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Abstract: Fat bloom is an outstanding quality defect especially in filled chocolate, which usually
comprises oils of different origins and with different physical properties. Dark chocolate pralines
filled with nougat contain a significant amount of hazelnut oil in their center and have been reported
as being notably susceptible to oil migration. The current study was designed to test the assumption
that a targeted crystallization of nougat with cocoa butter seed crystals is an appropriate technological
tool to reduce filling oil transfer to the outside of the praline and, hence, to counteract chocolate shell
weakening and the development of fat bloom. For this purpose, the hardness of nougat/chocolate
layer models and the thermal properties of chocolate on top of nougat were analyzed during storage
at 23 ◦C for up to 84 days. Pronounced differences between layer models with seeded nougat and
with control nougat that was traditionally tempered were observed. The facts that chocolate hardness
increased rather than decreased during storage, that the cocoa butter melting peak was shifted
towards a lower temperature, and that the hazelnut oil content in the chocolate was reduced can
be taken as explicit indicators for the contribution of seeded nougat to the fat bloom stability of
filled chocolate.
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1. Introduction

One of the key quality attributes of dark chocolate is its appearance and, particularly,
a smooth and glossy surface. Fat bloom is a prominent appearance defect that results in a
loss of gloss and that devaluates the products by turning their surface dull and greyish.
The main driving force behind fat bloom is the transformation of ßV cocoa butter crystals
into the ßVI polymorph which, for instance, occurs when a small amount of cocoa butter
is released from the chocolate matrix and recrystallizes at the surface [1–3]. In plain
chocolate, the fat bloom is mainly triggered by (a) insufficient environmental conditions,
for instance, pronounced temperature fluctuations or a storage temperature higher than
the melting point of the ßV polymorph, or by (b) poor tempering during production so that
the necessary crystal nuclei cannot be generated [4,5]. The situation becomes even more
complicated when fats or oils other than cocoa butter are present in the system. These may
either be comprised in the chocolate formulation or may be part of a second system that is
in close contact with the chocolate.

The latter is true in the case of filled chocolate confectionery, for instance, pralines.
A prominent and frequently consumed example is pralines filled with dark "Viennese"
nougat. Similar to chocolate, nougat represents an oil-based multiphase suspension, made
of different constituents. The main ingredients are hazelnuts and sugar which maybe,
depending on the formulation, supplemented by a certain amount of cocoa butter and/or
cocoa mass, milk solids including milk fat, and surface-active compounds. The fat content
of nougat is typically in a range of 30–45 g/100 g and, to a large extent, made of hazelnut
oil [6]. Nougat processing comprises the milling of roasted hazelnuts together with sugar
and the other ingredients, traditionally in edge mills and, nowadays, mainly in five roller
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refiners or in agitated ball mills. Hazelnut oil differs largely from cocoa butter with respect
to fatty acid and, hence, its triacylglycerol composition. As a consequence, the melting point
and the solid fat content at a specific temperature also differ, and significant interactions
between the fat phases of nougat and the surrounding chocolate can be expected.

The driving force behind fat bloom in confectionery products with different fats is
migration [7]. The concentration difference at the interface between the chocolate shell and
the filling induces a diffusive transport of the filling oil through the chocolate shell towards
its outside, especially when the filling is rich in unsaturated fatty acids. Due to the higher
mobility of the unsaturated oil, metastable cocoa butter crystals dissolve in the migrating
oil and recrystallize at the surface as stable ßVI [8]. Apart from geometrical considerations,
it has been reported that milk fat or some vegetable fats included in chocolate may help to
decelerate fat bloom [9], or that specific barrier layers between chocolate and filling can be
successfully introduced as a third component [10,11].

Seeding with cocoa butter crystals is an established alternative to the traditional
stir/shear temper technology of chocolate [12]. Especially when containing cocoa butter,
nougat also needs to be tempered during processing, regularly by applying the stir/shear
technology. The current study aimed to evaluate whether a targeted pre-crystallization of
dark nougat with cocoa butter crystals could be an innovative technology to enhance the
long-term physical stability of filled confectionery products.

2. Materials and Methods
2.1. Materials

Dark chocolate mass, made of sugar, cocoa mass, cocoa butter, and soy lecithin, with
a fat content of 32.4 g/100 g, was obtained from a German chocolate manufacturer. Four
commercial nougat samples, encoded #A, #B, #C, and #D, and the respective formulations
(Table 1) were obtained from two companies. SEED 100 cocoa butter crystals (ßV) were
provided by Uelzena eG (Uelzen, Germany). The melting peak temperature measured by
DSC was 34.0 ± 0.1 ◦C and the phase transition enthalpy was 132.5 ± 0.7 J/g, which is in
line with literature data on the ßV polymorph [13,14] (Figure S1). It needs to be mentioned
that other researchers (e.g., [12,15] associated such a melting temperature with polymorph
ßVI, but this will not be discussed further. The seed crystal powder has a mean particle size
of approx. 25 µm [16], which was confirmed by light microscopy (Figure S2). All chemicals
used in the study were of analytical grade.

Table 1. Formulation of the nougat samples (g/100 g) used in this study.

Ingredient Nougat #A Nougat #B Nougat #C Nougat #D

Hazelnuts 44.2 47.0 38.0 30.0
Sucrose 39.3 42.0 49.0 49.0

Cocoa mass 5.0 8.0 7.0
Milk solids 3.0 4.5

Cocoa butter 8.5 11.0 5.0 8.5
Sunflower lecithin <0.1 <1.0

Vanilla extract <0.1

2.2. Production and Storage of Nougat/Chocolate Layer Models

Layer models were produced to ensure controlled contact between nougat and choco-
late. For this purpose, 16.0 ± 0.2 g liquid nougat was transferred into Petri dishes of
55 mm diameter, manually compacted by vibration, and solidified at 18 ◦C for 7 d in an
environmental chamber. This nougat layer had a thickness of approx. 5 mm. The following
samples were prepared: (a) Control plates were made at the nougat manufacturer sites
after stir/shear tempering and, after solidification as specified above, sent to the labora-
tory. (b) For the experimental plates, nougat was melted at 50 ◦C overnight, mixed, and
then cooled to 27 ◦C under continuous stirring. The amount of ßV cocoa butter crystals
subsequently added was either 0.5%, 1.0%, or 2.0%, as related to the total fat content of



Foods 2021, 10, 1056 3 of 11

the nougats. The average temper degree of the nougat immediately before weighing into
the plates was determined using an E3 tempermeter (Sollich KG, Bad Salzuflen, Germany).
The temper degree was 5.1 ± 0.2 when seeded with 0.5% crystals, 5.8 ± 0.3 when seeded
with 1%, and 6.6 ± 0.3 when seeded with 2% cocoa butter crystals.

After solidification, the nougat plates were overlaid with 6.0 ± 0.2 g tempered choco-
late, resulting in a layer of approx. 2 mm thickness. The chocolate used for this purpose
was melted and conditioned to 50 ◦C overnight and tempered at 31 ◦C using a Minitemper®

Turbo (Sollich KG, Bad Salzuflen, Germany). The final layer models were solidified at 18 ◦C
for 24 h and subsequently stored at 23 ± 0.2 ◦C for up to 84 d in an environmental chamber.
Individual samples of the layer models were analyzed after 1, 7, 21, 28, 63, and 84 d.

2.3. Methods for the Analysis of Raw Materials

Particle size distributions were analyzed using a HELOS KR laser diffractometer
(Sympatec GmbH, Clausthal-Zellerfeld, DE). Prior to analysis, a 2 g sample conditioned
to 50 ◦C was suspended in 10 g sunflower oil of the same temperature in duplicate [17].
Measurements were carried out in a 50 mL cuvette filled with sunflower oil to which
the sample suspension was dropwise added until an optical density of approx. 30% was
achieved. From the volume-specific density distribution the x10, x50, and x90 diameters,
representing the 10%, 50%, and 90% quantiles, respectively, were taken.

The amount of mobile fat was determined using a centrifugation method [18]. Four-
teen g melted nougat was transferred into conical tubes and centrifuged at 35 ◦C for 15 min
at 10,200 g (Heraeus Biofuge Stratos, Kendro Laboratory Products GmbH, Langensel-
bold, Germany). The amount of separated fat was weighed and represents the mobile fat,
expressed as a gravimetric fraction of total fat.

Viscosity measurements were carried out with a MARS III rheometer equipped with
a concentric CC25DIN geometry (ri = 12.54 mm, ro = 13.60 mm, h = 37.62 mm; Thermo
Fisher GmbH, Karlsruhe, Germany). The temperature was kept constant at 40 ◦C using
a Peltier device. After equilibration and pre-shearing for 300 s at 5/s, the shear rate was
increased from 2/s to 50/s within 180 s, kept constant at 50/s for 60 s, and then reduced to
2/s in another 180 s [19]. Fifty data points per ramp were recorded in logarithmic spacing.
The downward cycle was used for fitting the shear stress—shear rate data to the Casson
model, and Casson yield stress and viscosity were taken as descriptors.

2.4. Methods for the Analysis of Raw Materials and Layer Models

The hardness of base chocolate, nougat, and chocolate/nougat layers was measured
using a TA.XTplus texture analyzer (Stable Micro Systems Ltd., Surrey, UK) equipped with
a 50 N force transducer [20]. By applying a crosshead velocity of 1 mm/s, samples were
penetrated with a 2 mm diameter plunger. The maximum penetration depth was 2 mm.
The maximum force was taken as a hardness indicator and calculated as an arithmetic
mean of 8 replicate measurements (2 Petri dishes × 4 measurements per petri dish).

Thermal properties of chocolate were determined in duplicate with a DSC25 instru-
ment connected to an RCS90 cooling unit (TA Instruments GmbH, Eschborn, Germany).
Using an analytical balance, 5 ± 0.2 mg sample scratched from the surface of the layer
models was transferred into a standard aluminum pan and closed. An empty pan served
as a reference. After cooling to −50 ◦C and stabilization for 3 min, the samples were heated
to 45 ◦C at 10 K/min under a continuous nitrogen flow of 50 mL/min. The thermograms
were evaluated with respect to cocoa butter melting peak temperature and the enthalpy of
the nut oil melting peak, which was calculated from the heat flow function.

2.5. Sensory Analysis

A duo-trio forced-choice test setup was used to evaluate whether stir/shear tempered
and seeded nougat can be distinguished by tasting. For this purpose, 6 g aliquots of
tempered or seeded nougat were dosed into paper cupcakes with an upper diameter of
35 mm and a height of 20 mm. The samples were then stored for 7–10 d at 18 ◦C.
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A panel of 10 trained panelists took part in the study. Informed consent was obtained
from all subjects involved in the study. Due to CoVid-19 restrictions, author A.B. who
was in charge of the experiments delivered triads of the samples to the individual offices
of the subjects. Samples were presented in Petri dishes encoded with 3-digit random
numbers, and the panelists were asked to identify the odd specimen. The number of correct
identifications was judged for significance using the tables of Roessler et al. [21].

2.6. Statistics

Statistical data evaluation was carried out using SAS® Studio 3.8 University Edition
(SAS Institute Inc., Cary, NC, USA). Outliers were identified with the Dixon-Q test at
p < 0.05. One-way analysis of variance was followed by Fisher’s least significant difference
post-hoc tests. All significance statements given in this study refer to an error probability
level of p < 0.05.

3. Results and Discussion
3.1. Description of the Base Nougat

The total fat content of the base nougats ranged from 36.0–44.0 g/100 g (Table 2). The
relative amount of cocoa butter in the oil fraction of the nougats was calculated based
on an approximate fat content of the cocoa mass (53 g/100 g) and the amount of cocoa
butter in the formulation, and ranged between 25.2% and 29.5% (nougat #A, #B, #C) but
was 41.7% in case of nougat #D. The fraction of mobile fat was significantly higher for
samples #A and #B than for nougat #D (approx. 26% vs. 18.5%, respectively). As for
chocolate, the flow properties of liquid nougat depend on the volume fraction and surface
properties of dispersed particles and are additionally affected by the presence of surface-
active compounds [22,23]. Casson yield stress and viscosity were lowest for nougat #B
which had the highest fat content and, hence, the lowest particle load, and highest for
#D which showed the lowest fat content and, additionally, the lowest amount of mobile
fat. Nougat hardness measured by penetration was approx. 1 N (samples #A, #B, #C) but
significantly higher for nougat #D (3.76 ± 0.32 N).

Table 2. Fat distribution and physical properties of base nougat. Mean values with different superscripts in a column
indicate statistical differences (p < 0.05).

Nougat Total Fat (g/100 g) 1 Mobile Fat (%) 2 Yield Stress (Pa) 2 Viscosity (Pa.s) 2 Hardness (N) 3

#A 37.6 27.2 ± 0.3 a 10.78 ± 0.07 b 1.75 ± 0.02 b 0.95 ± 0.12 b

#B 44.0 25.5 ± 0.8 a 3.78 ± 0.05 c 1.43 ± 0.04 c 1.31 ± 0.16 b

#C 37.0 23.1 ± 1.1 ab 10.25 ± 0.17 b 3.25 ± 0.04 a 1.24 ± 0.24 b

#D 36.0 18.5 ± 1.0 b 12.90 ± 0.09 a 3.87 ± 0.03 a 3.76 ± 0.32 a

1 Data from manufacturer specifications; 2 Data is arithmetic mean ± half deviation range (n = 2); 3 Data is arithmetic mean ± standard
deviation (n = 8).

Figure 1 displays the logarithmic volume-based particle size distributions, which
were monomodal for all samples. The particle diameter median (x50,3) was 6.1 µm for
the chocolate, and slightly higher (7.4–8.5 µm) for the four nougats. The span between
the x10,3 and the x90,3 quantiles was 22.4 µm and 21.8–33.6 µm for chocolate and nougat,
respectively. The highest x90,3 diameter (35.1 µm) was observed in the case of nougat
#C, which is slightly above the critical particle size for chocolate concerning the sensory
perception of graininess [24,25]. This value was, however, recently questioned by de
Pelsmaeker et al. [26].

It is evident from the data that the nougat samples are representative of what is
available on the market, starting with the high fat, low viscosity variant #B comprising of
only hazelnuts, sugar, and cocoa butter. The fraction of dispersed particles for all other
nougats were explicitly higher, with some also containing milk solids and/or cocoa mass
and/or surface-active compounds such as lecithin at varying concentration.
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3.2. Storage Induced Changes and Nut Oil Migration

Figure 2 depicts the development of the hardness of the surface chocolate during
storage as affected by nougat variety and pre-crystallization method and intensity. One day
after production of the layer model, the hardness of the chocolate on top of the nougat was
13.9 ± 1.8 N for sample #A, 14.9 ± 1.8 N for #B, and 17.2 ± 2.1 N for #C. The mechanical
response of nougat #D was 23.5 ± 2.3 N, thus reflecting the contribution of the stiffer
bottom layer (see nougat hardness in Table 2) to chocolate hardness.

During storage at 23 ◦C, the hardness of the chocolate of the control sample decreased,
especially within the first four weeks. After that, further changes in sample hardness were
only minor. It is also evident that the relative deviation of the repeated measurements of
individual samples increased with storage time. This can be attributed to local effects and
increasing differences between local spots at the surface of the layer models. As indicated
in the chart, the softening induced by 84 d storage was significant for chocolate on top of
nougat #A, #B, and #D.

The situation is, however, different when cocoa butter crystals were used to induce
pre-crystallization in nougat. In case an amount of 0.5% or 1% seed powder was used for
seeding, initial chocolate hardness was approx. 10 N, with the highest values again for
samples with nougat #D. In the first 20–30 d of storage, the systems slightly solidified,
presumably because of an ongoing slow crystallization of cocoa butter and a resulting
formation of a fat crystal network in the bottom nougat layer that presumably blocks
the fat migration pathway due to microstructural changes [27,28]. At this particular time,
chocolate hardness was almost similar to the hardness of chocolate on top of the industrially
tempered control nougat. Using chocolate hardness as an indicator, it was not possible
to detect further changes after that period of time. Except for nougat #A seeded with 1%
cocoa butter crystals, analysis of variance with subsequent post-hoc tests revealed that
the hardness of the chocolate layer at the end of storage was significantly higher than its
initial hardness. The more pronounced hardness increase of the nougat #D sample can
be attributed to the lower amount of nut oil that was present in this system. As regards
nougat with 2% seed crystals, chocolate on top of it was even harder than the control
immediately after production of the layer models. This system remained stable during
approx. 4 weeks but, subsequently, showed a significant trend toward time-dependent
softening. Although the investigated systems are not fully comparable, the mechanism
behind a reduced nut oil migration is presumably similar to that observed with respect to
oil separation in spreadable nougat creme [29,30], namely that the formation of some sort
of fat crystal network in the nougat significantly lower filling oil mobility.
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Figure 2. Development of the hardness of the nougat/chocolate layer models during storage at
23 ◦C for 84 days. Four different nougats (#A, #B, #C, #D) were either tempered using the stir/shear
technique (control) or seeded with different amounts of cocoa butter crystals. For the sake of clarity,
symbols are slightly shifted along the x-axis. Data are arithmetic mean ± standard deviation of
8-fold measurements. The hardness of samples at 84 days marked by a filled symbol is significantly
(p < 0.05) different from the hardness of the fresh layer models.
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Figure 3 depicts the effects of nougat crystallization on storage-induced changes of the
cocoa butter melting peak temperature in chocolate taken from the surface of the samples.
Immediately after production, the peak temperature ranged from 32.2–32.9 ◦C, which is
typical for cocoa butter with ßV crystals [31,32]. In all control samples, the cocoa butter
melting temperature increased continuously with ongoing storage and finally reached
approx. 34.5 ◦C. This shift indicates that a significant fraction of ßV crystals transformed
into the ßVI modification, which shows a typical melting temperature of approx. 35–36 ◦C.
Their presence can be regarded as an indicator and expression of fat bloom [3,9,33].
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layer models during storage at 23 ◦C for 84 days. Four different nougats (#A, #B, #C, #D) were either
tempered using the stir/shear technique (control) or seeded with different amounts of cocoa butter
crystals. For the sake of clarity, symbols are slightly shifted along the x-axis. Individual data are
arithmetic mean ± half deviation range of duplicate measurements. Mean values after different
storage times labeled with different letters differ significantly (p < 0.05).
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This increase in the temperature of the melting peak was significantly lower in choco-
late placed on top of the nougat seeded with cocoa butter crystals than in the control
sample. This effect was especially observed when 0.5% or 1% crystals were added, and
the respective delay in the shift of the peak temperature was evident at least for a storage
period of 63 d. When 2% seeding crystals were used, the melting temperature was stable
for at least 28 d.

Figure 4 depicts temperature-resolved thermograms of the chocolate placed on top of
control nougat #A and those of chocolate on nougat #A that was seeded with 1% cocoa
butter crystals. On the day after producing the layer models, the progress of the heat flow
in the samples was almost identical. After storage for 21 d the presence of a compound
with a melting temperature of approx. −7 ◦C, obviously resulting from a small amount of
hazelnut oil being present, started to become visible especially in the chocolate of the layer
models with the control nougat. When plotted against time, the phase transition enthalpy
corresponds to the area of the heat flow peak.

Foods 2021, 10, 1056 9 of 12 
 

butter crystals. On the day after producing the layer models, the progress of the heat flow 
in the samples was almost identical. After storage for 21 d the presence of a compound 
with a melting temperature of approx. −7 °C, obviously resulting from a small amount of 
hazelnut oil being present, started to become visible especially in the chocolate of the 
layer models with the control nougat. When plotted against time, the phase transition 
enthalpy corresponds to the area of the heat flow peak. 

 
Figure 4. Average melting curves (endo up, n = 2) of chocolate on top of nougat stored for different periods of time (1, 28, 
63, and 84 days). Grey lines, chocolate on top of control nougat; red lines, chocolate on top of nougat #A. The nut oil 
melting peak is marked by an arrow. For the sake of clarity, the red lines are shifted along the y-axis by 0.5 W/g. 

For a storage time of 28 d and 84 d, the specific melting enthalpy of the chocolate 
surface as affected by the type of nougat and by the nougat crystallization method is 
outlined in Table 3. The relatively large deviation between some of the duplicate meas-
urements can again be attributed to local effects at the surface where the samples were 
taken. However, it is, on average, evident from the data that, during the first period of 
storage, the seeding of nougat with cocoa butter crystals significantly reduced the mi-
gration of nut oil to the chocolate surface. This result is in good agreement with the 
melting peak data presented in Figure 3: a higher nut oil melting enthalpy in chocolate 
can be regarded to trigger the transformation of cocoa butter crystal morphology from ßV 
to ßVI with the accompanying shift in melting temperature. After long-term storage, the 
stabilizing effect of the seeding of nougat with cocoa butter crystals diminishes, and so do 
the significances of the differences. 

Table 3. Effects of crystal seeding on specific enthalpies (J/g) of the nut oil melting peak in the 
chocolate on top of nougat layers after 28 or 84 days of storage at 23 °C. Mean values with different 
superscripts in a column indicate statistical differences (p < 0.05). 

Nougat Seeding Nougat #A 1 Nougat #B Nougat #C Nougat #D 
Storage time: 28 days     

Control 1.83 ± 0.25 a 2.02 ± 0.30 a 1.64 ± 0.27 a 0.73 ± 0.09 a,b 
0.5% seed crystals 1.07 ± 0.18 b 1.56 ± 0.14 a 0.71 ± 0.05 b 1.09 ± 0.32 a 
1% seed crystals 1.09 ± 0.02 b 1.58 ± 0.28 a 0.76 ± 0.12 b 0.28 ± 0.09 b 
2% seed crystals 0.96 ± 0.12 b 0.42 ± 0.04 b 0.37 ± 0.04 b 0.32 ± 0.12 b 

Storage time: 84 days     
Control 9.21 ± 0.73 a 8.77 ± 0.23 a 7.34 ± 0.77 a 4.65 ± 0.18 a 

0.5% seed crystals 6.58 ± 0.44 b 4.45 ± 0.36 b 7.37 ± 0.04 a 4.73 ± 0.52 a 
1% seed crystals 6.05 ± 0.46 b 8.68 ± 0.62 a 7.38 ± 0.58 a 3.66 ± 0.54 a 
2% seed crystals 9.03 ± 0.44 a 7.78 ± 0.89 a 6.90 ± 0.07 a 4.51 ± 0.24 a 

1 Data is arithmetic mean ± half deviation range (n = 2). Mean values in a data block marked with 
different superscripts (a,b) differ significantly (p < 0.05). 

Figure 4. Average melting curves (endo up, n = 2) of chocolate on top of nougat stored for different periods of time (1, 28,
63, and 84 days). Grey lines, chocolate on top of control nougat; red lines, chocolate on top of nougat #A. The nut oil melting
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For a storage time of 28 d and 84 d, the specific melting enthalpy of the chocolate sur-
face as affected by the type of nougat and by the nougat crystallization method is outlined
in Table 3. The relatively large deviation between some of the duplicate measurements can
again be attributed to local effects at the surface where the samples were taken. However,
it is, on average, evident from the data that, during the first period of storage, the seeding
of nougat with cocoa butter crystals significantly reduced the migration of nut oil to the
chocolate surface. This result is in good agreement with the melting peak data presented
in Figure 3: a higher nut oil melting enthalpy in chocolate can be regarded to trigger the
transformation of cocoa butter crystal morphology from ßV to ßVI with the accompanying
shift in melting temperature. After long-term storage, the stabilizing effect of the seeding of
nougat with cocoa butter crystals diminishes, and so do the significances of the differences.

In three sets of sensory discrimination tests, pure nougat seeded with 0.5% or 1%
cocoa butter crystals was tested against the control prepared by the stir/shear technique
and, in addition, against each other. In all cases, the number of correct identifications
was seven at a maximum which means that the sensory panel could not discriminate the
samples at an error probability level of p < 0.10.

Figure 5 finally shows the appearance of the nougat #A control layer models and,
exemplary, the layer model with the same nougat seeded with 1% cocoa butter crystals.
The photographs clearly show the differences in fat bloom intensity which is visible at the
surface of the top layer chocolate and, especially, at the interface between the nougat layer
and the chocolate.
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Table 3. Effects of crystal seeding on specific enthalpies (J/g) of the nut oil melting peak in the
chocolate on top of nougat layers after 28 or 84 days of storage at 23 ◦C. Mean values with different
superscripts in a column indicate statistical differences (p < 0.05).

Nougat Seeding Nougat #A 1 Nougat #B Nougat #C Nougat #D

Storage time: 28 days
Control 1.83 ± 0.25 a 2.02 ± 0.30 a 1.64 ± 0.27 a 0.73 ± 0.09 a,b

0.5% seed crystals 1.07 ± 0.18 b 1.56 ± 0.14 a 0.71 ± 0.05 b 1.09 ± 0.32 a

1% seed crystals 1.09 ± 0.02 b 1.58 ± 0.28 a 0.76 ± 0.12 b 0.28 ± 0.09 b

2% seed crystals 0.96 ± 0.12 b 0.42 ± 0.04 b 0.37 ± 0.04 b 0.32 ± 0.12 b

Storage time: 84 days
Control 9.21 ± 0.73 a 8.77 ± 0.23 a 7.34 ± 0.77 a 4.65 ± 0.18 a

0.5% seed crystals 6.58 ± 0.44 b 4.45 ± 0.36 b 7.37 ± 0.04 a 4.73 ± 0.52 a

1% seed crystals 6.05 ± 0.46 b 8.68 ± 0.62 a 7.38 ± 0.58 a 3.66 ± 0.54 a

2% seed crystals 9.03 ± 0.44 a 7.78 ± 0.89 a 6.90 ± 0.07 a 4.51 ± 0.24 a

1 Data is arithmetic mean ± half deviation range (n = 2). Mean values in a data block marked with different
superscripts (a,b) differ significantly (p < 0.05).
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4. Conclusions

The current study shows that, under controlled conditions, the pre-crystallization of
nougat by seeding with cocoa butter crystals may be considered appropriate for improving
the physical storage stability of pralines and delaying the onset of fat bloom. In the layer
models used in the experiments, the thickness of the chocolate layer was uniform across
the tested surface. Such a uniform chocolate shell thickness can be achieved when molding
techniques such as the frozen cone technology are used. It needs, however, to be tested
in further studies whether the stability of filled systems can also be improved when shell
thickness variations, resulting from standard molding techniques such as form inverting or
spinning, are present.
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