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Abstract: Lushan Yunwu Tea is one of a unique Chinese tea series, and total polyphenols (TP),
free amino acids (FAA), and polyphenols-to-amino acids ratio models (TP/FAA) represent its most
important taste-related indicators. In this work, a feasibility study was proposed to simultaneously
predict the authenticity identification and taste-related indicators of Lushan Yunwu tea, using
near-infrared spectroscopy combined with multivariate analysis. Different waveband selections
and spectral pre-processing methods were compared during the discriminant analysis (DA) and
partial least squares (PLS) model-building process. The DA model achieved optimal performance in
distinguishing Lushan Yunwu tea from other non-Lushan Yunwu teas, with a correct classification
rate of up to 100%. The synergy interval partial least squares (siPLS) and backward interval partial
least squares (biPLS) algorithms showed considerable advantages in improving the prediction
performance of TP, FAA, and TP/FAA. The siPLS algorithms achieved the best prediction results for
TP (RP = 0.9407, RPD = 3.00), FAA (RP = 0.9110, RPD = 2.21) and TP/FAA (RP = 0.9377, RPD = 2.90).
These results indicated that NIR spectroscopy was a useful and low-cost tool by which to offer
definitive quantitative and qualitative analysis for Lushan Yunwu tea.

Keywords: Lushan Yunwu tea; NIR; authenticity; taste-related indicators; prediction

1. Introduction

Tea is one of the three greatest non-alcoholic beverages in the world, one that is
preferred by many consumers and is particularly popular in China and Japan [1]. Tea
contains many secondary metabolites, such as polyphenols, amino acids, polysaccharides,
alkaloids, and terpenes, which are closely related to its quality and contribute to its rich taste,
flavor, and health benefits [2]. It is generally known that the quality of tea is influenced by
diverse factors, such as variety, original environment, plucking time, processing technology,
and storage method [3,4]. Among them, the origin of tea is considered to be one of the
key factors that directly determine its quality. There was an old Chinese saying, “Where
there’s cloud and mist, there’s bound to be good tea”. It was beneath the natural wonder
of tremendous clouds over Lushan Mountain that Lushan Yunwu tea was created. The
mild and rainy climate is conducive to the accumulation of organic matter, such as amino
acids and caffeine, so the tea has a delicate aroma and a mellow, fresh, and sweet flavor [5].
Lushan Yunwu tea was first produced in the Han Dynasty (202 BCE–220 CE), with a history
of over 1800 years; since the Song Dynasty (960–1279), Lushan Yunwu was listed as the
emperor’s and the imperial family’s tribute tea. In recent years, Lushan Yunwu tea was
increasingly sought by tea tasters all over the world because of its unique geographical
location and taste. Currently, Lushan Yunwu tea is included in the register of Products of
Geographical Indication in China (GB/T 21003-2007).

Tea polyphenols (TP), total free amino acids (FAA), and their ratio of TP/FAA may
be reliable taste quality indicators of tea flavor [5,6]. Generally, a high-quality green tea
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requires: (1) a proper concentration of TP to give the essential astringency; (2) a high
concentration of FAA, which mainly contributes to the umami taste; and (3) an optimal
balance between TP and FAA for a particular taste or pleasant flavor [1,6]. Research
showed that the total phenolic contents of Lushan Yunwu tea were higher than those of
other teas [7]. However, in recent years, many products of poor quality but similar in
appearance to Lushan Yunwu tea have appeared in the market, pretending to be Lushan
Yunwu tea, which has had a substantial impact on the sales price and market reputation of
Lushan Yunwu tea. Therefore, the quality evaluation of Lushan Yunwu tea is an important
topic, especially in preventing frauds that may affect the health of customers, or that may
cause economic losses to producers and customers.

Traditionally, the authenticity identification and quality evaluation of tea mainly rely
on the sensory evaluation of professional tea tasters. Although this method is relatively
classic, the results are easily affected by factors such as the reviewer’s sensory organs
and are highly subjective. The possible biases and changes in perception of the method
make the results inaccurate and non-repeatable [8,9]. In addition, sensory evaluation
cannot help us to know the contents of the main ingredients in tea. Ultraviolet-visible
spectroscopy (UV-vis) [10,11], liquid chromatography mass spectrometry (LC-MS) [3,12],
gas chromatograph-mass spectrometry (GC-MS) [13,14], and other technologies [8] can be
used for the authenticity detection and quality determination of tea. These methods can
accurately detect the chemical components that affect the quality of tea [9]. Nevertheless,
most of these methods are prohibitively complicated, time–consuming, costly, and use a
wide range of toxic solvents, so they are not suitable for the rapid testing of tea [9]. As an
alternative, a variety of non-invasive detection technologies have been applied to rapidly
evaluate the quality of tea, such as near-infrared spectroscopy technology (NIR) [15,16], hy-
perspectral imaging technology (HIS) [17], the E-nose [18], the E-tongue [19] and computer
vision [20]. NIR technology is a mature testing technique with numerous advantages, such
as being rapid, low-cost, nondestructive, and environmentally friendly [15,21,22]. Rapid
identification methods for Anji white tea were developed using NIR spectroscopy and
chemometric-class modeling techniques [21]. The same method has also been demonstrated
to be an effective method for the identification of Darjeeling PGI tea [22]. Furthermore, NIR,
when combined with multivariate calibration methods, has been shown to exhibit excellent
analytical performance in predicting the main contents of tea leaves, including polyphenols,
catechins, caffeine, and theanine [23,24]. In a recent study, Wang et al. used a micro NIR
spectrometer to distinguish tea types (black, green, yellow, and oolong teas) and to predict
catechins, caffeine, and theanine in four types of teas, and obtained satisfactory results [15].
However, there are few research reports on the simultaneous authenticity identification
and taste quality assessments of tea, especially of Lushan Yunwu tea, a traditional and
famous green tea.

Therefore, the main purpose of this work was to tackle the adulteration identifica-
tion and quality prediction of Lushan Yunwu tea samples by the application of diffuse
reflectance NIR spectra. The specific objectives of this study were: (1) to identify the authen-
ticity of the origin of Lushan Yunwu tea; (2) to rapidly predict the taste quality indicators of
Yunwu green tea (including TP, FAA, and TP/FAA) simultaneously by NIR; (3) to compare
the performance of different spectral preprocessing methods and characteristic wavelength
(or wavenumber) selection methods, in improving the accuracy of the prediction models.

2. Materials and Methods
2.1. Sample Preparation

Fifty-six Lushan Yunwu tea samples (LY) were obtained from various origins in
Jiujiang, Jiangxi Province, China. Another 30 non-Lushan Yunwu tea samples (NLY) were
collected in Fujian, Guangxi, and Sichuan provinces; these were processed using the same
stir fixation as Lushan Yunwu tea. The details of the process and the representative images
of tea samples are shown in Table S1 and Figure S1a of the Supplementary Materials. After
being ground down for 30 s using a laboratory pulverizer (JYL-CO12, Joyoung Company
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Limited, Jinan, China) and passed through a 40-mesh sieve, all samples were individually
packaged in light-proof sealed bags and stored at 4 ◦C before analysis.

2.2. Spectra Acquisition

Referring to the previous study [25] with slight modifications, the NIR spectra of tea
samples were collected using a Nicolet 5700 FTIR spectrometer (Thermo Electron Corp.,
Madison, WI, USA). Briefly, about 1.0 g of tea powder was transferred into a standard
quartz bottle (inner diameter, ∼10 mm) for testing. The NIR spectra were measured in the
wavenumber range of 12,000–4000 cm−1 by using an average spectrum of 64 scans with a
resolution of 8 cm−1.

2.3. Chemical Analysis

The TP content was determined using the Chinese standards method (GB/T8313-2018)
with slight modifications. A 0.2 g sample of powdered tea was extracted with 5 mL of
70% (v/v) methanol solution at 70 ◦C for 10 min (stirred at 5 min intervals). The extract
was left to cool to room temperature, then it was centrifuged at 3500 rpm for 10 min. The
extraction process was repeated, and the supernatants were combined. The volume of the
extract was adjusted to 10 mL with 70% (v/v) methanol and was filtered through a 0.45-µm
microporous filter. The TP concentration was determined using the Folin–Ciocalteu reagent
reaction, with a detection wavelength of 765 nm. The calibration standard was gallic acid
and the results were expressed as gallic acid equivalents (GAE), in mg GAE/g dry matter.

The FAA contents were reference-measured using ninhydrin detection, as described
in the Chinese standards method (GB/T8314-2013) with slight modifications. A mixture of
tea powder (0.6 g) and 85 mL boiling water was placed in a boiling water bath for 45 min
(stirred every 10 min). After that, the extract was immediately filtered under reduced
pressure and washed with a little boiled water. Then, the filtered supernatant was adjusted
to 100mL. First, 1 mL tea extract was mixed with 0.5 mL 1/15 mol/L phosphate buffer
solution (pH 8.0) and 0.5 ml 2% ninhydrin (containing 0.8 mg/mL SnCl2·2H2O). The
solution mixture was heated at 90 ◦C for 15 min, then the volume of the flask was adjusted
to 25 mL after cooling down. The absorbance of the reaction solution was detected at
570 nm. The calibration standard was theanine and the results were expressed as theanine
equivalents (TE), in mg TE/g of dry matter. TP/FAA was estimated as the TP content,
divided by the FAA content.

2.4. Spectral Preprocessing

The tea samples were affected by external conditions during the NIR spectrum collec-
tion process, including sample state, particle size, baseline change, sample compactness
difference, measurement environment difference, etc., which could cause various noises
and information errors [26]. Therefore, before the multivariate statistical analysis took
place, the spectral data needed to be preprocessed to reduce system noise and enhance the
spectral features [27]. Multiplicative signal correction (MSC) is a type of widely applied
preprocessing method for light-scattering correction, which is used to regulate the addition
and multiplication effects in the spectrum on the foundation of different particle sizes [28].
Similar to MSC, the standard normal variate (SNV) is another mathematical transformation
method for light-scattering correction; it is mainly used to eliminate the noise caused
by optical path differences and uneven solid particles [29]. The first derivative (1st) and
second derivative (2nd) can effectively eliminate the baseline shift and rotation error of
the spectra [30]. However, the derivative transform promoted an emphasis on the level of
noise while emphasizing the features of the spectral data, so it is often used in conjunction
with a smoothing filter method, such as a Savitzky-Golay (SG) smoothing filter [25].

2.5. Multivariate Analysis

Tea samples were divided into two groups: three-quarters of the samples were used
as the calibration set to develop DA and PLS models, and the remaining quarter of the
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samples was used as the prediction set to evaluate the performance of the models [31].
To avoid bias in sample selection, the sample data set was split following two principles:
(1) regardless of whether the calibration set or prediction set was used, samples from every
origin were included; (2) the samples containing extreme values for TP, FAA, and TP/FAA
had to be included in the calibration set.

2.5.1. Discrimination Analysis (DA)

The discrimination between Lushan Yunwu tea samples (LY) and non-Lushan Yunwu
tea samples (NLY) was carried out using a discrimination analysis (DA) model. DA
is a supervised classification technique with predefined groups. An unknown sample
was assigned by calculating its Mahalanobis distance from the center of gravity of each
group [25,32]. The greater the Mahalanobis distance between two given groups, the greater
the spectral difference between them.

2.5.2. Partial Least Squares (PLS)

The contents of TP, FAA, and TP/FAA in tea samples were predicted using the partial
least squares (PLS) model. PLS projects the predictor variables and the observed variables
into a new space and then captures several latent variables (LVs) that can represent the
majority of raw information, using them to establish a linear regression model. The optimal
number of factors was selected according to the residual sum of squares (PRESS) during
the Leave One Out Cross-Validation (LOOCV) of the calibration models [32]. The factors
where the first minimum value of PRESS appears is the optimal number of factors. The
computed correlation coefficients in the calibration sets (RC) and prediction sets (RP), and
their corresponding root mean square error of calibration (RMSEC) and prediction (RMSEP),
along with the residual predictive deviation (RPD), were used to estimate and verify the
accuracy of the developed models [33,34]. The RPD was calculated using the ratio between
the standard deviation of the reference values and the RMSEP in the prediction set. In
addition, the root mean square error of cross-validation (RMSECV) was used as a diagnostic
value for model robustness. Good models have higher R (close to 1) and RPD (>2) but
lower RMSE, and the RMSEP is lower than the RMSECV [35–37].

2.5.3. Synergy Interval Partial Least Squares (siPLS)

The siPLS model is an effective characteristic variable selection algorithm proposed
on the basis of interval partial least squares (iPLS) [38]. The entire spectra are equally
divided into several equal intervals, then the different intervals are combined with each
other. Then, the interval combination with the highest correlation coefficient and the lowest
root mean square error of cross-validation (RMSECV) is selected. The combined intervals
represent those spectral variables of the full spectra that are particularly relevant to the
target parameter in the analysis.

2.5.4. Backward Interval Partial Least Squares (biPLS)

The biPLS model is another characteristic variable selection method developed on the
basis of iPLS [39]. The data set is divided into a given number of interval intervals of equal
length and calculates RMSECV with each interval left out, leaving out one interval at a
time [40]. After this process, the most relevant intervals are left behind.

2.6. Software

The spectral preprocessing and DA and PLS models were developed using the TQ
Analyst (Thermo Nicolet Corporation, Madison, WI, USA). The siPLS and biPLS algorithms
were carried out using the MATLAB R2020a software (MathWorks Inc., Natick, MA, USA).
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3. Results and Discussion
3.1. Spectrum Description

The raw NIR spectra of tea samples in the 12,000–4000 cm−1 frequency regions are
shown in Figure 1a. The hydrogen-containing groups of organic matter in tea (such as
C–H, O–H, S–H, and N–H, etc.) can produce multiple-frequency and combined-frequency
absorptions in the near-infrared region, which are mainly related to the water and polysac-
charides, polyphenols, amino acids, caffeine, and proteins in the tea [41]. The two weak
peaks at 4258 cm−1 and 4327 cm−1 may be related to the second overtone of C–H bending
and –CH2 bending, respectively [42]. The first overtone of C–H stretching was likely to
appear near to 5780 cm−1. The absorption peak around 4650 cm−1 was related to the com-
bination of N–H bending and C=O stretching [42]. Another absorption peak appeared at
around 6700 cm−1, corresponding to the presence of the N–H group, which was attributed
to free amino acids [41]. A wide and weak peak that appeared at 8600–8000 cm−1 may
be associated with the C–H stretching of CH2 and CH3 groups, which was related to the
presence of tea polyphenols [41]. In addition, since dry tea leaves generally contained
4–7% (w/w) of moisture, the absorption bands near 5160 cm−1 and 7000 cm−1 were also
apparently displayed, which arose from the combination of O–H stretching and H-O-H
deformation [25]. For some other wavenumber ranges (e.g., 12,000–10,000 cm−1), the
spectrogram resembled noise and contained little spectral information on the active com-
ponents. Figure 1a showed similar trends in all tea samples over the entire wavenumber
range. Therefore, data preprocessing methods were generally used to eliminate noise and
make the spectral features apparent after pretreatments, for example, in the case of the
MSC (Figure 1b).

Figure 1. The spectra of all tea samples in the wavenumber range of 12,000–4000 cm−1. (a) original
spectra (log 1/R); (b) spectra after pretreatment by multiplicative signal correction (MSC).
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3.2. Authentication of Lushan Yunwu Tea

The representative images of tea samples are presented in Figure S1a of the Supple-
mentary Materials, and it can be seen that it is impossible to clearly distinguish between
the LY and NLY samples. The differences in geographic location cause differences in the
chemical composition of the tea leaves. Figure S1b showed the descriptive statistics for
the taste quality indicator of tea samples. It showed that LY samples contained more
polyphenols and lower numbers of free amino acids than the NLY samples. However, no
statistically significant differences were found in TP and FAA contents between LY and
NLY samples (p > 0.05). Although TP/FAA showed significant differences between LY and
NLY (p < 0.05), it was still difficult to distinguish LY and NLY samples solely by chemical
composition analysis because of some overlapping ranges.

In recent years, NIR spectroscopy has been widely used in the field of food authenticity
identification because of its simplicity and convenience, so we used NIR technology to
differentiate the samples of LY and NLY. To visualize the NIR data, a PCA model was used
to analyze the natural distribution of the samples (Figure 2a). It was found that most of
the LY and NLY samples could be distinguished in this unsupervised model. To further
distinguish the two groups and to achieve authenticity prediction, the DA model was used.

Figure 2. Classification result for Lushan Yunwu tea (LY) and non-Lushan Yunwu tea (NLY) discrimi-
nation. (a) Principal component analysis (PCA) model (green—LY, blue—NLY); (b) discrimination
analysis (DA) model with MSC pretreatment in the wavenumber range of 9700–8600, 7400–6800,
5600–4000 cm−1 (�—LY,4—NLY).

Models with high classification accuracy were the most suitable for discrimination.
It could be seen that models discriminating green tea origins with a degree of accuracy
ranged from 62.79% to 100% when the DA models were developed using full-spectra data
(Table 1). The first 9 PCs were utilized in the DA model, which covered the most variations
(>62.49% of the total variance) contained in the spectral data. Interestingly, the application
of spectral preprocessing did not improve the prediction accuracy and stability of the DA
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model. Generally, this result could be due to too many latent variables being included and
may lead to overfitting of the calibration [25]. Thus, the wavenumber ranges needed to be
selected in this study.

Table 1. Performance of DA models with different spectral preprocessing approaches.

Wavenumber Range Pretreatment Methods Factors
% of
Variability
Described

No. of Incorrectly
Classified Samples

% of Samples
Correctly
ClassifiedLY (n = 56) NLY (n = 30)

Full wavenumbers
(12,000–4000 cm−1)

None 9 99.93 0 0 100
MSC 9 97.01 0 0 100
SNV 9 96.93 0 0 100
1st derivative 9 62.49 31 0 63.95
2nd derivative 9 63.44 30 1 63.95
MSC + 1st + SG filter (7, 3) 9 75.34 31 1 62.79
SNV + 1st + SG filter (7, 3) 9 75.20 31 1 62.79

Range 1 (8000–4000 cm−1)

None 9 99.99 0 4 95.35
MSC 9 99.70 0 1 98.84
SNV 9 99.65 0 1 98.84
1st derivative 9 90.31 2 2 95.35
2nd derivative 9 91.27 24 2 69.77
MSC + 1st + SG filter (7, 3) 9 90.23 0 3 96.51
SNV + 1st + SG filter (7, 3) 9 90.21 0 3 96.51

Range 2 (9700–8600 +
7400–6800 + 5600–4000 cm−1)

None 9 99.99 3 2 94.19
MSC 9 99.42 0 0 100
SNV 9 99.41 0 0 100
1st derivative 9 86.22 3 3 93.02
2nd derivative 9 87.33 29 1 65.12
MSC + 1st + SG filter (7, 3) 9 86.92 2 3 94.19
SNV + 1st + SG filter (7, 3) 9 86.89 2 3 94.19

Abbreviations: MSC, multiplicative signal correction; SNV, standard normal variate; 1st, first derivative; 2nd,
second derivative; SG, Savitzky-Golay smoothing.

A spectral wavenumber range from 8000 to 4000 cm−1 was manually selected for the
models (range 1), which has been reported to include most of the spectral information
that reflects the metabolite components in tea [25]. Another manual selection of regions
was conducted, based on the derivative transformed spectra, including 9700–8600 cm−1,
7400–6800 cm−1, and 5600–4000 cm−1 (range 2). The performance of the DA models,
established with different selected wavenumber ranges and preprocessing methods, is
shown in Table 1.

Compared to the DA models built using full spectral wavenumbers, DA models with
manual wavenumber selections were more efficient in terms of accuracy and robustness,
especially when based on the wavenumber range 2. The DA models with MSC and SNV
pretreatment performed best using the wavenumber ranges of 9700–8600, 7400–6800, and
5600–4000 cm−1. The Mahalanobis distance plot of every sample to the center of gravity
of two classes, established by a DA model with MSC pretreatment, is shown in Figure 2b.
The LY samples were completely separated from the NLY tea group, which indicated
that NIR, combined with the DA model, may be a potential method for the authenticity
discrimination of Lushan Yunwu tea with sufficient sensitivity. As far as we know, this was
the first time that near-infrared technology was used to identify and predict the authenticity
of Lushan Yunwu tea and obtained satisfactory results. It was worth noting that the
derivative transform pretreatment did not play a helpful role in optimizing this model,
which may be because the derivative transform promoted an emphasis on the level of noise
while emphasizing the features of the spectral data.

3.3. PLS Models for TP, FAA, TP/FAA Prediction

TP contributes to the essential astringency in green tea, while FAA mainly contributes
to the mellowness and umami of green tea; these two components are often used as
important indicators to evaluate the quality of tea [23,43]. TP/AA reflects the relationship
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between the umami taste and astringency and is used to reflect the quality of tea in previous
studies [33]. In this study, the three indicators of TP, FAA, and TP/FAA were predicted
using NIR technology. PLS models were developed with raw and preprocessed spectral
data to predict TP, FAA, and TP/FAA in different tea samples (Table 2). For TP prediction,
the raw-PLS model with the full-spectra data achieved an acceptable performance, with
RC = 0.9303 and RMSEC = 8.05 in the calibration set, and RP = 0.8546, RMSEP = 14.2 in
the prediction set. Compared with the performance of the original data, the performance
of the models after MSC and SNV spectral pretreatment had been improved, with higher
RP and lower RMSEP. However, other methods of spectral preprocessing did not play
an effective role. In the case of FAA, the performance of all PLS models was relatively
poor (RC, RP < 0.9), indicating that all PLS models based on full-spectra data were not
ideal for predicting free amino acid content. For TP/FAA, the MSC-PLS model performed
best, with the highest RP = 0.8430, RPD = 1.88 and the lowest RMSEP = 0.593. It showed
that the prediction of TP/FAA by the PLS model, based on the full-spectra data, was also
unsatisfactory. As in the DA models, the derivative transformation preprocessing did
not play an effective role in the optimization of PLS models for prediction in tea samples.
Compared with polyphenols, the values of amino acid contents were much lower; this may
explain why the prediction accuracy of FAA and TP/FAA was low [15]. In addition, the
full spectrum contained redundant information that had nothing to do with amino acids,
which could reduce the prediction accuracy [15]. Therefore, a variable filter was needed to
optimize the PLS models.

3.4. Variables Selection and PLS Models Optimization
3.4.1. Prediction Models Based on the Manual Selected Wavenumber Range

In order to remove redundant information that had nothing to do with the tea flavor
components, the PLS models were optimized by manually selected wavenumbers. As
noted in Section 3.2, two manually selected wavenumber ranges were applied (Table 2).
The models established with manually selected wavenumber ranges achieved better results
than those that were performed based on the full-spectra region. However, regardless of
the wavenumber range and the spectral preprocessing method that was used, the PLS
models concerning FAA did not achieve a good performance, with RP values lower than
0.9 and RPD values lower than 2.0. These results indicated that the wavenumber selection
range needs to be optimized further.

3.4.2. Prediction Models Based on the siPLS and biPLS Algorithms

The siPLS and biPLS algorithms were used to select wavenumber variables that
were closely related to the tea taste quality indicators. The optimal model results for the
TP, FAA, and TP/FAA of tea can be seen in Table 3. Firstly, the full-spectra data were
equally split into 10 or 20 sub-intervals, as in the siPLS modeling. The siPLS algorithm
selected optimal sub-interval combinations for TP, FAA, and TP/FAA with the lowest
RMSECV values (Figure 3a–c). The wavenumber ranges of 7204.87–6807.60 cm−1 and
4798.10–3999.70 cm−1 that were selected for TP corresponded to the C–H stretching and
C–H deformation combinations [44]. The optimal sub-intervals were 6402.61–5604.21 and
5199.23–4801.96 cm−1 for FAA and 11,200.71–10,406.17, 6402.61–3999.70 cm−1 for TP/FAA.
The siPLS algorithm not only reduced the amount of wavenumber data required for
modeling (TP (312), FAA (312), TP/FAA (831)) but also greatly improved the accuracy
of the prediction model, especially in terms of FAA and TP/FAA prediction (Table 3
and Figure S2 in the Supplementary Materials). After using the siPLS algorithm to filter
wavenumbers, the RP for TP, FAA, and TP/FAA prediction increased from 0.8546, 0.8490,
and 0.8089 to 0.9407, 0.9110, and 0.9377, and the RPD values improved from 1.91, 1,62, and
1.73 to 3.00, 2.21, and 2.90, respectively. These proved the effectiveness of the siPLS model
in selecting a few spectral variables from the optimized combination of sub-intervals, to
determine the target of interest [45].
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Table 2. The performance of partial least squares (PLS) models with different spectral preprocessing approaches for the prediction of total polyphenols content (TP),
free amino acids content (FAA), and polyphenols-to-amino acids ratio (TP/FAA), based on different wavenumber ranges.

Wavenumber Range Pretreatment Methods

TP FAA TP/FAA

Factors
Calibration Set Prediction Set

Factors
Calibration Set Prediction Set

Factors
Calibration Set Prediction Set

RC RMSEC RMSECV RP RMSEP RPD RC RMSEC RMSECV RP RMSEP RPD RC RMSEC RMSECV RP RMSEP RPD

Full wavenumbers
(12,000–4000 cm−1)

None 8 0.9303 8.05 13.4 0.8546 14.2 1.91 6 0.7619 6.08 7.74 0.8490 6.79 1.62 8 0.9356 0.310 0.553 0.8089 0.645 1.73
MSC 7 0.9167 8.77 13.8 0.9086 11.5 2.36 2 0.4881 8.20 8.83 0.4967 9.62 1.14 7 0.9119 0.360 0.686 0.8430 0.593 1.88
SNV 7 0.9184 8.68 13.8 0.9073 11.6 2.34 2 0.4900 8.19 8.82 0.4989 9.61 1.14 7 0.9141 0.356 0.692 0.8352 0.603 1.85
1st derivative 3 0.8940 9.83 20.6 0.7821 19.9 1.36 1 0.5134 8.06 10.0 0.5803 9.66 1.14 4 0.9612 0.242 0.86 0.7477 0.782 1.43
2nd derivative 2 0.7237 15.10 21.3 0.3379 25.6 1.06 3 0.8715 4.61 9.88 0.0681 11.1 0.99 3 0.8970 0.388 0.869 0.3258 1.04 1.07
MSC + 1st + SG filter (7, 3) 4 0.8990 9.61 20.6 0.8101 18.7 1.45 1 0.3511 8.79 9.70 0.4309 10.5 1.05 1 0.4057 0.802 0.896 0.7797 1.01 1.10
SNV + 1st + SG filter (7, 3) 4 0.8994 9.59 20.6 0.8099 19.7 1.38 1 0.3521 8.79 9.70 0.4340 10.5 1.05 1 0.4066 0.802 0.896 0.7806 1.01 1.10

Range 1 (8000–4000 cm−1)

None 9 0.9085 9.17 12.3 0.8666 13.6 2.00 10 0.8687 4.65 6.78 0.8507 6.84 1.60 10 0.9195 0.345 0.514 0.8363 0.618 1.80
MSC 8 0.9054 9.31 12.0 0.9028 11.5 2.36 6 0.8559 4.86 7.08 0.8762 6.23 1.76 8 0.8980 0.386 0.55 0.8739 0.545 2.05
SNV 7 0.9021 9.47 12.2 0.8590 13.8 1.97 8 0.8520 4.92 7.24 0.8822 6.16 1.78 8 0.8974 0.387 0.561 0.8652 0.559 1.99
1st derivative 6 0.9778 4.59 13.9 0.8958 12.6 2.15 6 0.9649 2.46 7.82 0.7796 7.85 1.40 5 0.9787 0.180 0.591 0.8312 0.656 1.70
2nd derivative 5 0.9847 3.83 21.4 0.2931 25.3 1.07 2 0.6833 6.86 9.69 0.6390 9.47 1.16 6 0.9957 0.081 0.884 0.5921 0.945 1.18
MSC + 1st + SG filter (7, 3) 5 0.9525 6.68 13.7 0.9264 11.2 2.42 6 0.9759 2.05 7.22 0.8480 6.96 1.58 7 0.9929 0.104 0.562 0.8676 0.610 1.83
SNV + 1st + SG filter (7, 3) 5 0.9527 6.67 13.8 0.9261 11.2 2.42 6 0.9759 2.05 7.22 0.8461 7.00 1.57 7 0.9931 0.103 0.561 0.8667 0.612 1.82

Range 2 (9700–8600 +
7400–6800 +
5600–4000 cm−1)

None 9 0.9199 8.60 12.5 0.8561 13.9 1.95 10 0.8793 4.47 6.62 0.8648 6.74 1.63 10 0.9371 0.306 0.505 0.9264 0.466 2.39
MSC 7 0.9046 9.35 12.4 0.8953 11.8 2.30 9 0.9260 3.54 7.28 0.8079 7.39 1.49 8 0.9238 0.336 0.566 0.8551 0.590 1.89
SNV 5 0.8655 11.00 13.6 0.8782 12.9 2.10 9 0.8874 4.33 7.42 0.8315 6.92 1.59 8 0.9120 0.360 0.561 0.8905 0.524 2.13
1st derivative 5 0.9427 7.32 16.7 0.9111 12.7 2.14 5 0.9346 3.34 9.14 0.7021 8.39 1.31 6 0.9765 0.189 0.723 0.7915 0.709 1.57
2nd derivative 2 0.6324 17.00 21.9 0.5005 24.4 1.11 2 0.5953 7.54 9.95 0.5813 9.97 1.10 6 0.9900 0.124 0.951 0.5868 0.943 1.18
MSC + 1st + SG filter (7, 3) 5 0.9426 7.33 16.8 0.9118 12.2 2.23 6 0.9689 2.32 8.46 0.7297 8.11 1.35 6 0.9728 0.203 0.731 0.8218 0.657 1.70
SNV + 1st + SG filter (7, 3) 5 0.9425 7.33 16.8 0.9115 12.2 2.23 6 0.9724 2.19 8.52 0.7261 8.13 1.35 6 0.9713 0.209 0.737 0.8220 0.658 1.69

Abbreviations: RC, correlation coefficients of calibration; (RP) correlation coefficients of prediction; RMSEC, root mean square error of calibration; RMSECV, root mean square error of
cross validation; RMSEP, root mean square error of prediction; RPD, residual predictive deviation.

Table 3. The performance of PLS models, with different characteristic wavenumber selection procedures for the prediction of polyphenols, free amino acids content,
and the polyphenols-to-amino acids ratio.

Methods

Tea Polyphenols Content Free Amino Acids Content TP/AA

Variables Factors
Calibration Set Prediction Set

Variables Factors
Calibration Set Prediction Set

Variables Factors
Calibration Set Prediction Set

RC RMSEC RMSECV RP RMSEP RPD RC RMSEC RMSECV RP RMSEP RPD RC RMSEC RMSECV RP RMSEP RPD

Full 2075 8 0.9303 8.05 13.4 0.8546 14.2 1.91 2075 6 0.7619 6.08 7.74 0.8490 6.79 1.62 2075 8 0.9356 0.31 0.553 0.8089 0.645 1.73
siPLS 312 9 0.9344 7.82 12.0 0.9407 9.04 3.00 312 9 0.9103 3.89 6.3 0.9110 4.96 2.21 831 9 0.9641 0.233 0.466 0.9377 0.385 2.90
biPLS 519 7 0.9125 8.79 13.5 0.9508 8.33 3.26 1454 9 0.9492 2.95 7.2 0.9199 5.31 2.07 1013 9 0.9420 0.295 0.645 0.9303 0.437 2.55

Abbreviations: RMSEC, root mean square error of calibration; RMSECV, root mean square error of cross validation; RMSEP, root mean square error of prediction; RPD, residual
predictive deviation.
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Figure 3. The optimization of spectral intervals, developed by siPLS and biPLS algorithm for quality
compounds: (a) siPLS for TP; (b) siPLS for FAA; (c) siPLS for TP/FAA; (d) biPLS for TP; (e) biPLS for
FAA; (f) biPLS for TP/FAA.

Compared with siPLS, biPLS is also a method for the joint modeling of several sub-
intervals for screening correlations, but the biPLS algorithm has the advantage of filtering
only the characteristic wavenumber sub-intervals in the backward direction; it rejects the
sub-intervals with the worst correlation each time [40]. Removed permanently, the last
sub-intervals that are left are the spectral variables that have the highest correlation with
the tea flavor components. The performance of biPLS models for TP, FAA, and TP/FAA
are shown in Table 3 and Figure S3 in the Supplementary Materials. For TP prediction, the
biPLS selected 519 relevant characteristic variables from 2075 variables (Figure 3d). The RP
and RPD values for TP prediction increased from 0.8546 and 1.91 in the original PLS model
to 0.9508 and 3.26 in the biPLS model, respectively. For FAA prediction, biPLS selected the
wavenumber ranges of 10,807.3–7609.85 cm−1, 6402.61–4801.96 cm−1, 4396.97–3999.7 cm−1

(Figure 3e); the model prediction accuracy was significantly higher than the original PLS
model prediction accuracy. The RP (from 0.7619 to 0.9492) and the RPD (from 1.62 to
2.07) increased, and the RMSEP decreased from 6.79 to 5.31. The biPLS algorithm selected
1013 relevant variables to predict the TP/FAA (Figure 3f). Compared with the original PLS
model, based on the full-spectra data, the correlation coefficient RP of the model in the
prediction set was significantly improved (from 0.8089 to 0.9303). However, the RMSECV
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values of the biPLS models were all greater than those in the corresponding siPLS models,
indicating that the siPLS models were more robust for predicting TP, FAA, and TP/FAA.

The spectral regions selected by the siPLS and biPLS methods had an abundant
overlap. The region that was referred to by the wavenumbers of 4798.10–3999.70 cm−1

was selected for TP in both algorithms, which included a combination of C–H stretching
and C–H deformation, and the second overtone of C–H deformation. This spectral region
was associated with the reported presence of tea polyphenols and caffeine and contained
an important spectral region for identifying special-grade green tea from other grades of
green tea [46]. Two regions, 6402.61–5604.21 and 5199.23–4801.96 cm−1, were important for
building the FAA prediction model. The 5199.23–4801.96 cm−1 region reflected the –NH
group co-frequency information and 6402.61–5604.21 cm−1 contained overtones of both
the –CH2 (5750 cm−1) and –CH3 (5800 cm−1) [47], which were related to the presence of
free amino acids. One finding of note was that the model performance of FAA was worse
than that of TP and TP/FAA in all PLS models. Wang et al. also found that the prediction
performance of the PLS model for the theanine content in tea was not satisfactory [15]. This
may be because the relationship between free amino acids and near-infrared spectroscopy
may be non-linear; the non-linear algorithms may be more appropriate to improve the
model prediction accuracy of NIR spectroscopy for free amino acids in future studies.

Compared with the PLS model established by the full-spectra data or manually se-
lected wavenumber range, the prediction performance of the PLS model, established after
using the siPLS and biPLS algorithms to select the characteristic wavenumber range, had
been greatly improved, especially for FAA and TP/FAA prediction. As observed in this
study, the combination of siPLS and biPLS with NIR could greatly improve the prediction
of flavor components in Yunwu green tea.

4. Conclusions

In this study, the general prediction models for TP, FAA, and TP/FAA in Lushan
Yunwu tea and non-Lushan Yunwu tea were developed using NIR, combined with mul-
tivariate analysis. The NIR spectra of LY and NLY could be distinguished according to
geographical origin, while the correct discrimination rate of DA models could reach 100%.
The effects of different spectral preprocessing and wavenumber selection on the perfor-
mance of PLS prediction models for TP, FAA, and TP/FAA were compared. The siPLS
model achieved satisfactory performance for TP and TP/FAA predictions, with RP values
higher than 0.9 and RPD values higher than 2.0. The results showed that the combination of
NIR and intelligent variable selection algorithms (such as biPLS and siPLS) could achieve
the rapid prediction of taste quality indicators in tea. Therefore, NIR spectroscopy may be
a green analysis tool that can predict the taste quality indicators in tea while identifying the
authenticity of the tea.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11192976/s1, Figure S1. Boxplots of TP, FAA, and TP/FAA
contents in the LY and NLY samples; Figure S2. Correlation between the measured and predicted
values of siPLS models; Figure S3. Correlation between the measured and predicted values of biPLS
models; Table S1. A summary of the tested samples.
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