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Abstract

:

Sesame (Sesamum indicum L.) is a global oil crop. Sesame oil has been regarded as functional oil with antioxidant properties in several in vivo studies but little is known about its minor fraction. In this line, this study figures out the profile of the polar fraction of Egyptian cultivar Giza 32 sesame oil (SG32 oil) employing reversed-phase high-performance liquid chromatography coupled with diode array detection and electrospray ionization-quadrupole-time-of-flight-mass spectrometry and tandem MS. The characterization of the sesame oil metabolites depended on the observation of their retention time values, accurate MS, and MS/MS data, with UV spectra, and compared with relevant literature and available standards. Remarkably, 86 metabolites were characterized and sub-grouped into phenolic acids, lignans, flavonoids, nitrogenous compounds, and organic acids. From the characterized metabolites, 72 compounds were previously characterized in SG32 cake, which presented antioxidant properties, and hence it could contribute to SG32 oil antioxidant properties. Further studies are required to state the presence of such phenolics in commercial sesame oils and what of these compounds resist oil refining.
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1. Introduction


Family Pedaliaceae belongs to the order Lamiales and consists of 14 genera and 70 species, including the famously known as sesame (Sesamum indicum L.) [1]. It is a crop-producing oil whose cultivation is distributed globally. On the base of total production, sesame seeds production is nearly 7 million tons with a production of 2 million tons of sesame oil [2]. Anciently, sesame originated from India. It was known in the Ancient Egyptian Civilization for the treatment of asthma since the third century BC [3,4,5]. Sesame seeds contain fats, proteins, carbohydrates, vitamins, and dietary fibers [5,6].



Besides their nutritional properties, several scientists explored possible biological activities and phytoconstituents of sesame seeds. In this sense, Dravie et al. [7] examined the antioxidant properties, total phenols, and flavonoids contents of Ghanaian sesame seeds via a multiple solvent extractions model. It was clear that the acetone extract was beyond most of the extracts in the antioxidant potential that were positively correlated with the total phenol content. As a matter of fact, sesame seeds have a myriad of biological activities, for instance, cardioprotective, hypolipidemic, hypocholesterolemic, anticancer, antioxidant, antidiabetic, and antihypertensive, among others [5,8,9,10,11]. Similarly, sesame seed oil has been recently regarded as functional oil with antioxidant properties [12,13]. In this line, Kim et al. [8] unraveled the auditory-protective effect of sesame oil in zebrafish and mice through the regulation of the hearing-related gene, Tecta. Concerning agri-food residues of sesame seeds, Khaleel et al. [14] have shown that residual sesame parts may exert some bioactivities.



Regarding the phytoconstituents retrieved from sesame, Dachtler et al. [15] characterized some furofurano lignans viz., sesamin, sesaminol, 6-episesaminol, and sesamolin using an online system of high-performance liquid chromatography (HPLC) hyphenated with nuclear magnetic resonance (NMR) and mass spectrometry (MS) detectors. In addition, Hassan [6] focused on the fatty acids composition of sesame oil. Moreover, Wu et al. [16] performed an LC-MS/MS combined with magnetic carboxylated multi-walled carbon nanotubes based-method for the determination of phenolic compounds in sesame oil. In another study, Görgüç et al. [17,18] incorporated vacuum and ultrasound-assisted enzymatic extraction to recover proteins and bioactive metabolites from sesame bran. Recently, Mekky et al. [10] performed untargeted metabolic profiling of sesame cake via reversed-phase (RP) (HPLC)—diode array detection (DAD) and hyphenated to electrospray ionization (ESI)-quadrupole-time-of-flight (QTOF)-MS and tandem MS. This technology enables the detection of phenolic acids, lignans, and flavonoids, giving an insight into the significance of such agri-food residue.



Similarly, this study aims at performing untargeted profiling of the metabolites of the polar fraction of sesame oil of the Egyptian cultivar ’Giza 32’ (SG32) through RP-HPLC-DAD-QTOF-MS and tandem MS to give new insights into the minor composition, with a focus on phenolic compounds. In fact, there is little information concerning the metabolic profiling of sesame oil, which has been limited to some phenolic classes and fatty acids, as commented before.




2. Materials and Methods


2.1. Chemicals


Solvents (n-hexane, methanol, acetonitrile, acetone, and glacial acetic acid) were obtained from Fisher Chemicals (Thermo Fisher Scientific, Waltham, MA, USA). They were of analytical and MS grade for extraction and characterization, respectively. A Milli-Q system (Millipore, Bedford, MA, USA) was used for obtaining ultrapure water. Standards were purchased from Sigma-Aldrich (St. Louis, MO, USA), except for some amino acids (L-tryptophan and L-phenylalanine), which were from Acros Organics (Morris Plains, NJ, USA). The degree of purity of all the used standards was around 95% (w/w).




2.2. Samples Procurement and Oil Extraction Procedures


SG32 seeds were identified and provided by Agriculture Engineer Nadia Abdel-Azim, Egyptian Ministry of Agriculture and Land Reclamation (Giza, Egypt). Firstly, they were ground into a fine powder with a particle size of around 1 mm via an Ultra Centrifugal Mill ZM 200, Retsch (Haan, Germany).



The extraction of SG32 seeds was according to Shyu and Hwang [19], with some modifications. The first step was to extract sesame oil through the homogenization of 1 g of SG32 seeds with 10 mL n-hexane utilizing a magnetic stirrer Agimatic-N (Jp Selecta, Barcelona, Spain) for 30 min at room temperature followed by centrifugation at 7155× g at 5 °C for 15 min by a Sorvall ST 16 (Thermo Sci., ThermoFisher, Waltham, MA, USA). To recover oil fraction from SG32 seeds, n-hexane supernatant was collected and evaporated until dry under vacuum by a rotary evaporator at 38 °C (Rotavapor R-200, Büchi Labortechnik, AG, Switzerland). As the second step and in order to extract the phenolic compounds from sesame oil, this fraction was reconstituted in 2 mL n-hexane followed by 5 mL methanol:water (80:20, v/v) based on Ishtiaque et al. [20] to get the polar fraction of SG32 oil. The extraction mixture was agitated, centrifuged, and the supernatant collected. The previous step was repeated twice (methanol:water (80:20, v/v) × 2.5 mL). The methanolic-aqueous extracts were combined and defatted with n-hexane (2 mL) to eliminate any residual fat and concentrated using a speed-vacuum Concentrator plus (Eppendorf AG, Hamburg, Germany) at 30 °C for above 3 h. The polar oil fraction was appropriately dissolved in 2 mL of aqueous methanol (80:20, v/v) previously to subjection to RP-HPLC-DAD-ESI-QTOF-MS and -tandem MS analysis.




2.3. Analysis by RP-HPLC-DAD-ESI-QTOF-MS and -Tandem MS


The HPLC was an Agilent 1200 series equipped with a binary pump, an autosampler, and a diode array detector (DAD), (Agilent Technologies, Santa Clara, CA, USA) [21,22]. The separating column was a core-shell Halo C18 (150 mm × 4.6 mm, 2.7 μm particle size, Advanced Materials Technologies, Wilmington, DE, USA). The system was hyphenated to a 6540 Agilent Ultra-High-Definition (UHD) Accurate-Mass Q-TOF LC/MS equipped with an Agilent Dual Jet Stream electrospray ionization (Dual AJS ESI) interface. MassHunter Workstation software (Agilent Technologies) was used for data acquisition (2.5 Hz) in profile mode. The spectra were acquired over a mass-to-charge (m/z) range from 70 to 1500 in negative-ion mode. The detection window was set to 100 ppm.



Data analysis was performed using MassHunter Qualitative Analysis B.06.00 (Agilent Technologies) according to [10,21,23,24]. In brief, compounds characterization was performed by observing candidates and the generation of their formulas within a mass error limit of ±5 ppm. The MS score was set to ≥80 [10]. The following databases were consulted: Reaxys [25],KNApSAcK Core System [26], SciFinder Scholar [27], PubChem [28], ChemSpider [29], METLIN Metabolite Database [30], Phenol-Explorer [31], the Dictionary of Natural Products [32], and Phytochemical dictionary of natural products database [33]. Moreover, relevant literature was traced via the Egyptian Knowledge Bank [34]. In addition, for characterization work validation, a comparison was made with standards whenever possible.





3. Results and Discussion


3.1. RP-HPLC-DAD-ESI-QTOF-MS and Tandem-MS of SG32 Oil


The phenolic fraction of SG32 oil was analyzed in negative ionization mode via core-shell RP-HPLC-DAD-ESI-QTOF-MS and tandem MS. Table 1 and Table 2 classify the characterized metabolites into phenolics and non-phenolics. Besides, they demonstrate for each candidate the time (RT), experimental m/z, generated molecular formulas, mass errors, scores, double bond equivalents (DBE), UV maxima (if present), tandem mass fragments, and relative abundance (area of chromatographic profiles of all characterized metabolites), respectively. This information was used for the characterization work, which was based on the strategy followed in our previous studies. Basically, the RT, molecular formula, and the fragmentation patterns were compared to those found in literature, databases, and standards, when possible. Moreover, fragmentation patterns enabled us to obtain clues about the functional groups, basic constituents, and/or polyphenol nucleus [10,23,35]. Nonetheless, further confirmation is required by NMR to also establish the stereochemistry.



Also, Tables S1 and S2 (supplementary material) mention metabolites classifications, and cite their previous description in the literature. A total of 86 metabolites were characterized with 11 metabolites reported for the first time in sesame, 59 metabolites observed for the first time in sesame oil, and 3 new proposed structures.



Moreover, Figure 1a represents the base peak chromatogram obtained by RP-HPLC-DAD-ESI-QTOF-MS showing the complexity of the minor constituents of sesame oil as that for the seed cake (Figure 1c).



3.1.1. Phenolic Compounds


Sixty-four phenolic compounds were observed in SG32 oil and could be categorized into phenolic acids (32), flavonoids (19), lignans (10), coumarins (1), phenol aldehydes (1), and phenol derivatives (1). Figure 1b summarizes these compounds grouped into these phenolic classes, showing their position in the RP-HPLC-MS chromatogram and their abundance.




Phenolic Acids


The presence of phenolic acids was noticed with 32 phenolic compounds, being the major class of the annotated metabolites in qualitative and quantitative terms (Figure 1b, see Section 3.2). They belonged to three subclasses viz., hydroxybenzoic acids (12), hydroxycinnamic acids (19), and a hexahydroxydiphenic acid dilactone (Table 1 and Table S1).



Concerning hydroxybenzoic acids, compounds at m/z 121.03 and 135.05 showed the loss of CO (28 Da) and CO2 (44 Da), and λmax 278 and 273 nm, respectively. They were described as benzoic acid and a methyl derivative [10]. Methylated and methoxy derivatives were also tentatively identified. In this sense, compounds at m/z 151.40 (C8H8O3) exerted neutral losses of methyl (CH3, 15 Da) followed by decarboxylation (CO2, 44 Da), which are typical of the presence of methoxy groups and phenolic acids, respectively. They were annotated as methoxybenzoic acid isomers I–II according to the Reaxys database. Figure 2a describes the main fragments of methoxybenzoic acid isomer II. Similarly, a methylated derivative was observed at RT 14.61 min and was characterized as hydroxybenzoic acid methyl ester. In this case, a loss of CH2 was observed instead of CH3 as in the aforementioned cases. Moreover, a mono-hydroxylated benzoic acid was also characterized, hydroxybenzoic acid (m/z 137.02, C7H6O3), with the sequential loss of water and CO2 [21].



Dihydroxybenzoic acids were detected, and illustrated as, protocatechuic and vanillic acids (O-methylated derivative), at RT 11.26 and 16.79 min, respectively. Both revealed the neutral loss of water (18 Da) and CO2 with an additional loss of a methyl group (CH3) in the case of vanillic acid [36] (Figure 2b). A glycosylated derivative of this compound (vanillic acid hexoside) was also characterized (m/z of 329.09, C14H18O9), which showed a loss of a hexose (162 Da) as being linked through the hydroxyl moiety of the vanillic acid, as well as CH3 and CO2, as for the aforementioned phenolic acids. It bears noting that this is the first report of it in sesame oil [10].



Gallic and syringic acids presence (tri-hydroxylated benzoic acids) was confirmed with standards. Moreover, syringic acid hexoside was detected at (RT 11.81 min, m/z 359.10) showing the neutral loss of a hexose, demethylation, and decarboxylation, as before [10] (Table 1 and Table S1).



Concerning hydroxycinnamic acids, 19 derivatives were observed. They could be divided into cinnamic acid (non-hydroxylated), p-coumaric acid, and m-coumaric acid derivatives (mono-hydroxylated), caffeic acid, and ferulic acid derivatives (di-hydroxylated), and sinapic acid derivatives (tri-hydroxylated). It is noteworthy that the presence of m-coumaric, p-coumaric acid, chlorogenic (caffeoylquinic I), and ferulic acids was unambiguously confirmed with standards. Another isomer of caffeoylquinic acid was observed at RT 17.23 min with the presence of the fragment ions of quinic acid with its dehydrated ion (m/z 191.0556 and 173.0450) and caffeic acid with its dehydrated and decarboxylated ions (m/z 179.0327, 161.0233, and 135.0455) [24]. Besides, the occurrence of m-coumaric acid and caffeoylquinic acids I–II is observed for the first time in sesame oil. In this line, a caffeoyl phenylethanoid derivative (m/z 623.20, C29H36O15) was observed at RT 21.12 min. The main detected fragments unraveled the neutral loss of a caffeoyl and a deoxyhexosyl moieties (m/z 461.17 and 315.11) with the detection of caffeic acid ion and its dehydrated form (m/z 179.03 and 161.02). The hydroxytyrosol ion (phenylethanoid) was observed (m/z 153.05) after the neutral loss of hexosyl moiety (Figure 3a) and so it is verbascoside according to previous studies [10,24].



Additionally, peak 21 (m/z of 147.05, C9H8O2) showed the characteristic neutral loss of 44 Da of phenolic acids and thus it was annotated as cinnamic acid [10] (Table 1, Table S1). Four isomers of p-coumaric acid hexosides were characterized at m/z values of 325.09 (C15H18O8) and with MS/MS revealing neutral losses of hexose, which release the aglycone nuclei (m/z 163.04), followed by decarboxylation. Similar fragmentation patterns were obtained for four isomers of ferulic acid hexoside (peaks 30, 31, 39, and 45) [10]. Concerning tri-hydroxylated cinnamic acids, four sinapic acid derivatives were firstly detected in sesame oil. Briefly, sinapic acid hexoside was observed (m/z 385.11, C17H22O10) with neutral loss of the hexosyl moiety (162 Da) followed by the common fragments of sinapic acid [10]. In the same manner, sinapic acid deoxyhexoside hexoside was annotated at RT 17.83 min with the aforementioned fragmentation pattern and the additional loss of deoxyhexose. Finally, two undescribed sinapoyl-dehydroshikimic acid hexosides were detected, showing the neutral loss of a hexose (m/z 377.12) with subsequent sinapic acid ion (m/z 223.06) and the sequential loss of a methyl group (m/z 209.0455) and water (m/z 191.03). Moreover, dehydroshikmic acid ion was detected with m/z 171.03 followed by its dehydrated (m/z 153.0537) and decarboxylated (m/z 127.04) forms (Table 1 and Table S1), Figure 3b shows the detailed fragmentation pattern.



In line with hexahydroxydiphenic acid dilactone, ellagic acid was observed upon comparison with a standard at RT 20.93 min.




Flavonoids


The presence of flavonoids in SG32 oil was widely observed with 19 derivatives. They are sub-grouped into flavonols (5), flavones (10), a flavan-3-ol, a proanthocyanidin, and flavanones (2) (Table 1). It is noteworthy that the detection of kaempferol 3-O-β-D-glucopyranoside, kaempferol 3-O-rutinoside, quercetin 3-O-β-D-glucopyranoside, quercetin 3-O-rhamnopyranoside, quercetin 3-O-rutinoside, luteolin, luteolin 7-O-β-D-glucopyranoside, (-)-epicatechin, procyanidin A2, and naringenin was based on standards comparison. They were all mentioned for the first time in sesame oil, while procyanidin A2 was also described for the first time in Pedaliaceae. This compound is found in other families like Ericaceae [37]. Figure 4a,b shows examples of the fragmentation patterns, highlighting the typical losses of hexose of O-glycosylated compounds.



A similar fragmentation pattern to quercetin derivatives was observed for hesperetin hexoside deoxyhexoside (RT 23.18 min, m/z 609.18, C28H34O15), with sequential losses of a hexosyl (162 Da, m/z 447.13) and a deoxyhexosyl (146 Da, m/z 301.07) from the O-hexoside and deoxyhexoside moieties. The fragmentation pattern of the aglycone unraveled the common fragment ion of m/z 259.08 for (M-H-CH2CO) followed by the ions at m/z 175.00 (0,4B−) and 151.00 (1,3A−) [38]. Furthermore, UV absorbance λmax 281 nm indicated a flavanone structure. As far as we know, it is the first description of it in Pedaliaceae [39].



Mostly, flavones were represented in SG32 oil as C-glycosides conjugates of either apigenin or luteolin with the typical fragmentation of C-glycosides. This is characterized by the loss of 18 Da (H2O), 44 Da (CO2), 60 Da (2 × (CH2O)), 90 Da (3 × (CH2O)), and/or 120 Da (4 × (CH2O)), according to previously reported studies [10,40]. In this line, apigenin C-pentoside C-hexoside (I–III) isomers were noticed exerting fragments at m/z values of 541.13, 503.12, 473.11, 443.10, 383.08, and 353.07, and with the common ion at m/z 117.03 (1,3B−), Figure 4c [21,38,39,41]. As for luteolin derivatives, two isomers of luteolin C-hexoside I–II and luteolin C-deoxyhexoside-C-hexoside I–II were annotated being characterized by a similar fragmentation pattern to the aforementioned apigenin derivatives and comparison with reported studies [10,42]. To our knowledge, this is the first report of apigenin and luteolin derivatives in sesame oil. Another luteolin derivative, but O-glycosylated, was observed at m/z 593.15 (C27H30O15) and thus it showed the neutral loss of a deoxyhexosyl (m/z 447.09) and a hexosyl (m/z 285.04) moieties. The aglycone also revealed fragment 133.03 suggesting the ion (1,3B−) and hence was described as luteolin deoxyhexoside hexoside, which was not reported before in genus Sesamum, as far as we know.




Lignans


Lignans are dimeric β-β’-linked phenylpropanoid compounds that are widely distributed in Kingdom Plantae and possess several biological activities [43]. Ten lignan derivatives were observed in SG32 oil. All of them are classified as furofuran lignans and they occurred as sugars conjugates where the loss of sugars was observed and the aglycones analogs were compared with previously reported studies [10,43,44]. Concisely, two isomers of pinoresinol dihexoside were annotated exerting the neutral loss of two hexosyl moieties (m/z 357.1302, 2 × 162 Da) with an aglycone fragmentation showing an m/z of 151 resulted from the cleavage of the tetrahydrofuran ring complying with earlier reports [10,43,44,45] (Table 1 and Table S1). Similarly, the ion m/z of 841.28 (RT 22.52 min, C38H50O21.) exhibited a neutral loss of three hexosyl moieties consecutively, leading the fragment ions m/z 679.22, 458.15, and 355.12). Besides, the fragments m/z 161 and m/z 149 were noticed standing for 1,3-dioxymethylenephenyl-CHCHCH2 and 1,3-dioxymethylenephenyl-CO, respectively [44]. Consequently, it was tentatively characterized as xanthoxylol trihexoside. Correspondingly, the unreported analog xanthoxylol dihexoside was observed at RT 24.46 min with a similar fragmentation pattern (Table 1 and Table S1, Figure 5a).



About sesaminol, the presence of sesaminol trihexoside (I–III) and sesaminol tetrahexoside (I–II) isomers was noticed. As before, they were characterized by the corresponding losses of hexosyl moieties with the appearance of sesaminol aglycone (m/z 369.10). Besides, the latter aglycone exhibited the fragments of m/z 161 and m/z 149 complying with furofurano lignans [10,46]. Moreover, hydroxysesaminol trihexoside was detected as being characterized by the ion of the aglycone m/z 385 with the latter characteristic ion at m/z 161 (Figure 5b). All these lignans glycosides have been observed for the first time in sesame oil.




Coumarins, Phenol Aldehydes, and Derivatives


Besides the aforementioned classes, the coumarin 7-hydroxycoumarin (umbelliferone) presence was unambiguously confirmed upon comparison with a standard, while sesamol (m/z 137.02) [10] and vanillin (phenol aldehyde) were tentatively characterized [47].




3.1.2. Non-Phenolic Compounds


Nitrogenous Compounds


Concerning nitrogenous compounds, the occurrence of amino acids was observed by eight derivatives namely pyroglutamic acid (I–II) leucine/isoleucine (I–III), tyrosine, phenylalanine, and tryptophan. They exhibited the neutral loss of ammonia (17 Da) and/or CO2 (44 Da) complying with several reports [10,21,24,36,45]. Besides, the aromatic amino acids phenylalanine, tyrosine, and tryptophan were confirmed with standards. It bears noting that this is the first report of pyroglutamic acid in Pedaliaceae (Table 2 and Table S2). In this line, oxidized glutathione (GSSG) was detected (RT 6.32 min, m/z 611.14) showing both glutathione (m/z 306.08) and glutamyl (m/z 128.04) moieties [10] and hence giving a clue of the occurrence of reduced glutathione (GSH) in SG32 oil being susceptible to conversion to GSSG during sampling and analysis [48]. As a matter of fact, GSH is a natural cellular antioxidant that prevents the onset and progression of many serious diseases [48]. This is the first report of GSSG in sesame oil and its presence in sesame oil provides a new aspect of its functionality (Table 2 and Table S2).




Organic Acids


Thirteen organic acids were detected in SG32 oil viz., gluconic/galactonic, citric (I–III), malic (I–II), succinic, (−)-3-dehydroshikimic, quinic (I–II), pantothenic, isopropylmalic, and azelaic acids. Their characterization are according to earlier reports [10,24,36,47,49,50]. All of them, as far as we know, were not reported before in sesame oil (Table 2 and Table S2).






3.2. Semi-Quantitative Analysis


Semi-quantitative analysis was performed via estimation of the total peak area obtained by MS denoting the relative amount of each characterized metabolite. In the perspective of subclasses of phenolic metabolites, phenolic acids subclass was the most abundant with (38.4%) followed by flavonoids (33.7%) then lignans (26.9%) (Figure 6).



Concerning individual phenolic compounds, sesaminol trihexoside III (18%), followed by sinapoyl-3-dehydroshikimic acid hexoside I (10%), apigenin C-pentoside C-hexoside I (7%), methyl benzoic acid (5%), and apigenin C-pentoside C-hexoside III (5%) were the most abundant phenolic metabolites. In this context, C-glycosides are considered antioxidant capacity enhancers as the hydroxyl group and metal chelation sites in flavones are free [24,41] and so it is expected that these phenolic compounds can protect the oil from oxidation.




3.3. Comparison between Sesame Seed Oil and Cake


Our previous study on SG32 cake counterpart exhibited the presence of 112 metabolites [10]. They belonged to the same classes of phytoconstituents in SG32 oil. Remarkably, 72 metabolites were detected in both SG32 cake and oil (Tables S1 and S2). The remaining metabolites in SG32 oil consist of generally minor phenolic compounds, and no sugars were observed as in the cake [10]. All the characterized lignans were of furofurano type, as in the seed cake. GSSG was detected in both samples.



Basically, sesame oil is considered a functional oil [12,13]. Since SG32 cake showed antioxidant activities, the common phenolic compounds between SG32 cake and oil could contribute to the biological potential of the oil. The phenolic profile in vegetable oils depends on the source and the processing. For example, olive oil is rich in hydroxytyrosol derivatives, among other phenolic compounds. Some of these compounds come from the olive fruit and pass to the oil, which is obtained by milling, malaxation, and centrifugation [51]. Nonetheless, the processing conditions affect the profile and the content of phenolic compounds in olive oil and thus its oxidative stability and shelf life [52,53]. Another example is tea seed oil obtained by screw pressing extraction, which also present tea phenolic compounds [54] and they contribute to the antioxidant stability [55]. In this context, it is important to establish the phenolic profile in vegetable oils due to the contribution of phenolic compounds to the functional and antioxidative properties of the vegetable oils. Therefore, other studies should be performed to address the phenolic composition integrity of virgin cold-pressed sesame oil and refined oil as industrial processes could lead to the loss or modification of phenolics compounds [56,57]. The employment of the state of art hyphenated techniques as U/HPLC, like in the current work, and/or GC coupled to high-resolution MS could help in this purpose as other authors have shown for other vegetable oils [51,53,54,58]. Even more, the data obtained here can be the basis for those characterization studies on sesame oils when using U/HPLC-MS. In fact, lignan aglycones have not been found in this work. It seems that lignans can be transformed during the oil production process, and some of them, like sesamolin and sesamin, are unstable [59].





4. Conclusions


In the present study, core-shell RP-HPLC–DAD–ESI–QTOF-MS and -MS/MS were utilized for the analysis of the oil of the Egyptian cultivar of sesame ′Giza 32’. Collectively, 86 metabolites were characterized in sesame SG32 oil, with 64 phenolic compounds with 3 unreported metabolites. The observed phenolic compounds were classified into phenolic acids, flavonoids, lignans, and others. All the characterized lignans were of furofurano type, as in the seed cake. Moreover, this is the first report showing oxidized glutathione in sesame oil. Mostly, the phenolic metabolites and other phytoconstituents in SG32 oil were present in SG32 cake counterpart, suggesting that they can pass from the seed cake to the oil, while in some cases the oil counterpart seems to be enriched. Consequently, further studies are required to detect the presence of important bioactive metabolites in commercial samples.
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Figure 1. (a) Base peak chromatogram of SG32 oil and (b) its metabolites grouped into classes and classified according to m/z, retention time (RT), and relative area in SG32 oil. (c) Base peak chromatogram of SG32 cake, which has been adapted from [10]. 
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Figure 2. The patterns of fragmentation of (a) methoxybenzoic acid II and (b) vanillic acid. 
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Figure 3. The patterns of fragmentation of (a) verbascoside, (b) sinapoyl-3-dehydroshikimic acid hexoside I. This spectrum has been divided (b1–b3) for a better description of the fragments. 
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Figure 4. The patterns of fragmentation of (a) luteolin 7-O-β-D-glucopyranoside, (b) quercetin 3-O-β-D-glucopyranoside, and (c) apigenin C-pentoside C-hexoside I. 
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Figure 5. The patterns of fragmentation of (a) xanthoxylol dihexoside, and (b) hydroxysesamolin trihexoside. 
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Figure 6. Phenolic compounds characterized in SG32 oil: (a) Relative abundance (%) and (b) qualitative classification (%). 
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Table 1. Phenolic compounds characterized in SG32 oil.
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	Peak No.
	RT (min)
	Experimental m/z a [M-H]−
	Theoretical Mass (M)
	Molecular Formula
	Score
	Error (ppm)
	Error (mDa)
	Main Fragments
	DBE
	UV (nm)
	Proposed Compound
	Area

(Response × RT)
	%





	9
	4.7
	151.0402
	152.0473
	C8H8O3
	98.66
	−0.3
	0
	123.0450, 122.0372
	5
	267
	Vanillin
	1.14 × 105
	0.26%



	16
	7.31
	169.014
	170.0215
	C7H6O5
	86.57
	1.25
	0.2
	125.0247
	5
	N.D.
	Gallic acid *
	2.25 × 105
	0.51%



	20
	8.74
	137.0243
	138.0316
	C7H6O3
	94.24
	0.34
	0.05
	N.D.
	5
	N.D.
	Sesamol
	1.43 × 105
	0.33%



	21
	9.19
	147.0447
	148.0524
	C9H8O2
	96.29
	3
	0.5
	103.0556
	6
	N.D.
	Cinnamic acid
	3.97 × 105
	0.90%



	24
	10.64
	329.0879
	330.0951
	C14H18O9
	99.34
	−0.2
	−0.1
	167.0347, 152.0114, 123.0450. 108.0218
	6
	255, 286
	Vanillic acid hexoside
	1.06 × 106
	2.40%



	25
	11.33
	153.0192
	154.0266
	C7H6O4
	98.75
	1.02
	0.16
	137.0244, 109.0293, 108.0213
	5
	258, 288sh
	Protocatechuic acid *
	3.27 × 105
	0.74%



	26
	11.826
	359.0978
	360.1057
	C15H20O10
	96.98
	1.2
	0.4
	197.0474, 182.0213, 153.0544, 138.0318
	6
	N.D.
	Syringic acid hexoside
	1.18 × 105
	0.27%



	27
	12.47
	325.0932
	326.1002
	C15H18O8
	93.93
	0.4
	0.1
	163.0398, 119.0502
	7
	287
	p-Coumaric acid hexoside I
	2.86 × 105
	0.65%



	28
	12.72
	325.0931
	326.1002
	C15H18O8
	99.12
	−0.5
	−0.2
	163.0400, 119.0502
	7
	288
	p-Coumaric acid hexoside II
	3.28 × 105
	0.74%



	30
	13.95
	355.1035
	356.1107
	C16H20O9
	99.4
	−0.1
	−0.03
	193.0505, 178.0271, 149.0607
	7
	279
	Ferulic acid hexoside I
	2.31 × 105
	0.52%



	31
	14.01
	355.1037
	356.1107
	C16H20O9
	99.5
	−0.7
	−0.25
	N.D.
	7
	282
	Ferulic acid hexoside II
	2.31 × 105
	0.52%



	32
	14.36
	137.024
	138.0317
	C7H6O3
	99.24
	−1.1
	−0.2
	119.0142, 109.0293, 108.0218, 93.0344, 92.0269
	5
	273
	Hydroxybenzoic acid *
	7.59 × 105
	1.72%



	33
	14.49
	151.0401
	152.0473
	C8H8O3
	97.18
	−0.9
	−0.1
	137.0245, 107.0506
	5
	237, 274
	Hydroxybenzoic acid methyl ester
	1.52 × 105
	0.34%



	35
	14.99
	353.0879
	354.0951
	C16H18O9
	99.38
	−0.5
	−0.2
	191.0559,179.0344, 173.0457, 161.0246, 135.0452
	8
	238, 279
	Caffeoylquinic acid I * (chlorogenic acid)
	3.75 × 105
	0.85%



	36
	15.1
	385.1137
	386.1213
	C17H22O10
	87.7
	−0.6
	−0.23
	223.0611, 208.0373, 193.0141, 179.0703, 164.0472, 149.0242
	7
	290
	Sinapic acid hexoside
	1.38 × 105
	0.31%



	37
	15.53
	325.0928
	326.1002
	C15H18O8
	97.52
	−0.2
	−0.1
	163.0397, 119.0503
	7
	277
	p-Coumaric acid hexoside III
	1.60 × 105
	0.36%



	38
	16.61
	325.0929
	326.1002
	C15H18O8
	89.25
	−1.1
	−0.4
	N.D.
	7
	N.D.
	p-Coumaric acid hexoside IV
	9.37 × 104
	0.21%



	39
	16.68
	355.1033
	356.1107
	C16H20O9
	99.7
	0.5
	0.18
	193.0500, 178.0272, 149.0609
	7
	282
	Ferulic acid hexoside III
	9.21 × 105
	2.09%



	40
	16.73
	167.0346
	168.0426
	C8H8O4
	97.64
	1.29
	0.22
	152.0144, 123.0449, 108.0251
	5
	258
	Vanillic acid *
	3.11 × 105
	0.71%



	41
	17.11
	593.151
	594.1585
	C27H30O15
	99.3
	0.3
	0.15
	503.1188, 473.1085, 443.0981, 413.0872, 383.0767, 353.0667, 135.0457, 119.0357, 117.0367
	13
	267, 320
	Luteolin C-deoxyhexoside C-hexoside I
	1.42 × 106
	3.22%



	42
	17.23
	353.0876
	354.0951
	C16H18O9
	96.29
	0.3
	0.1
	191.0556, 179.0327, 173.0450, 161.0233, 135.0445
	8
	274
	Caffeoylquinic acid II
	2.52 × 105
	0.57%



	43
	17.36
	593.159
	594.1585
	C27H30O15
	99.3
	0.3
	0.15
	533.1285, 503.1193, 473.1085, 443.0989, 413.0873, 383.0771, 353.0665
	13
	270, 325
	Luteolin C-deoxyhexoside C-hexoside II
	1.59 × 106
	3.60%



	44
	17.34
	197.0453
	198.05282
	C9H10O5
	96.97
	0.6
	0.1
	N.D.
	5
	
	Syringic acid *
	1.12 × 105
	0.25%



	45
	17.47
	355.1034
	356.1107
	C16H20O9
	96.4
	0.4
	0.16
	N.D.
	7
	287
	Ferulic acid hexoside IV
	1.64 × 105
	0.37%



	46
	17.78
	289.0718
	290.079
	C15H14O6
	92.99
	0.79
	0.02
	253.0334, 245.1390, 217.0027, 131.0712, 123.0450
	9
	N.D.
	(−)-Epicatechin *
	2.52 × 105
	0.57%



	47
	17.78
	531.1719
	532.1792
	C23H32O14
	89.5
	−0.5
	−0.28
	179.0140, 165.0554, 150.0317
	8
	283
	Sinapic acid deoxyhexoside hexoside
	1.46 × 105
	0.33%



	48
	17.96
	681.24
	682.2473
	C32H42O16
	99.63
	0.54
	0.37
	357.1302, 151.0384
	12
	242, 275
	Pinoresinol dihexoside I
	2.96 × 105
	0.67%



	49
	18.21
	563.1411
	564.1479
	C26H28O14
	99.03
	−0.57
	−0.32
	545.1297, 503.1189, 473.1087, 443.0979, 413.0872, 383.0771, 353.0664, 117.0343
	13
	274, 330
	Apigenin C-pentoside C-hexoside I
	2.93 × 106
	6.64%



	50
	18.27
	121.0293
	122.0368
	C7H6O2
	99.78
	1.2
	0.15
	92.0269
	5
	278
	Benzoic acid
	1.22 × 106
	2.76%



	51
	18.63
	563.1405
	564.1479
	C26H28O14
	98.83
	0.08
	0.05
	545.1323, 503.1179, 473.1083, 443.0976, 413.0871, 383.0767, 353.0666, 117.0335
	13
	272, 327
	Apigenin C-pentoside C-hexoside II
	2.20 × 105
	0.50%



	52
	18.89
	563.1408
	564.1479
	C26H28O14
	98.83
	0.08
	0.05
	545.1298, 503.1191, 473.1087, 443.0976, 413.0878, 383.0769, 353.0666, 117.0336
	13
	269, 331
	Apigenin C-pentoside C-hexoside III
	2.06 × 106
	4.67%



	53
	18.87
	447.0935
	448.1006
	C21H20O11
	99.41
	−0.46
	−0.21
	327.0515, 179.0141, 135.0447
	12
	268, 325
	Luteolin C-hexoside I
	2.94 × 105
	0.67%



	54
	19.5
	447.093
	448.1006
	C21H20O11
	91.66
	0.28
	0.21
	327.0539, 179.0138, 135.0450
	12
	N.D.
	Luteolin C-hexoside II
	1.92 × 105
	0.44%



	55
	20.34
	151.04
	152.0473
	C8H8O3
	98.04
	−0.3
	0
	136.0167, 92.0269
	5
	256
	Methoxybenzoic acid I
	9.28 × 105
	2.11%



	56
	20.4
	163.0399
	164.0473
	C9H8O3
	97.35
	0.47
	0.08
	N.D.
	6
	N.D.
	p-Coumaric acid *
	1.17 × 105
	0.27%



	57
	20.46
	609.1472
	610.1534
	C27H30O16
	96.31
	−1.41
	−0.86
	300.0267, 151.0033
	13
	255, 355
	Quercetin 3-O-rutinoside (rutin) *
	1.27 × 106
	2.88%



	58
	20.59
	593.151
	594.1585
	C27H30O15
	99.5
	0.3
	0.16
	447.0897, 285.0396, 133.0281
	13
	267, 320
	Luteolin deoxyhexoside hexoside
	1.65 × 105
	0.37%



	59
	20.93
	300.9988
	302.00627
	C14H6O8
	94.92
	0.82
	0.25
	N.D.
	12
	N.D.
	Ellagic acid *
	2.68 × 104
	0.06%



	60
	21.06
	463.0874
	464.09548
	C21H20O12
	84.99
	0.25
	0.12
	300.9980, 151.0030
	12
	N.D.
	Quercetin 3-O-β-D-galactopyranoside *
	5.82 × 104
	0.13%



	61
	21.18
	623.1972
	624.2054
	C29H36O15
	94.2
	1.52
	0.95
	461.1649, 387.1502, 315.1074, 297.0957, 179.0347, 161.0239, 153.0543, 135.0447, 113.0233
	12
	N.D.
	Verbascoside
	2.80 × 105
	0.64%



	62
	21.18
	681.2402
	682.2473
	C32H42O16
	99.38
	−0.12
	−0.08
	519.1525, 357.1333, 179.0529,151.0382, 149.0467
	12
	N.D.
	Pinoresinol dihexoside II
	7.45 × 104
	0.17%



	63
	21.3
	463.0883
	464.09548
	C21H20O12
	98.82
	−0.02
	−0.01
	301.0324, 300.0248 271.02228, 255.0276, 178.9974, 151.0027, 136.0172, 135.0447
	12
	250, 352
	Quercetin 3-O-β-D-glucopyranoside *
	9.70 × 105
	2.20%



	64
	21.36
	447.0936
	448.1006
	C21H20O11
	97.26
	−0.84
	−0.38
	285.0402,151.0026, 133.0284
	12
	N.D.
	Luteolin 7-O-β-D-glucopyranoside *
	1.27 × 106
	2.89%



	65
	21.87
	575.1189
	576.1268
	C30H24O12
	92.55
	0.51
	0.3
	N.D.
	19
	N.D.
	Procyanidin A2 *
	1.22 × 104
	0.03%



	66
	21.79
	1017.3111
	1018.3165
	C44H58O27
	96.98
	−1.71
	−1.74
	855.2573, 693.2019, 369.0973, 323.0977, 221.0642, 219.0663, 179.0559, 161.0452, 149.0451, 143.0349
	16
	280
	Sesaminol tetrahexoside I
	1.86 × 105
	0.42%



	67
	22.27
	1017.3095
	1018.3165
	C44H58O27
	98.45
	−0.15
	−0.15
	855.2556, 693.2026, 369.0971, 323.0973, 221.0682, 179.0555, 161.0459, 149.0443, 143.0342
	16
	280
	Sesaminol tetrahexoside II
	3.13 × 105
	0.71%



	68
	22.39
	593.1504
	594.1585
	C27 H30 O15
	96.05
	0.84
	0.5
	N.D.
	13
	N.D.
	Kaempferol 3-O-rutinoside *
	7.10 × 104
	0.16%



	69
	22.52
	841.2775
	842.2857
	C38H50O21
	99.4
	−0.04
	-0.04
	679.2225, 485.1504, 355.1176, 323.0978, 221.0665, 179.0548, 161.0454, 149.0450, 143.0352, 121.0288, 89.0245
	14
	286
	Xanthoxylol trihexoside
	7.38 × 105
	1.68%



	70
	22.54
	163.0404
	164.0473
	C9H8O3
	84.16
	−1.97
	-0.32
	N.D.
	6
	284
	m-Coumaric acid *
	3.22 × 104
	0.07%



	71
	22.6
	193.0505
	194.0579
	C10H10O4
	99.6
	0.5
	0.1
	178.0270, 134.0371, 119.0503
	6
	230, 282, 310
	Ferulic acid *
	5.09 × 105
	1.16%



	72
	22.73
	855.2582
	856.2637
	C38H48O22
	96.7
	−1.2
	−1.55
	693.2036, 485.1494, 369.0963, 323.0999, 221.0663, 179.0556, 161.0456, 149.0446, 143.0346, 119.0348
	15
	278
	Sesaminol trihexoside I
	1.14 × 106
	2.59%



	73
	23.18
	609.1822
	610.1898
	C28H34O15
	98.33
	0.49
	0.3
	447.1293, 301.0713, 259.0811, 175.0023, 151.0031
	12
	281
	Hesperetin hexoside deoxyhexoside
	2.63 × 105
	0.60%



	74
	23.2
	447.0943
	448.1006
	C21H20O11
	96.91
	−2.07
	−0.93
	285.0404, 135.0452, 127.0764
	12
	N.D.
	Kaempferol 3-O-β-D-glucopyranoside *
	7.60 × 105
	1.72%



	75
	23.3
	855.2572
	856.2637
	C38H48O22
	98.3
	−0.6
	−0.53
	693.2060, 485.1514, 369.0970, 323.0983, 221.0667, 179.0560, 161.0453, 149.0452, 143.0352, 119.0351
	15
	277
	Sesaminol trihexoside II
	5.46 × 105
	1.24%



	76
	23.49
	855.2568
	856.2637
	C38H48O22
	99.7
	−0.3
	−0.24
	693.2029, 485.1508, 369.0981, 323.0980, 221.0660, 179.0563, 161.0457, 149.0451, 143.0351, 119.0349
	15
	287
	Sesaminol trihexoside III
	7.90 × 106
	17.94%



	78
	24.21
	871.2521
	872.2586
	C38H48O23
	94.5
	−0.7
	−0.61
	709.1983, 691.1938, 485.1527, 385.0925, 323.0985, 221.0664, 179.0556, 161.0447, 143.0354, 137.0245, 119.0354, 89.0245
	15
	277
	Hydroxysesamolin trihexoside
	4.42 × 105
	1.00%



	79
	24.27
	539.1775
	540.1843
	C25H32O13
	99.11
	−0.8
	−0.43
	377.1240, 359.1192, 333.0842, 327.0880, 275.0918, 223.0641, 209.0455, 191.0349, 179.0697, 171.0293, 161.0473, 153.0559, 127.0400
	10
	235, 273
	Sinapoyl-3-dehydroshikimic acid hexoside I
	4.56 × 106
	10.36%



	80
	24.24
	135.0451
	136.0525
	C8H8O2
	85.4
	−0.17
	−0.02
	77.04
	5
	273
	Methyl benzoic acid
	2.07 × 106
	4.69%



	81
	24.43
	679.2248
	680.2319
	C32H40O16
	98.53
	−0.35
	−0.24
	517.2748, 485.1429, 355.1176, 323.0964, 221.0661, 179.0566, 161.0453, 149.0449, 143.0342, 121.0288, 89.0244
	13
	282
	Xanthoxylol dihexoside
	3.27 × 105
	0.74%



	82
	24.76
	539.1775
	540.1843
	C25H32O13
	99.09
	0.52
	0.28
	333.0854, 327.0889, 223.0609 209.0446, 191.0340, 171.0299, 161.0482, 153.0537, 127.0399
	10
	230, 277
	Sinapoyl-3-dehydroshikimic acid hexoside II
	2.46 × 105
	0.56%



	83
	24.82
	161.0249
	162.0322
	C9H6O3
	75.63
	−3.38
	−0.19
	N.D.
	7
	N.D.
	7-hydroxycoumarin (umbelliferone) *
	1.60 × 104
	0.04%



	84
	24.97
	151.04
	152.0473
	C8H8O3
	99.76
	−0.1
	0
	136.0167, 92.0270
	5
	N.D.
	Methoxybenzoic acid II
	2.41 × 105
	0.55%



	85
	26.45
	285.0408
	286.0477
	C15H10O6
	99.42
	−1.2
	−0.3
	227.1288, 135.0450
	11
	287, 325
	Luteolin *
	8.39 × 105
	1.91%



	86
	28.32
	271.0614
	272.0685
	C15H12O5
	99.03
	−0.7
	−0.2
	N.D.
	10
	N.D.
	Naringenin *
	1.68 × 105
	0.38%







a Detected ions were [M-H]−. * Compounds confirmed by standards comparison; N.D., below 5 mAU or undetected due to masking by compounds with higher signal. The letter codes I, II, etc. indicate different isomers. New proposed structures are in bold., DBE: double bond equivalents. Lowest value  [image: Foods 10 00298 i001] Highest value.
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Table 2. Non-phenolic compounds characterized in SG32 oil.






Table 2. Non-phenolic compounds characterized in SG32 oil.





	Peak No.
	RT (min)
	Experimental m/z a [M-H]−
	Theoretical Mass (M)
	Molecular Formula
	Error (ppm)
	Error (mDa)
	Score
	Main Fragments
	DBE
	UV (nm)
	Proposed Compound
	Area

(Response × RT)
	%





	1
	2.65
	195.0506
	196.0583
	C6H12O7
	2.33
	0.046
	98.38
	165.0398
	1
	N.D.
	Gluconic/galactonic acid
	2.56 × 105
	0.8



	2
	3.09
	191.0201
	192.027
	C6H8O7
	−1.72
	−0.33
	99.05
	173.0094, 111.0089
	3
	N.D.
	Citric acid I
	2.19 × 106
	6.5



	3
	3.15
	133.0142
	134.0215
	C4H6O5
	0.29
	0.04
	98.8
	115.0039
	2
	N.D.
	Malic acid I
	9.99 × 105
	2.9



	4
	3.40
	133.0141
	134.0215
	C4H6O5
	1.37
	0.18
	99.11
	115.004
	2
	N.D.
	Malic acid II
	9.83 × 105
	2.9



	5
	4.02
	191.0203
	192.027
	C6H8O7
	−2.91
	−0.56
	97.87
	173.0096, 111.0092
	3
	N.D.
	Citric acid II
	2.46 × 106
	7.3



	6
	4.08
	128.0358
	129.0426
	C5H7NO3
	−2.98
	−0.38
	95.55
	111.0092
	3
	N.D.
	Pyroglutamic acid I
	6.80 × 105
	2.0



	7
	4.27
	191.0191
	192.027
	C6H8O7
	3.25
	0.62
	96.75
	173.0081, 111.0088
	3
	N.D.
	Citric acid III
	2.82 × 106
	8.3



	8
	4.58
	128.0353
	129.0426
	C5H7NO3
	−0.83
	−0.11
	98.45
	111.0092
	3
	N.D.
	Pyroglutamic acid II
	1.36 × 106
	4.0



	10
	5.01
	130.0869
	131.0949
	C6H13NO2
	3.76
	0.49
	95.92
	112.9856
	1
	N.D.
	Leucine/Isoleucine I
	4.05 × 105
	1.2



	11
	5.45
	117.0193
	118.0266
	C4H6O4
	0
	0
	98.47
	73.0298
	2
	N.D.
	Succinic acid
	4.22 × 105
	1.2



	12
	5.51
	130.087
	131.0949
	C6H13NO2
	2.59
	0.34
	99.11
	112.9856
	1
	N.D.
	Leucine/Isoleucine II
	6.60 × 105
	1.9



	13
	5.82
	180.0668
	181.0745
	C9H11NO3
	1.73
	0.31
	95.85
	163.097
	5
	265
	Tyrosine *
	6.00 × 105
	1.8



	14
	6.01
	130.087
	131.0949
	C6H13NO2
	2.98
	0.39
	85.93
	112.9856
	1
	N.D.
	Leucine/Isoleucine III
	5.14 × 105
	1.5



	15
	6.01
	611.1444
	612.152
	C20H32N6O12S2
	0.25
	0.016
	98.41
	306.0731, 305.0671, 128.0366
	8
	N.D.
	Oxidized Glutathione (glutathione disulfide)
	1.25 × 106
	3.7



	17
	7.75
	171.0293
	172.0372
	C7H8O5
	3.2
	0.6
	83.75
	127.0402
	4
	230
	(-)-3-dehydroshikimic acid
	4.07 × 105
	1.2



	18
	7.87
	191.0563
	192.0634
	C7H12O6
	−0.8
	−0.2
	99.72
	147.0665, 129.0556, 101.0608
	2
	N.D.
	Quinic acid I
	3.49 × 106
	10.3



	19
	8.18
	191.0562
	192.0634
	C7H12O6
	−0.3
	−0.1
	99.45
	147.0660, 129.0556, 101.0607
	2
	N.D.
	Quinic acid II
	6.29 × 106
	18.5



	22
	9.20
	164.0718
	165.0790
	C9H11NO2
	−0.3
	0.0
	99.72
	147.049
	5
	N.D.
	Phenylalanine *
	3.64 × 106
	10.7



	23
	10.61
	218.1031
	219.1107
	C9H17NO5
	1.33
	0.3
	97.8
	146.0819
	2
	N.D.
	Pantothenic acid (Vit B5)
	2.09 × 105
	0.6



	29
	13.05
	203.0834
	204.0906
	C11H12N2O2
	−1.9
	−0.4
	86.6
	142.0663, 116.0507
	7
	277
	Tryptophan *
	1.96 × 106
	5.8



	34
	14.49
	175.0612
	176.0685
	C7H12O5
	0.19
	0.03
	99.66
	115.0402
	2
	N.D.
	Isopropylmalic acid
	2.48 × 105
	0.7



	77
	24.05
	187.0979
	188.1049
	C9H16O4
	−1.7
	−0.3
	99
	125.097
	2
	N.D.
	Azelaic acid
	2.06 × 106
	6.1







a Detected ions were [M-H]−. * Compounds confirmed by standards comparison; N.D., below 5 mAU or undetected due to masking by compound with higher signal. The letter codes I, II, etc. indicate different isomers. DBE: double bond equivalents. Lowest value  [image: Foods 10 00298 i002] Highest value.
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