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Abstract: In this study, dielectric barrier discharge (DBD) cold plasma was used to degrade zear-
alenone and the efficiency of degradation were evaluated. In addition, the degradation kinetics and
possible pathway of degradation were investigated. The results showed that zearalenone degradation
percentage increased with increasing voltage and time. When it was treated at 50 KV for 120 s, the
degradation percentage could reach 98.28%. Kinetics analysis showed that the degradation process
followed a first-order reaction, which fitted the exponential function model best (R2 = 0.987). Mean-
while, liquid chromatographywith quadrupole time-of-flight mass spectrometry (Q-TOF LC/MS)
was used to analyze the degradation products, one major compound was identified. In this study,
the reactive species generated in cold plasma was analyzed by Optical Emission Spectroscopy (OES)
and the free radicals were detected by Electron Spin Resonance (ESR). This study could provide a
theoretical basis for the degradation of zearalenone to a certain extent.

Keywords: DBD cold plasma; zearalenone; degradation kinetics; degradation products

1. Introduction

Mycotoxins are secondary metabolites of fungi wtih low molecular weight, potentially
toxic to human and animal even at low concentration [1,2]. Zearalenone (Figure 1) is
an estrogenic mycotoxin produced by Fusarium, which is one of the most widespread
mycotoxins contaminating foods [3]. Zearalenone can be detected in corn, wheat and other
grains and their cereal products [4]. Previous research has reported that the toxicity of
zearalenone can be segmented into reproductive toxicity, genetic toxicity and immuno-
toxicity [5]. Zearalenone can participate directly in and interfere with the reproductive
process, causing oxidative stress and heat stress, leading to cell and DNA damage, and even
resulting in cell apoptosis [6]. Whether exposure to zearalenone via cereals or indirectly
via feed and animal-derived products, all represent a significant threat to both human and
animal health [7].
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1. Introduction 
Mycotoxins are secondary metabolites of fungi wtih low molecular weight, poten-

tially toxic to human and animal even at low concentration [1,2]. Zearalenone (Figure 1) 
is an estrogenic mycotoxin produced by Fusarium, which is one of the most widespread 
mycotoxins contaminating foods [3]. Zearalenone can be detected in corn, wheat and 
other grains and their cereal products [4]. Previous research has reported that the toxicity 
of zearalenone can be segmented into reproductive toxicity, genetic toxicity and immu-
notoxicity [5]. Zearalenone can participate directly in and interfere with the reproductive 
process, causing oxidative stress and heat stress, leading to cell and DNA damage, and 
even resulting in cell apoptosis [6]. Whether exposure to zearalenone via cereals or indi-
rectly via feed and animal-derived products, all represent a significant threat to both hu-
man and animal health [7]. 

 
Figure 1. Chemical structure of zearalenone. 
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Figure 1. Chemical structure of zearalenone.

At present, the degradation methods of zearalenone mainly include physical method,
chemical method and biological method [8]. Traditional physical and chemical methods
may decrease the nutritional quality of food and palatability of feed, or leading to residues
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and safety concerns [9]. Therefore, efficient approaches for decontamination of zearalenone
in food and feed are urgently needed. Biological method has the advantages of mild
reaction conditions, no secondary pollution and relatively lower cost, but it is not suitable
for food processing [10].

Cold plasma as a new non-thermal treatment technology received much attention in
recent years. Cold plasma is a kind of partially or wholly ionized state of gas and composed
of highly reactive species including gas molecules, charged particles in the form of positive
ions, negative ions, free radicals, electrons [11]. Cold plasma has been used in various fields
such as destroying enzyme activities, modifying food matrix features, degrading toxins and
reducing pesticide residues, which can provide a new method for non-thermal processing
and preservation of high-value agricultural products [12]. In recent years, more and more
studies choose cold plasma as the degradation method of mycotoxin [13,14]. However, the
application of cold plasma in zearalenone degradation research is relatively less and not
deep enough [13,14]. Therefore, it is of great significance to investigate the degradation
effect of zearalenone by cold plasma treatment.

In the present study, DBD cold plasma was utilized for the degradation of zearalenone
in different parameters. The content of zearalenone was determined by LC-MS/MS and the
degradation kinetics was investigated at meantime. In addition, the degradation products
of zearalenone were analyzed by Q-TOF LC/MS. OES was employed to detect the reactive
species in plasma. ESR spectroscopy was applied to identify the free radicals in the plasma.
This study provides a theoretical basis for the degradation of zearalenone by cold plasma.

2. Materials and Methods
2.1. Materials

Pure zearalenone standards in acetonitrile (50 mg/L) were purchased from ANPEL
(ANPEL Laboratory Technologies Co., Ltd., Shanghai, China). Zearalenone were diluted in
acetonrtrile to obtain a concentration of 50 ng/mL and stored at −20 ◦C. 5,5-dimethyl-1-
pyrroline-N-oxide (DMPO); 2,2,6,6-tetramethylpiperidine (TEMP, >98.0%) and N-tert-Butyl-
α-phenylnitrone (PBN) were purchased from Sigma (Sigma Aldrich Co., Ltd., Shanghai,
China). All of other reagents were provided by Aladdin (Aladdin Chemicals Co., Ltd.,
Shanghai, China).

2.2. Experimental Apparatus

A schematic diagram of DBD plasma generator used in the present study is shown
in Figure 2. The experimental apparatus essentially comprises a high-voltage alternating
current power source, two copper electrodes and two dielectric boards. The work gas was
atmospheric air. Small plastic jars were used as reactor.
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2.3. Treatment of Zearalenone with Different Plasma Parameters

1 mL zearalenone standard solution (50 ng/mL) were added into a plastic container
and placed in the dark at room temperature. After 30 min, when solvent evaporated to dry,
the sample was subjected to cold plasma treatment at different parameters. The samples
were treated with three treatment voltages (30, 40 and 50 KV) for 12 treatment time (10, 20,
30, 40, 50, 60, 70, 80, 90, 100, 110 and 120 s), respectively. Throughout the experiments, two
PVC boards with 2 mm thickness were used as the dielectric materials, and the distance
between the two parallels boards was 2 cm. After the plasma treatment, samples were
redissolved in 50% (v/v) acetonitrile water solution. Each treatment was performed on
three sample replicates.

2.4. Degradation Efficiency Determination

Zearalenone were quantified with LC-MS/MS (Agilent Technologies, Santa Clara, CA,
USA), according to the official method described in National Standard for Food Safety,
Determination of Zearalenone in Food of the People’s Republic of China [15]). The standard
solution of zearalenone (50 mg/L) was prepared in acetonitrile at concentrations at 1, 5,
10, 25, 50 ng/mL, respectively, and make a standard curve. Zearalenone concentration
was calculated from the detector response to injected samples using a standard calibration
curve. All chromatographic separations were performed using a C18 column (2.1 × 50 mm,
1.8-Micron); mobile phase was (A) acetonitrile (v/v), (B) 0.1% formic acid in water (v/v).
Sample injection volume was 5 µL. Isocratic elution was performed with mobile phase
A and B in the ratio 10:90, the time was 9 min. The flow rate was 0.3 mL/min. The
UPLC system was coupled to triple quadrupole mass spectrometer with electrospray ion
source (ESI) and the detection were performed in positive ionization mode. Degradation
percentage of zearalenone was calculated based on the initial concentration of zearalenone
using the following equation:

Degradation percentage =
C0 − Ct

C0
× 100%

Actual degradation amount = C0 − Ct

where C0 is the initial concentration of zearalenones and Ct is the residual concentration of
zearalenone after cold plasma treatment.

2.5. Degradation Kinetics of Zearalenone

Experimental data of zearalenone degradation was modeled using a kinetics degrada-
tion model, the effect of plasma treatment time on the kinetics of zearalenone degradation
can be evaluated. The processing voltage is 40 KV and the dielectric material is PVC board
with thickness of 2 mm. The degradation percentage of zearalenone (y) was taken as the
vertical coordinate and the reaction time (x) as the horizontal coordinate. For modeling
the degradation kinetics of zearalenone, the experimental data were fitted by logarithmic,
quadratic, cubic and exponential functions (S) by using the curve estimation in SPSS. The
function model with the best fitting effect was selected. In addition, the relevant parameters
of the kinetic equation were calculated.

2.6. Structural Elucidation of Degradation Products

In order to assess possible pathways of the degradation, the possible degradation
products were analyzed employing the UHD Accurate-Mass Q-TOF LC/MS (Agilent 1290-
6538, Santa Clara, CA, USA). The standard solution of zearalenone (1 µg/L) was prepared
in acetonitrile, the sample was treated with 50 KV for 120 s. The chromatographic condition
was same as described in Section 2.4, ESI− was used for collecting signals. The pump was
operated at a flow rate of 0.3 mL/min with mobile phases A, 0.1% formic acid in water
(v/v) and B,100% acetonitrile with injection volume of 3 µL. A linear gradient was started
with 10% B, after which B was increased linearly to 100% in 13 min, and subsequently kept
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isocratic for 3 min. The proportion of B was then decreased to 10% in 2 min. The total run
time was 18 min. The ion source parameters for ESI in negative mode over the range m/z
50–1200. Principal component analysis power and cluster analysis were also performed
in Masshunter.

2.7. The Active Species Diagnosis by Optical Emission Spectroscopy

Optical emission spectroscopy (OES, AvaSpec-Mini4096CL, Avantes Corporation,
Apeldoorn, The Netherlands) was used to characterize some of the active species in the
cold plasma. Briefly, the spectra of excited gas plasma were measured using optical
emission spectroscopy over the entire wavelength range of 200–1100 nm. The slit width
of was 10 µm and the optical resolution was 0.88 nm. PVC was selected as the dielectric
material, the plasma treatment voltage were 35, 40, 45 and 50 KV, respectively. All spectra
were corrected by subtracting the noise from the background scans.

2.8. Free Radical Identification by Electron Spin Resonance (ESR)

Electron spin resonance (ESR, EMXnano, Bruker Corporation, Karlsruhe, Germany)
was applied to detect free radicals in the liquid system treated by the cold plasma. DMPO
was dissolved in ultra-pure water (0.5 mol/L) to trap hydroxyl radicals (•OH). TEMP and
PBN were dissolved in toluene (0.3% PBN) to trap singlet molecular oxygen (1O2). 1 mL
spin-trapping solution were exposed to the plasma at 50 KV for 60 s. The ESR microwave
power was setat 3.16 mW, the microwave frequency was 9.62 GHz, the scan number was
20, and the sweep time of 30 s was used. Other parameters of the ESR spectrometer were
set as follows: the central field was 3425 G, the sweep width was 150 G and the attenuation
was 15 dB.

2.9. Statistical Analysis of Data

Statistical analysis was carried out using SPSS 23.0, and a significant difference was
verified by one-way ANOVA with Waller Duncan’s multiple range test (p < 0.05).

3. Results
3.1. Treatment of Zearalenone with Different Plasma Parameters

Cold plasma can directly or indirectly decontaminate zearalenone. In this study, as
shown in Figure 3, the degradation percentages of zearalenone increased with the treating
time and tended to degrade completely by the end of the treatment. At the beginning of
the study, there was no significant difference in degradation percentage at different voltage,
which might be due to the short treatment time and zearalenone has not been sufficiently
degraded. However, as the treatment time increased, such as the treatment with voltage
50 KV and the treatment time 60 s, the degradation percentage could reach 80%. Especially
when the treatment time was 120 s, the degradation percentage could reach to 98.28%.
When the treatment time was 40 s, zearalenone demonstrated a degradation of 59.62% at
30 KV, 67.06% at 40 KV and 78.37% at 50 KV, respectively. In the same way, when treated
for 120 s, zearalenone demonstrated a degradation of 88.37% at 30 KV, 92.21% at 40 KV
and 98.28% at 50 KV, respectively. These results confirmed that whether treatment time or
voltage increased could lead to the increase of degradation of zearalenone.

According to Siciliano [16], with the increase in power and time, the residual AFB1
decreased from 25.4% to 0%. Devi [17] confirmed that the higher power could reduce the
production of aflatoxins when Aspergillus parasiticus and A. flavus were treated with cold
plasma. They considered that the phenomenon might be due to the high voltages could
produce a higher number of radicals and charged particles, so it was better for mycotoxin
degradation. Other studies have found that DBD cold plasma ionizes air through ultrahigh
voltage, which is why voltage plays an important role in degradation efficiency [18]. The
results showed that the reaction time of the active species in the cold plasma increased with
the treatment time, the rate of reactive species generated increased with the increase of
voltage. Thus, increasing the reactive species such as reactive oxygen species (ROS), free
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radicals and ultraviolet photons, when acting on the preservation of agricultural products,
which allows more active particles to interact with mycotoxins and results in a higher
degradation percentage [19].
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Figure 3. Degradation of zearalenone under different plasma treatment parameters.

3.2. Degradation Kinetics of Zearalenone

In previous studies, first-order model has always been used to model the inactivation
kinetics of microorganism and enzyme by heating and other technologies [20].

In the same way, the effect of plasma treatment time on the degradation of zearalenone
was studied from the kinetic point of view. The degradation percentage of zearalenone
varies with treatment time as shown in Figure 4. The first-order kinetics fitting was carried
out using SPSS software, and four kinds of function models, namely logarithmic model,
quadratic function, cubic function and exponential function, were fitted, respectively. The
kinetics model parameters and correlation coefficients of zearalenone degradation are
shown in Table 1.
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Table 1. Parameter and R2 value of reaction kinetic model of zearalenone degradation.

Model Equation F R2 Sig.

Log function Y = 32.204 logx − 56.677 242.414 0.956 <0.001
Quadratic function Y = 4.904 + 1.737x − 0.009x2 80.380 0.935 <0.001

Cubic function Y = 2.715x − 0.027 x2 + 9.274e−5x3 − 7.755 66.893 0.947 <0.001
Exponential function (S) Y = e4.704−20.905/x 812.195 0.987 <0.001

The correlation coefficient of the four models (R2) were greater than 0.9, it can be
observed that the first-order model was satisfactory with a high coefficient. In addition,
ANOVA analysis showed that the regression model had statistical significance. The cor-
relation coefficient of the exponential function R2 = 0.987 is close to 1, so it was chosen
to express the degradation kinetics of zearalenone, the expression is Y = e4.704−20.905/x,
and the fitting effect is shown in Figure 4. The results showed that the degradation of
zearalenone accorded with the first-order kinetics, which was similar to the previous
results [21].

3.3. Structural Elucidation of Degradation Product

The parent ions of zearalenone can be split α and β by mass spectrometry when they
are bombarded by different energy levels, so the parent ions of the degradation products
are deduced by ion splitting, and the possible structure of the ion fragments can be inferred.
The analysis of the chromatograms confirmed a decrease of zearalenone, meanwhile one
degradation product was found after cold plasma treatment (Figure 5). The molecular
weight of zearalenone degradation products was calculated and analyzed with MassHunter
Qualitative Analysis B.07.00 (Agilent Technologies, Santa Clara, CA, USA). In the secondary
mass spectra as shown in Figure 6a, its reference peak is [M-H]− at 317.1390 m/z. The main
characteristic ion fragments are[M-H2O]− −299.1284 m/z, [M-CH2O2]− at 273.1479 m/z,
[M-C6H10O2]− at 203.0692 m/z and so on. And the secondary mass spectra of degradation
product can be seen in Figure 6b.
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product. 
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Figure 5. Chromatograms of zearalenone (ZEN) treated with cold plasma where (a) zearalenone
control, (b) 1 µg/mL zearalenone after 120 s treated with detected degradation products.
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Figure 6. Mass chromatograms of zearalenone treated with cold plasma where (a) zearalenone
control, (b) 1 µg/mL zearalenone after 120 s treated with detected degradation products.

The molecular formula, mass-to-charge ratio and retention time of zearalenone and
degradation product were list in Table 2. According to the above information, the molecular
formula of degradation product was compared with zearalenone and the structure was
speculated [22]. The degradation product observed at 349.1290 m/z as shown in Table 2
corresponded to a molecular formula of C18H22O7.

Table 2. Mass accuracy measurement using LC–Q-TOF–MS for zearalenone and its degradation product.

Compound Formula Observed m/z Retention Time (min) Mass Error (ppm)

Zearalenone C18H22O5 317.1390 7.450 1.41
A C18H22O7 349.1290 5.839 0.79

Ozone was generated in cold plasma when the working gas was air [8]. Since the
structure of zearalenone is cyclic olefin, it will continue to decompose into ring-opening
compounds after cold plasma treatment, and the ozone generated by the system is added to
the olefin double bond, which generates aldehydes at the ends of the double bond, resulting
in product A (Figure 7). As shown in Figure 8a the zearalenone molecule could occurr
ozonolysis, where ozone first underwent 1,3-dipole cycloaddition of the olefin to obtain
the primary ozonide, rearranged to obtain the zwitterion peroxide (criegee zwitterion),
and then another 1,3-dipole cycloaddition to produce the secondary ozonide. In this study,
the C=C in the zearalenone molecule was broken by the oxidation of ozone to form 1,2,3-
trioxane cyclic compounds. The possible degradation pathways are shown in Figure 8b. In
addition, the broken of C=C may also be due to the collision of zearalenone molecules with
oxidizing reactive species, such as ·OH and 1O2 under the effect of high field strength of
cold plasma, which led to the broken of the C=C, followed by a radical addition reaction
in which the reactive oxygen species in the system binds to the olefin double bond and
generates aldehydes at the ends of the double bond, resulting in product A. The high
electric field intensity in the plasma may lead to the decomposition of water molecules and
the formation of ·OH. Especially ·OH as an oxidant, it is easy to die in the addition reaction
with unsaturated bond [22]. In addition, some free electrons may be trapped in the solution
and may occur dehydroxylation reaction [23].
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3.4. The Active Species Diagnosis by Optical Emission Spectroscopy

OES is generally employed for obtaining qualitative information about the type of
reactive species in the plasma; for example, OES of air plasma often reveals the presence of
excited nitrogen species, atomic oxygen, and hydroxyl radicals [24]. The emission spectra
of air plasma is shown in Figure 9. The emission peaks were previously reported to be
mainly attributed to N2, O, and OH species, when air was used as working gas [25]. It can
be clearly observed that the emission spectrum is dominated by N2 second positive system
(N2 (C-B)) at 300–430 nm. Since N2 is the major component of the air, and N2 (C-B) can
be excited by direct or step-wise electron impact. O has not been detected in our study,
but has been confirmed in other studies [26]. In addition, another study confirmed low
intensity emissions from singlet O were noted at 758 nm and 844 nm [27]. The small peak
of ·OH were recorded near 295–300 nm in this study, it was generated from moisture in air.
These results indicated that the cold plasma in this study was an abundant source of ROS
and RNS.
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From the emission spectrum, it is evident that the emission is in the near UV region 
(300–400 nm), which is similar to reported studies for DBD operating at atmospheric pres-
sures in air [28]. This is also consistent with the results of previous studies monitored the 
plasma microjet operated in air. An optical emission spectrum was found in the range of 
200–400 nm and very weak emissions was observed in the 200–300 nm range, which was 
likely attributed to molecular NO [29]. During cold plasma formation, the reactive species 
(ROS, RNS) of different wavelengths can cause the dissociation of the covalent bonds of 
zearalenone, thereby the original molecular structure was destroyed [30].  

In addition, when PVC was used as the dielectric material, and air was used as work-
ing gas, the main reactive species information under 35 KV, 40 KV, 45 KV and 50 KV, 
respectively, were obtained by optical emission spectroscopy. As shown in Figure 10, the 
types of active particles obtained under different voltages are same, and with the improv-
ing of voltage, the intensity of the spectral signal increases. When the voltage was 50 KV, 
the signal strength reached more than 60,000 a.u. This result confirmed what we supposed 
in the previous section. As the operating voltage increased, more active particles were 
produced, the higher was the degradation rate of zearalenone. 

Figure 9. Optical Emission spectra of air plasma.

From the emission spectrum, it is evident that the emission is in the near UV region
(300–400 nm), which is similar to reported studies for DBD operating at atmospheric
pressures in air [28]. This is also consistent with the results of previous studies monitored
the plasma microjet operated in air. An optical emission spectrum was found in the range
of 200–400 nm and very weak emissions was observed in the 200–300 nm range, which was
likely attributed to molecular NO [29]. During cold plasma formation, the reactive species
(ROS, RNS) of different wavelengths can cause the dissociation of the covalent bonds of
zearalenone, thereby the original molecular structure was destroyed [30].

In addition, when PVC was used as the dielectric material, and air was used as
working gas, the main reactive species information under 35 KV, 40 KV, 45 KV and 50 KV,
respectively, were obtained by optical emission spectroscopy. As shown in Figure 10, the
types of active particles obtained under different voltages are same, and with the improving
of voltage, the intensity of the spectral signal increases. When the voltage was 50 KV, the
signal strength reached more than 60,000 a.u. This result confirmed what we supposed
in the previous section. As the operating voltage increased, more active particles were
produced, the higher was the degradation rate of zearalenone.

Foods 2022, 11, x FOR PEER REVIEW 10 of 12 
 

 

200 400 600 800
0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

55,000

60,000

65,000

200 400 600 800
0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

55,000

60,000

65,000

200 400 600 800
0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

55,000

60,000

65,000

200 400 600 800
0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

55,000

60,000

65,000

C
ou

nt
s

Wavelength[nm]

 40KV

C
ou

nt
s

Wavelength[nm]

 35KV

C
ou

nt
s

C
ou

nt
s

Wavelength[nm]

 45KV

Wavelength[nm]

 50KV

 
Figure 10. Optical Emission spectra of air plasma in different environments. 
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The spectra obtained from the experiment were fitted by the Xenon software (Figure 
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DMPO-OH, which is characterized by a quartet ESR spectrum with a peak intensity ratio 
of 1:2:2:1 as shown in Figure 9. DMPO-OH may also derive from the decay of DMPO-
OOH, or the oxidation of DMPO by 1O2. Other small peaks are attributed to NO. In addi-
tion to the plasma treatment process that could produce NO, they were possibly produced 
by oxidation of DMPO itself in the reaction as well. Similarly, non-radical 1O2 and nitrox-
ide radicals were trapped in some cases, usually 1O2 was trapped by TEMP [31]. The peak 
of spin adduct TEMP−1O2 was characterized by a quartet ESR spectrum with a peak in-
tensity ratio of 1:1:1:1 [32]. As shown in Figure 11, the spectra of TEMP−1O2 were con-
firmed by the characteristic peaks of the spin adduct. The type of free radical captured by 
PBN is not specific, a single free radical type cannot be determined from the fitted spec-
trum of PBN adducts. In this study, the major radicals are probably H, N3, •OH. Previous 
study showed that the free radical and high energy electron produced by cold plasma 
could react with mycotoxin, which leaded to the breaking of chemical bond and the for-
mation of low molecular weight degradation products [33]. In addition, Hu [34] proved 
that •OH radical played an important role in the DBD plasma degradation of dimethoate. 
•OH radicals attacked the P = S bond of dimethoate, forming the P = O bond; the interme-
diates further reacted with •OH radicals to produce the degradation products. 
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3.5. Free Radical Identification by ESR

ESR is the most direct and effective technique for qualitative analysis of free radicals.
Free radicals are very unstable and are easily to be quenched, so it is difficult to be detected
directly in the reaction process by ESR. It is necessary to add a trapping agent to form a
stable spin adduct, then the type of free radical can be qualitatively analyzed according to
the spectrogram.

The spectra obtained from the experiment were fitted by the Xenon software (Figure 11).
The direct spin trapping reaction between DMPO and ·OH produces spin adduct DMPO-
OH, which is characterized by a quartet ESR spectrum with a peak intensity ratio of 1:2:2:1
as shown in Figure 9. DMPO-OH may also derive from the decay of DMPO-OOH, or
the oxidation of DMPO by 1O2. Other small peaks are attributed to NO. In addition to
the plasma treatment process that could produce NO, they were possibly produced by
oxidation of DMPO itself in the reaction as well. Similarly, non-radical 1O2 and nitroxide
radicals were trapped in some cases, usually 1O2 was trapped by TEMP [31]. The peak of
spin adduct TEMP−1O2 was characterized by a quartet ESR spectrum with a peak intensity
ratio of 1:1:1:1 [32]. As shown in Figure 11, the spectra of TEMP−1O2 were confirmed by
the characteristic peaks of the spin adduct. The type of free radical captured by PBN is
not specific, a single free radical type cannot be determined from the fitted spectrum of
PBN adducts. In this study, the major radicals are probably H, N3, •OH. Previous study
showed that the free radical and high energy electron produced by cold plasma could react
with mycotoxin, which leaded to the breaking of chemical bond and the formation of low
molecular weight degradation products [33]. In addition, Hu [34] proved that •OH radical
played an important role in the DBD plasma degradation of dimethoate. •OH radicals
attacked the P=S bond of dimethoate, forming the P=O bond; the intermediates further
reacted with •OH radicals to produce the degradation products.
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4. Conclusions

In this study, cold plasma as a non-thermal treatment technology was utilized to
degrade zearalenone. The degradation percentage of zearalenone increased with the
increase of treatment time and treatment voltage. The degradation of zearalenone accords
with the first-order kinetics. The molecular formula of one degradation product was
identified and verified. Generation of reactive species were characterized with OES and
ESR. The data indicated that reactive species were also influenced by different working
conditions. More reactive species were produced in cold plasma with higher discharging
voltage. The degradation of zearalenone is attributed to reactive species such as ozone, free
radicals and ROS formed in cold plasma.

At present, the toxicity of degradation products of zearalenone is still not clear. There-
fore, future studies should be focused on the toxicity of degradation products further by
cell or animal model experiments.
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