourse of data author and user. When this heterogeneity
is resolved, we say that semantic exchangeability between the two entities has been achieved.

These three levels of exchangeability, i.e., syntactic, structural, and semantic allow a meaningful
exchange of data between the data author and user. However, the three levels of exchangeability do
not guarantee that the data user is able to reuse the exchanged data; they only constitute a necessary
but not sufficient condition for effective data reuse.

The main concept enabling data exchangeability is mediation [38]. This concept has been used
to cope with many dimensions of heterogeneity, spanning data language syntaxes, data models and
semantics. The mediation concept is implemented by a mediator, which is a software device capable of
establishing exchangeability by resolving heterogeneities.

6.5. Linking Data to Publications

In data-dominated science, scientific communication undergoes a significant change. Modern
scientific communication should support the practice of providing a reference to data in the same way
as researchers routinely provide a bibliographic reference to printed resources. The need to cite data is
starting to be recognized as one of the key practices underpinning the recognition of data as a primary
research output rather than as a by-product of research. Data will, thus, become a first-class citizen of
the scientific communication. Linking scientific data to publications will produce significant benefits
as publications: (i) facilitate data findability; (ii) facilitate data interpretability; and (iii) provide the
data author better credit for the data.

As a consequence, accessing a data set through a scientific publication will increase the usability
of this data set.

Linked Open Data

The usability of scientific data could be greatly increased by the adoption of the “Linked Data”
technologies as they provide a more generic, more flexible data publishing paradigm that makes it
easier for data producers to interconnect their data with those produced in other scientific disciplines
and for data consumers to discover and integrate data from large numbers of data sources. The term
Linked Data refers to a set of best practices for publishing structured data on the Web [39]. In particular,
Linked Data provides [40] (i) a unifying data model. Linked Data relies on Resource Description
Framework RDF as a single, unifying model; (ii) a standardized data access mechanism. Linked Data
commits itself to a specific pattern of using the HTTP protocol; (iii) hyperlink-based data discovery.
By using URIs as global identifiers for entities, Linked Data allow hyperlinks to be set between entities
in different data sources; and (iv) self-descriptive data.

Linked Data have gained significant uptake in several scientific domains as a technology that
allows to connect the various data sets that are used by researchers in different scientific domains and
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to navigate along the RDF links between different scientific data sets as well as between publications
and supporting data.

Recently, a grassroots effort, the Linked Open Data, is aiming to publish and interlink open license
data sets from different data sources as Linked Data on the Web.

7. Standards

The role of standards in increasing data understandability and reusability is crucial.
Standardization activities characterize the different phases of the scientific data life-cycle. Several
activities aim at defining and developing standards to represent scientific data, i.e., standard
data models; standards for querying data collections/databases, i.e., standard query languages;
standards for modeling domain-specific metadata information, i.e., metadata standards; standards for
identifying data, i.e., data identification standards, standards for creating a common understanding
of a domain-specific data collection, i.e., standard domain-specific ontologies/taxonomies and
lexicons, standards for facilitating the transfer of data between domains, i.e., standard transportation
protocols, etc.

A big effort has been devoted to creating metadata standards for different research communities.
Metadata standards vary in terms of their specificity, structure, and maturity largely because each
standard has been developed on the basis of the needs of a particular user community.

Given the plethora of standards that now exist, some attention should be directed to creating
crosswalks or maps between the different standards.

In [41], the standardization is considered to be particularly important for the reuse of data across
distance, where the use of data outside their original context implies distance. The word distance is
subject to a variety of interpretations. Most commonly, distance is used to refer to something outside
the local sphere of activity. An example of this definition is the space between the assumptions and
methods of one discipline and another. Distance can also exist within a community, for reasons such as
personal or institutional status, subspecialty, or epistemological view. Additionally, the word distance
can be defined in a temporal sense. For example, there can be a time lag between the original data
collection and reuse.

Standards are important because they can help to span all kinds of distance (spatial, temporal,
cultural, etc.) as they have the capability to transform local knowledge into public knowledge and
thus avoid that epistemological differences due to distance can lead to different interpretations of the
same data.

8. Concluding Remarks

Research data reuse is the quintessence of the open science and open data principles on which
modern science is based. To make it feasible, first, all potential barriers, technological, political, legal
and economics must be identified. In a previous paper [42], we have described the technological
barriers that hinder research data (re)usability. In this paper, we have described the conceptual
foundations of research data (re)usability. This does not mean that we underestimate the importance
of the policy and legal aspects and their power to hinder data reuse.

At present, the trend in the research data management practices is the creation of domain-specific
data centers [43] designed to ensure the stewardship and provision of quality-assessed data and
data services to the international science community and other stakeholders. Each domain-specific
data center has the responsibility for defining an appropriate Data Management Plan. In this DMP,
a conceptual data usability scenario must also be included; it should contain:

• identification of the “usability relationships” between the data author and potential data users;
• transformation of the explicit and tacit knowledge accumulated during the data production

process into mobile knowledge in order to be transferred and translated from the data author
context to the data user contexts; and
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• definition of appropriate levels of data abstraction and data representation to be communicated
to the potential users.

In essence, in the context of a DMP, a Data Publication process must be put into action that will
perform all the functions listed in Section 5.

There are three main contributions in this paper: first, it presents the problem of scientific data
(re)usability in a structured and comprehensive form; second, it sets the conceptual foundations of data
usability by borrowing basic concepts from other theoretical fields, i.e., relational thinking, levellism,
and knowledge representation and applying them in the data usability field; and third, it identifies the
data publication process as the enabler of data usability.

Therefore, in making scientific data reusable first, a conceptual data usability scenario must be
defined; it includes:

• identification of the “usability relationships” between the data author and potential data users;
• transformation of the explicit and tacit knowledge accumulated during the data production

process into mobile knowledge in order to be transferred and translated from the data author
context to the data user contexts; and

• definition of appropriate levels of data abstraction and data representation to be communicated
to the potential users.

Then, a Data Publication process must be put into action that will perform all the functions listed in
Section 5 and will be implemented within the conceptual data usability scenario identified beforehand.

In conclusion, we foresee that the well-established model of scientific publishing will be
increasingly complemented by a system of data publication and that many of the issues regarding
research data sharing and reuse could be effectively addressed if the principles of Data Publication are
applied within a Data Usability Conceptual Framework.
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