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Abstract: Fraudulent practices are the first and foremost concern of food industry, with significant
consequences in economy and human’s health. The increasing demand for food has led to food
fraud by replacing, mixing, blending, and mislabeling products attempting to increase the profits
of producers and companies. Consequently, there was the rise of a multidisciplinary field which
encompasses a large number of analytical techniques aiming to trace and authenticate the origins of
agricultural products, food and beverages. Among the analytical strategies have been developed for
the authentication of geographical origin of foodstuff, Inductively Coupled Plasma Mass Spectrometry
(ICP-MS) increasingly dominates the field as a robust, accurate, and highly sensitive technique for
determining the inorganic elements in food substances. Inorganic elements are well known for
evaluating the nutritional composition of food products while it has been shown that they are
considered as possible tracers for authenticating the geographical origin. This is based on the fact that
the inorganic component of identical food type originating from different territories varies due to the
diversity of matrix composition. The present systematic literature review focusing on gathering the
research has been done up-to-date on authenticating the geographical origin of agricultural products
and foods by utilizing the ICP-MS technique. The first part of the article is a tutorial about food
safety/control and the fundaments of ICP-MS technique, while in the second part the total research
review is discussed.
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1. Introduction

Food safety management (or food forensics) focuses on the strengthening of food
safety and quality control procedures [1]. Effective control protocols shield health and well-
being of people, and subsequently support financially domestic, regional, and international
markets and producers. The design of food safety and quality control systems has become
more essential than ever due to the tendency to low-cost products. Global financial crisis,
COVID-19 pandemic and plenty of other social issues have resulted in economic fallout.
Due to lockdowns millions of people suffer a lot of hardship among others unemployment,
shortages in supply chain, higher transportations expenses which directly rise product’s
final price. The increased cost of living due to inflation has influenced the purchasing
decision of consumers, most of the times against the quality. The chart flow in Figure 1
presents the change in purchasing behavior of consumers in United States [2].

According to World Health Organization (WHO), more than 200 diseases are spread
around the world, through food contaminated with infectious microorganisms, viruses or
chemical substances [3]. Food contamination could be caused in any stage of the supply
chain process; however, knowing the geographical origin of edible products consists the
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front line of quality control. Due to this fact, consumers have become more cautious about
the origin of foodstuff hence, they require for supply chain transparency. In addition,
given the tremendous global demand for food, some producers debase the quality of their
products by either altering the components or by mislabeling the products for economic
gain. Frequently, authentic products are partially or totally substituted by undeclared ones,
with the intention of reducing the cost production [4]. Noticeable fraudulent activity has
been reported in agri-food industry focusing in many cases on rice [5,6], wine [7], milk [8]
and olive oil [9,10].
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Figure 1. Impact of purchasing decision of consumers due to inflation or higher prices. A higher
percentage (80%) of the consumers would choose at least one of the above. Source: Ipsos Coronavirus
Consumer Tracker, fielded 4–5 January 2022, among 1600 U.S. adults [2].

All developed countries have enacted food laws laying down the basic principles
and procedures for safety and quality. American Viticultural Areas in United States,
Wine of Origin in South Africa, Denominación de Origen in Spain and Denominazione
di Origine Controllata in Italy are few of the standardization organizations around the
world supervising the production process and certifying the origin of agricultural products,
foods and beverages. In an attempt to minimize and/or prevent food adulteration, in 2002,
European Union (EU) adopted the Regulation (EC) No 178/2002 (amended by Regulations
(EU) No. 652/2014, No. 2017/228 and 2019/1381) and established the European Food
Safety Authority (EFSA). The latter is an independent scientific agency which is responsible
for examining novel issues and hazards, and simultaneously developing the evaluation
methodologies providing scientific advice upon request of EC and EU Member States.
Particularly, EU has established regulations which define the obligation of indicating
the origin of primary ingredients (Regulation (EU) No 1169/2011 and Implementing
Regulation (EU) 2018/775), the origin of meat (Regulation (EU) No 1337/2013), and the
origin of fishery and aquaculture products (Regulation (EU) No 1379/2013). Additionally,
the EU traceability regulations (Regulation (EC) No 178/2002, Regulation (EU) 1151/2012
amended by Regulation (EU) 2017/625) protects the names and the reputation of agri-food
products from specific geographical provenance as follows:

(a) Protected designation of origin (PDO/food, agricultural products, and wines). All the
production stages are taken place in specific geographical region.

(b) Protected geographical indication (PGI/food, agricultural products, and wines). At
least one of the production stages are taken place in specific geographical region.

(c) Geographical indication (GI/Spirit drinks, and aromatized wines). In this category, at
least one stage of the production should be in a specific area.

It is more than obvious that authenticity and traceability provide the base on quality
control and safety of agricultural products. The last decades, much effort has been focused
on developing highly sophisticated biological and chemical scientific methods for certifying
the origin and authentic nature of agri-food [11]. Generally, biological methods aim to
evaluate the organic part (i.e., DNA, sugars, lipids, and proteins) while determination
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of multi-elemental compositions and/or isotopic fingerprint of an agricultural product
reflects the growth conditions on a particular geographical area. Among the traceability
methods, Nuclear Magnetic Resonance (NMR) is typically used for analyzing the chem-
ical and molecular food composition. NMR spectroscopy or in combination with other
techniques have been applied to determine the origin of foodstuffs [11]. Trace and rare
earth elements have also been shown to play an important role on geographical origin and
authenticity of a variety of products including, among others, wheat grains, wines, dairies,
olive oils, legumes and meats. Currently, atomic and mass spectrometry which comprise
Atomic Absorption Spectrometry (AAS), Atomic Fluorescence Spectrometry (AFS), Flame
Atomic Absorption Spectrometry (FAAS), Inductively Plasma Optical Emission Spectrome-
try (ICP-OES), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), and
Inductively Coupled Plasma Mass Spectrometry (ICP-MS) are the most common analytical
methods for the elemental or multi-elemental determination of food samples [12].

Isotope-Ratio Mass Spectrometry (IRMS) is able to provide a database of stable isotope
ratios of C (13C/12C), N (15N/14N), O (18O/16O), H (2H/1H) and S (34S/32S). These ele-
ments are directly affected by the growth environment of the product, as they participate in
all significant biological and ecological pathways. Hence, they can provide a stable isotope
fingerprinting representative of a specific geographical provenance which has obvious
advantages [13]. Nonetheless, it has been noticed that concentrations of light elements (C,
O, N, H and S) are occasionally influenced by their involvement in biological and ecological
cycles which is a negative aspect of traceability [14,15]; therefore, isotope ratios of heavy
elements (Sr and Pb) are also investigated. Sr and Pb could be considered as good candi-
dates for trace markers as the isotope ratios of each element (87Sr/86Sr, and 206Pb/204Pb,
206Pb/207Pb and 208Pb/206Pb) are associated with the age of the substratum [16–18]. As-
suming that the amount of these elements on the soil are proportionally related to their
concentrations absorbed by the plant, they could be excellent markers to predict the ge-
ographical origin. In case of Lead, the anthropogenic source (fertilizers, pesticides etc.),
which leads to environmental pollution, should also be considered.

As an alternative or complementary to C, N, O, H and S stable isotope analysis,
multi-elemental composition analysis is increasingly being investigated in identifying the
geographical origin of edible products. In the same manner as with the latter elements,
the composition of metals in agri-food substances, is directly related to their availability
and mobility in the soil of the growing area. Considering the elemental diversity of the
different substrata, multi-elemental analysis of agricultural products can lead to provenance
recognition. Several research studies utilize ICP-MS and/or IRMS techniques to trace the
origin and certify the authenticity of food products. Comparing with other analytical
methods ICP-MS is a precise and accurate technique with wide measurement range (for
more than 65 elements), low detection limits (ppt), large capacity sample, and developed
methods which can minimize the possible interferences. Furthermore, it is able to perform
isotopic analyses of heavier elements than the previously mentioned, broadening the
employment of isotope ratio method [19]. Ignacio Garcia Alonso and co-workers published
in 2022, an excellently written and well explained tutorial review about the use of ICP-MS
for isotopic measurements [20]. Overall, ICP-MS finds application in disciplinary areas of
research, including pharmaceuticals, medicine, food chemistry, environmental science, and
semiconductors.

The present systematic review aims to gather the research work has been done to date,
regarding the application of ICP-MS as unique technique or as complementary to stable
isotope analysis in authenticity of geographical origin of agri-food products.

2. ICP-MS: Understanding the Basic Principles

ICP-MS is a robust analytical technique for the determination of multi-elemental
composition (qualitatively), concentration (quantitatively) and isotopic abundances of
various matrices. Generally, an ICP-MS instrument consists of (i) a sample introduction
system, (ii) an ion source (Inductively Coupled Plasma, ICP), (iii) the electrostatic lenses,
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(iv) an interface, (v) a mass spectrometer and (vi) a detector. Figure 2 depicts a typical
schematic representation of the basic components of ICP-MS.
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In food chemistry, prior to analysis, sample preparation procedure comprises various
steps depending on material’s physical state which could include washing, lyophilization,
crushing, extraction, and homogenization. In all cases a thermally-assisted digestion in
acidic conditions (HNO3, HNO3/H2O2, HNO3/HCl, or HNO3/HF) is essential. According
to the literature, samples are commonly digested with pure HNO3 (65–70%) on microwave
oven, followed by dilution of the resulting solution with ultra-pure water [22]. It is an essen-
tial step of the analysis leading to the dissociation of sample’s matrix and the simultaneous
release of the elements (analytes).

Due to the fact that initially the ICP-MS analysis was designed for liquids, samples are
ordinarily pumped into a solution nebulizing system in liquid phase. Although, gases and
solids are able to be inserted by using diverse introduction systems including chemical gas
generation, electrothermal vaporization, high performance liquid chromatography (HPLC)
or laser ablation [23]. In a typical arrangement, samples are placed into an autosampler
and a peristaltic pump guides them to the nebulizer. Each sample is mixed with argon
(Ar) gas creating an aerosol which enters to the spray chamber. The later extracts the
large aerosol droplets, due to the inefficiency of the plasma to dissociates them, and
subsequently normalizes the flow of the liquid coming from the peristaltic pumps [24,25].
Thereafter, the final fine aerosol traverses the main channel of the argon plasma. The
high temperature plasma fosters the ionization of the sample by vaporizing, decomposing,
atomizing and finally ionizing the droplets of the aerosol. It should be noted that the
ionization potential and the temperature of the plasma define the degree of ionization of
the elements [26]. Argon has much higher ionization potential than the majority of the
elements, leading to their efficient ionization and creating singly charged positive ions.
The generated positively charged ions are separated from the plasma into the interface
region through the orifice (~1 mm) at the tip of the sample cone, which, in turn passes
through the next orifice (~0.45 mm) of the skimmer cone. Between the two cones the
interface pressure is constant at 150–300 Pa. Skimmer cone is the entrance of the high
vacuum area (~77 × 10−5–1 × 10−3 Pa) where the ion lenses and the mass analyzer are
located. The electrostatic lenses or ion optics focus and direct the ion beam toward the mass
spectrometer, and simultaneously redirect unwanted species (i.e., non-ionized substances
and photons) which are the main reason of background noise and signal instability when
they are observed by the detector. The fundamental operation of the lenses depends on
the manufacturer company of the ICP-MS instrument (i.e., Agilent, and Perkin Elmer).
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Following the procedure, the ion beam reaches the mass analyzer, the type of which is
depended on the ICP-MS system. Generally, in food analysis, quadrupole or octupole type
mass analyzer is used. The function of all mass analyzers is based on the determination of
ion’s mass/charge (m/z) ratio, which is responsible for the division of ions in a sample [27,28].
At the end of mass analyzer, the positively charged ions, separated according to their
m/z ratio, strike the detector, which is largely an electron multiplier (EM). The resulting
culminated signal pulse is referred as ion ‘count’ (with units counts per second (CPS)) and
corresponds to ions with specific m/z ratio. Due to this fact, ICP-MS is a highly sensitive
analytical technique with detection limits being in ng/L for most of the elements.

As most analytical techniques, ICP-MS utilizes a calibration curve to convert the CPS
signal to concentration. Calibration curves are constructed, for each element which is
needed to be investigated, by measuring solutions of known concentrations. Figure 3
depicts an example of a calibration curve for calcium (44Ca) measured in different con-
centrations (2, 10, 50, 100, and 600 ppb). Moreover, in an attempt to correct variations
in instrument’s sensitivity and/or matrix effects internal standardization (IS) technique
is performed. One or more internal standard (IS) elements with similar masses and ion-
ization potentials with the measured analytes are used in order to monitor the analyte-IS
signal ratio [28–30]. When this ratio is relatively constant the (±20% referring to IS re-
covery, Figure 4) alterations in operational conditions and matrix effects are minimized,
improving the sensitivity and precision of the ICP-MS analysis. Depending on the material
which is analyzed other correction methods have been reported including matrix-mached
calibration [31,32], method of standard additions [33] and isotope dilution [34,35].
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Figure 3. Example of a typical calibration standard curve (44Ca in helium mode ([He]) with Rh
internal standard). y = 0.0414x + 0.8600: The output equation extracting after fitting the data to
a linear regression, R: Standard Deviation, DL: Detection Limits, BEC: Background Equivalent
Concentration. Units of Ratio between the signal of 44Ca and 103Rh (y-axis): counts per second (CPS).
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Interferences in ICP-MS analysis are divided into two main categories: (a) spec-
troscopic, when atomic or molecular ions have equal m/z ratio as the analyte, and (b)
non-spectroscopic, which occurred by sample matrix and/or instrument drift. Spectro-
scopic interferences are potentially a result of isobaric elements (i.e., 114Cd+ and 114Sn+),
double charged (i.e., 88Sr2+ and 44Ca+), or polyatomic ions (i.e., 44CO2

+ and 44Ca+), and/or
tailing interferences due to overlapping of two adjacent peaks in the spectra. Table 1 lists
a number of the most common spectroscopic interferences [28,36]. On the other hand,
analytical errors may be occurred by the non-spectroscopic interferences. The latter arise
from matrix effects or instrument drifts leading to suppression or enhancement of the
signal. Malfunctions at introduction system (Sample Introduction Effects), ionization in
the plasma (Plasma Effects), and electrostatic phenomena among the ions in the interface
and ion lenses (Space-Charge Effects) constitute the origin of matrix effects. On top of that,
gradually by the use of instrument salts dissolved in the aerosol deposit around cones.
The fact that decreases the size of the orifice of the cones suppressing the analyte’s signal.
In-depth study about ICP-MS interferences and various strategies to reduce or eliminate
them can be found on the review article written by Wilschefski and Baxter, published
in 2019 [28].

Table 1. Selected typical spectroscopic interferences.

Isotope Isobaric Interference
40K 40Ca
50V 50Cr

64Ni 64Zn
94Zr 94Mo
113In 113Cd

Isotope Double Charge Ion
44Ca 88Sr2+

69Ga 138Ba2+

70Ge 140Ce2+

85Rb 170Er2+

119Sn 238U2+

Isotope Polyatomic Ions
28Si 14N2

+, 12C16O+

31P 14N16O1H+

44Ca 12C16O2
+

36Fe 40Ar16O+

75As 40Ar35Cl+

According to the literature various methods of data analysis are used for building
analytical models in order to accurately determine the geographical origins of the samples
based on the concentrations of measured analytes. Principal component analysis (PCA),
Cluster analysis (CA), Linear Discriminant Analysis (LDA), and Canonical Discriminant
Analysis (CDA) consist the most common analytical models [5].

3. Database and Literature Search

Two online databases, Web of Science (Clarivate) and Scopus (Elsevier), were used
for the literature searching. The terms were used, initially, on each of the above databases,
are the following: ICP-MS AND authentication origin, ICP-MS AND geographical origin,
ICP-MS AND geographical fingerprints, ICP-MS AND protected geographical indication,
ICP-MS AND protected designation of origin, ICP-MS AND traceability, ICP-MS AND
geographical origin AND agricultural products, ICP-MS AND geographical origin AND
foods, ICP-MS AND protected geographical indication AND agricultural products, ICP-MS
AND protected geographical indication AND foods, ICP-MS AND protected designation
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of origin AND agricultural products, ICP-MS AND protected designation of origin AND
foods, ICP-MS AND traceability AND agricultural products, and ICP-MS AND traceability
AND foods. As a second step, the type of each individual product (X), resulting from the
initial literature investigation, was added as a term as follows: ICP-MS AND authentication
origin AND (X), ICP-MS AND geographical origin AND (X), ICP-MS AND geographical
fingerprints AND (X), ICP-MS AND protected geographical indication AND (X), ICP-MS
AND protected designation of origin AND (X), ICP-MS AND traceability AND (X). All
the included records are screened to be relevant to our topic of study, which includes the
employment of ICP-MS analysis for the geographical origin authentication of agricultural
products and foods. Moreover, Zotero software was used to prepare the references and
simultaneously to avoid duplicated publications. The final 173 articles were classified
according to the food group investigated for the geographical discrimination with the use
of ICP-MS technique (Figure 5).
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4. Discussion

Interpretation of ICP-MS analysis to authentication and traceability would be easier in
groups of food samples. Therefore, the products were divided into classes with particular
features. Our aim is to provide and discuss the most important information for each group
of products. Table 2 lists the published studies up to date (August 2022) referring to ICP-
MS analysis as a method for geographical origin authentication of agricultural products
and foods.

4.1. Alcoholic Beverages

Wine belongs to the most strictly protected products worldwide. Fast and accurate
analytical methodology for authenticity and traceability has become apparent. It has
been shown that elemental analysis (trace and rare elements, and stable isotope ratios) is
commonly used for the geographical origin of wines [37].

In 1997, Greenough et al. [38], performed multi-elemental analysis with the use of
ICP-MS, in an attempt to build element ‘fingerprinting’ of different varieties of wine from
the Okanagan Valley (British Columbia, Canada). The same year, Baxter and coworkers [39]
analyzed the trace element composition of wines from England and Spain. According to
our knowledge, the forementioned studies were the first endeavors to distinguish diverse
varieties and origins of wines with the employment of ICP-MS. Since then, several stud-
ies [40–59] (Table 2) have been carried out on the elemental determination and correlation
among various wine varieties, grapes, and soils aiming to trace elements which would
be excellent markers for the authentication of geographical origin. In 2021, Wang’s group
compared the elemental profile and the variations from soil to grapes and wines from
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diverse Chinese regions. They claimed that K, Sr, and Li could potentially be used as
tracers for geographical origin of Chinese wine; those elements show significant correlation
among all the samples [60]. Remarkable results have been shown when multi-elemental
analysis is combined with the 87Sr/86Sr isotope ratio [61–63]. 87Sr/86Sr ratio makes an
exceptional marker for the origin determination as it is directly related to the geological
age of the bedrock of a territory. Detailed studies by Bora et al. [63], came to the conclu-
sion that there was a relevant geographical origin discrimination of wines based on their
elemental composition and 207Pb/206Pb, 208Pb/206Pb, 204Pb/206Pb, and 87Sr/86Sr isotope
ratio. Another notable group of elements which has engaged the scientific attention in food
forensics is Lanthanides (Ln) or Rare Earth Elements (REE): Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb,
Dy, Ho, Er, Tm, Yb, and Lu including La, and Y. Samples were analyzed focusing on the
REE, claiming that traceability is feasible through soil to grape and must, however changes
occurred possibly after clarification process of wine with bentonites [7,64–66]. Figure 6 is
reproduced by the publication of Aceto et al. [7]; it depicts the variation of lanthanides
concentrations measured in pulp, skin, and seed of the grapes and the must. As it is shown
only Eu did not follow the stable tendency of the rest lanthanide elements.
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Other alcoholic beverages which have been studied by means of multi-element distri-
bution are whiskey [67–69], cider [70,71], beer [72–75] and Chinese liquors [76]. Gajek and
co-workers [69] studied extensively diverse varieties and ages of whiskey from different
geographical regions and production procedures. Their investigations demonstrated that
there were discrepancies in the metals Al, Cr, Cu, Fe, K, Mg, Mn, P, S, Ti, Tl, Zn, and V
between single malt and blended Scotch whiskies. Furthermore, it was noteworthy that
homemade whiskies from Poland are composed with the highest concentrations of Sr, K, S,
and P. They were also observed that Cu, Mn, Zn, and P exhibit alterations in their concentra-
tions during the aging of the samples. In case of beer, earlier this year, Lafontaine et al. [74],
published in Food Chemistry their studies on the elemental profile of a wide variety of
hops (Humulus lupulus) from various territories in German and USA, assuming that the
authentication of hops might also be related to the quality and authentication of beer.
They concluded that the concentrations of the elements Ba, Ca, Cd, Co, Ni, Mg, Sb, Sr,
and U were impacted by the variety and the region of hops. The correlation between the
elemental profile of hops and the dry-hopped beer is under investigation. Cider is the
less studied alcoholic beverage by means of elemental analysis. In 2007, the group of J.
Ignacio García Alonso [70] analyze 67 samples from various regions in order to authenticate
their geographical origin. For this purpose, 87Sr/86Sr isotope ratio and multi-elemental
analysis were determined by the combination of ICP-MS and ICP-AES. Fluctuations in the
concentration of Na, Mg, Al, K, Ca, Ti, V, Mn, Zn, As, Rb, Sr, Mo, Ba and 87Sr/86Sr isotope



Foods 2022, 11, 3705 9 of 33

ratio allowed the classification of cider samples originating from Spain, France, England,
and Switzerland.

4.2. Dairy Products: Milk and Cheese

Trace element analysis in dairy products may derived from the metabolic pathways
of the animals and the geographical regions of the farms. In 2008, Benincasa and co-
workers [77] investigated the multi-elemental profile of 12 cow and 6 water buffalo milk
samples. All the animals were treated equally in the same farm to identify elemental
discrimination between the two animal species. Indeed, the authors achieved to differen-
tiate the two types of milk based on their multi-elemental profile. Fernando’s group [8]
published, lately, a study which investigated the geographical origin authentication of cow
milk from different territories in Sri Lanka by determining the stable isotope ratios of C,
H, N, and O as well as the elemental composition with the IRMS and ICP-MS techniques,
respectively. It was proposed that a combination of stable isotope ratio of δ15N, δ13C (in
milk casein), δ15N, δ18O, and δ2H (in whole milk), and the concentration of the metals Li,
Al, Cr, Mn, Fe, Co, Ba, and Sr could be promising markers to identify the geographical
region of samples which were collected by four different agroclimatic zones. According to
the authors the latter elements were possibly related to intrinsic factors of the animal (breed,
lactation etc.), dietary habits and supplements. In similar studies, Tedesco et al. (2021) [78],
and Aceto et al. (2017) [79] investigated the role of trace and rare earth elements in milk
samples, throughout the production chain, from various regions of Italy. It was observed
that the concentration of lanthanides remains nearly constant during the milk production
and therefore were classified as suitable tracers.

In case of cheese and generally of dairy products, the research is based on the assump-
tion that the metals are not affected by the production procedure; consequently, the resulting
records reflect the elemental profile of the geographical region. In 2003, Pillonel et al. [80]
analyzed Emmental cheese samples from six European countries for stable isotope ratios
(13C/12C, 15N/14N, 18O/16O, 2H/1H and 87Sr/86Sr), elemental composition (Ca, Mg, Na,
K, Cu, Mn, Mo, I) and radioactive elements (90Sr, 234U, 238U). The concentration of Mo
and Na showed interesting variations related to the origin of cheese. In an international
collaborative study Camin and co-workers [81] investigated the elemental profile (H, C,
N and S stable isotope ratios, and multi-elemental analysis) of seven samples of the hard
cheeses Grana Padano and Parmigiano Reggiano according to the IUPAC protocol and
ISO Standards 5725/2004 and 13528/2005. Thirteen different laboratories were involved in
performing isotope and/or elemental analysis. The determination of Li, Na, Mn, Fe, Cu, Se,
Rb, Sr, Mo, Ba, Re, Bi, and U and the H, C, N and S stable isotope ratios were able to verify
the origin of both cheeses.

4.3. Meats

Soil, feed supplements and environmental pollution are the main sources of elements
in meat. In 2005, in a literature review study, Franke and co-workers [82] discussed the
methods for the authentication of geographical origin of raw meat by determining the
stable isotope ratios and trace elements, concluding that Se and Rb could possibly be
used as tracers. In an attempt to authenticate the geographical origin of beef, in 2008,
Heaton et al. [83] collected samples produced in various countries worldwide, and ana-
lyzed them by using IRMS and ICP-MS techniques. According to the results, they stated
that it would be possible to verify the origin of beef particularly based on six key variables
δ13C‰ (defatted dry mass), Sr, Fe, δ2H‰ (lipid), Rb and Se. Applying Canonical Discrimi-
nant Analysis (CDA) a broad classification of samples into European, South American, and
Australasian was achieved. Since then, analytical studies, following by the appropriate
statistical analysis, have been carried out for examining elements as markers of the geo-
graphical origin of yak [84], rabbit [85,86], pork [87], mutton [88], and cured ham [89]. It
is worth mentioning that in the latter, the ratio 87Sr/86Sr has been measured in addition
to the elemental composition of the cured ham, since it could be considered as a tracer of
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the regional geological components. An interesting work has been performed by Meisel’s
group in which aimed at developing a method for labeling via REE, unlabeled eggs and
poultry products [90], and lamb meat and goat milk [91] by selectively enrich animals
feeding with Tb and Tm; those elements have a single stable isotope, and are relatively
low-cost. Naturally the composition of lanthanides in food is remarkably low allowing the
REE spiking, and simultaneously to secure human’s health. In both cases, the REE labeling
method was succeeded allowing the origin determination of the products.

4.4. Fish and Seafood

Fish and seafood belong to the most mislabeled foodstuffs around the world. Due to
the challenging traceability throughout their production chain, new more effective control
methods of origin authentication are developed. ICP-MS tend to become a leading, among
others, analytical method for the classification of fish and seafood. The scientific literature
revealed that several studies for geographical discrimination and elemental fingerprinting
have been performed for sea cucumber [92,93], mussels [94,95], salmon [96], cuttlefish [97],
clams [98], crabs [99], sea bass [100], shrimps [101], caviar [102], anchovy products [103]
and various marine species from China regions [104].

In 2010, Costas-Rondríguez et al. [94] classified Galician (Spain) and non-Galician mus-
sels from different cultivated areas, by determining their elemental composition combined
with different multivariate qualitative methods. Mussels were the first seafood products
recognized by European PDO. Sea cucumber has been studied by Liu et al. [92] (2012) and
Kang et al. [93] (2018) in an attempt to classify samples from various regions of China.
Linear discriminant analysis gave better classification and cross-validation rates on both
studies suggested as good tracers the elements Zn, Al, As, Co, Fe, Se and Li, Na, Al, K, Co,
Cu, Cd, Sc, respectively. Stable isotope ratio of 13C/12C, and 15N/14N and REE (La, Eu, Ho,
Er, Lu, and Tb) were investigated as possible markers for the discrimination of different pro-
duction methods as well as the authentication of geographical origin (Western, Central, and
Eastern Mediterranean Sea) of sea bass by Varrà et al. [100], in 2019. Indeed, the combina-
tion of the abovementioned analytical methods led to the classification of sea bass samples
in relation to production methods and sea regions. In particular, La and Ho resulted to be
the elements which were differentiated most in geographical origin classification.

Recently, Varrà et al. [105] reviewed the fish and seafood authentication by inorganic
elemental composition.

4.5. Vegetables, Mushrooms and Fruits

Vegetables and fruits are products which are directly linked with the soil; thus, it could
be an unambiguous correlation between their elemental fingerprints and the geological
setting of a region. Traceability and authenticity of vegetable and fruit foodstuffs can be
a more straightforward procedure by comparing and relating the elemental distributions
of samples and the soils. These days, the authentication of geographical origin of fruits
and vegetables is a crucial requirement for food safety, due to the heavy demand for those
products which has led to fraudulent labeling practices. Stable isotope analysis (C, N, H, O,
S, and Sr) is considered as a pioneer in the field of food forensics. Multi-elemental analysis
has been also used, in combination with stable isotope ratio or by itself. Trace elements and
lanthanides represent the mineralization characteristics of a particular region.

Reviewing the literature, vegetables such as onion [106,107], garlic [108,109], soy-
bean [110], eggplant [111], various types of pepper [111–113], tomato [114–116], Chinese
cabbage [117], and truffles [118] have been investigated by means of elemental compo-
sition for their geographical origin authentication with the use of ICP-MS. Since 2005,
Bettinelli et al. [115] investigated the concentration of lanthanide elements of tomato plants
and soils from their growing area. They had stated that ICP-MS seems a promising tech-
nique for traceability. Almost five years later, Lo Feudo et al. [114] studied tomatoes from
Italian farms and tomato paste originating from Italy, California, Greece, and China, result-
ing in geographical discrimination based on 32 elements as variables. In a similar study,
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in 2011, the group of Tagarelli determined the elemental fingerprint (25 elements) of the
Tropea red onion (PGI brand since 2002), in order to categorize the samples into Tropea and
non-Tropea [106]. A noteworthy observation was the contribution of REE and especially
of Dy in the authentication of geographical origin of onions. Recently, Segelke et al. [118]
published their endeavors to develop an accurate methodology for the geographical dis-
crimination of truffles. Truffle is one of the most expensive products; however, it belongs
among to the most misdescribed foodstuffs due to its different varieties which are not
easily distinguishable.

In case of fruits, a series of studies have examined the elemental composition for
the authentication of geographical origin of lemons [119], apples [120], mango [121], avo-
cado [122], pears [123], jackfruit [124], and clementines [125]. In 2012, PGI brand Clemen-
tine of Calabria were geographically distinguished from non-PGI samples from Spain,
Tunisia, and Algeria by Benabdelkamel et al. [125] who developed a multi-element analyti-
cal method with the employment of ICP-MS. Similar studies were performed on Italian
PGI and non-PGI Turkish lemons by Giorgia Potortì et al. [119]. Muñoz-Redondo et al.
published two research projects on the stable isotope and multi-element analysis of avo-
cado [122] and mango [121] for geographical origin authentication purposes. The findings
on both reports confirmed that the combination of two techniques lead to more accurate
geographical discrimination (Figure 7).
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4.6. Oils and Olives

The elemental determination of edible oils is a challenging procedure due to their
lipophilic matrix, rich in carbon. The low concentration levels of trace and rare earth
elements can be detected by the highly sensitive ICP-MS technique.

Particularly, olive oil is considered the basis of the Mediterranean diet and simul-
taneously belongs among the most traded products. Consequently, the assurance of
authenticity, high quality and purity of olive oil is a matter of great importance. For this
purpose, investigating olive oil by means of ICP-MS analysis gains widespread scientific
attention [9,126–140]. A considerable amount of literature has been published on Spanish,
Italian, Tunisian, and Greek olive oil varieties. Preliminary work on multi-elemental analy-
sis of olive oil was undertaken by Benincasa (2007) [126] who presented a simple and rapid
ICP-MS method for the geographical origin discrimination of olive oil from various Italian
regions. The final records revealed that Fe, Mg, Sr, Ca, and As led to discrimination of
the samples. Systematic examination of geographical discrimination of Italian extra-virgin
olive oils (EVOO) [127] and European EVOO [128] was reported in 2010 by Camin et al.
The authors explored both C, H, and O isotopic ratios (IRMS) and elemental composition
(ICP-MS) of olive oil samples. In case of the different European olive oils, the combination
of the three isotopic ratios and the selected elements Mg, Al, K, Ca, V, Mn, Ni, Zn, Rb,
Sr, Ce, Sm, Cs, La, Eu, and U showed an adequate geographical classification. Similarly,
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Gumus et al. [131] found that the δ13C isotope ratio and the elements Fe, Zn, Ca, Cu, and
Mn were effective tracers for determining the origin of VOO from different locations of
western Turkey. In a comprehensive study Aceto and co-workers [133] investigated the min-
eral composition of EVOO and especially the importance of lanthanides. The researchers
carried out a number of experiments investigating the elemental composition of soil, olive
leaves, olive seeds, olive pericarps, and olive oil Taggiasca variety in order to examine the
effect of the production chain. The Taggiasca olive oils was further distinguished from
EVOO of different regions. It was shown that Tm and Y were the primary discrimination
elements. Similarly, Nasr et al. [9] concluded that Cu, Cr, Fe, Mn, Sr, V, and Zn facilitated to
the accurately prediction of country of origin between European and Tunisian olive oils. In
an attempt to certify the purity of the edible oils and to detect possible contaminations by
mixing oils Llorent-Martínez et al. [139] (2011) and de Souza et al. [140] (2022) investigated
the mineral composition of different types of edible oils and fats. Llorent-Martínez and
co-workers observed correlations between Cr, Cu, Fe, and Mn and the different investi-
gated oils. In the study of de Souza et al. [140], the authors achieved discrimination of the
different types of oils and fat based on 9 elements: Cd, Cr, Cu, Fe, Mn, Ni, Ti, V, and Zn.

Despite the fact that olive oil is obtained from olives, there is a relatively small number
of studies on elemental characterization and geographical discrimination [133,134,137,138].
In a recent study, Pucci and co-workers [138] suggested that the elements Sr, Cu, Rb, Ti,
Ni, Cr, V, and Co were the most sufficient variables in the discrimination of diverse olive
cultivars in Italy.

Recently, Amit and co-workers [141] identified the geographical origin of virgin
coconut oil (VCO) produced in various regions. It was suggested that the combination of
ICP-MS analysis with multivariate chemometrics were able to authenticate the origins of
the VCO.

4.7. Honey

Honey is considered nature’s sweet superfood due to its beneficial properties and
can find multiple applications in cooking, baking, and beverages. Because of its raw
form the adulteration is easier by adding cheaper sweeteners (corn, sugar, and rice cane
syrups), aiming to financial gain. Developing advanced, accurate and sensitive analyt-
ical methodologies for testing and authenticating the purity and the origin of honey
is a necessity.

Literature review revealed that research has been focused on the classification of honey
botanically and geographically. Carbon stable isotope ratio and elemental analysis are
commonly used for the determination of the authenticity and tracing of honey [142–151].
In 2011, Chudzinska and Baralkiewicz [142] investigated the elemental composition of
140 honey samples of three types (honeydew, buckwheat, and rape) from 16 regions of
Poland. They suggested Al, Mg, and Zn as best tracers for the geographical classification
of samples. A key study of Zhou et al. [146], in Scientific Reports (2018), measured both
C stable isotope ratio and trace elements produced in several countries worldwide. The
additional sweeteners in an adulterated honey can be identified by determining the C stable
isotope ratio. The sugar of these additives is produced by the C-4 metabolic pathway of
plants (C-4 plants) while sugar of pure honey by C-3 metabolic pathway (C-3 plants). As a
consequence, there is a disagreement between the δ13C values for C-4 (−10‰ to −20‰) and
C-3 (−22‰ to −33‰) plants [152,153]. As second step, the authors further examined the
mineral composition of pure honey samples in order to authenticate their origin. Generally,
it was found that Ba, Ca, Fe, Mg, Mn, P, Na, and Sr exhibit variations in their concentrations
according to production area of honey. Notwithstanding, further analysis and comparison
of specific elements and countries led to more accurate classifications.

A comprehensive review on analytical techniques of honey authentication was pub-
lished by Tsagkaris et al., in 2021 [154]. Among other analytical techniques, ICP-MS is
primarily used for the determination of multi-elemental composition of honey samples
from different geographical origins.
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4.8. Cereals

Cereals, including wheat [155–160], corn (maize) [161], rice [162–176] and others, are
the most important class of plants contributing essential nutrients and energy to human
diet. Cereal production ranks among the largest in the food market due to the high demand
globally. Authenticity problem is the main concern of the cereal grain trade, particularly in
case of rice in which the percentage of mislabeled products is continuously increasing.

Preliminary work on geographical authenticity of wheat was performed by Branch et al.,
in 2002 [155]. The authors investigated the isotope analysis of Cd, Pb, Se and Sr, with the
use of ICP-MS, on wheat samples from certain geographical origins. A detailed study of
Podio and co-workers [157], reported the elemental and isotopic fingerprint of Argentinian
wheat and correlated them with the soil and water of the certain studied regions. They
demonstrated that Ba, 87Sr/86Sr, Co, Mo, Zn, Mn, Eu, δ13C, and Na were efficient variables
for geographical discrimination of wheat. In a similar study, Liu et al. [159] came to the
conclusion that Mn, Sr, Mo, and Cd led to correct classification of wheat samples from
various regions of China. In 2017, Wang et al. [161] determined the elemental fingerprinting
of maize samples by using ICP-MS. The origin of samples was certified based on the
differentiations between the concentrations of the elements Na, Cr, Rb, Sr, Mo, Cs, Ba,
and Pb.

Respecting the rice, it was constantly being the subject of authentication studies.
According to literature, there is a high number of publications about the verification
of geographical origin of rice samples from all over the world. In 1999, the group of
Kokot [162,163] studied the elemental composition of Vietnamese rice by combining dif-
ferent analytical techniques including ICP-MS, ICP-AES, and FAAS creating an element
profile for the studied samples. A successful geographical discrimination was achieved by
comparing the Vietnamese rice with the Australian one, based on Mn, and Mo elements. In
2002, Kelly et al. [164] investigated the C, and O stable isotope ratios and multi-elemental
(B, Ho, Gd, Mg, Rb, Se, and W) analysis for the determination of the geographical origin
of long grain rice, with the employment of IRMS and ICP-MS, respectively. It was sug-
gested that B and Mg could be used as discriminative tracers. An interesting study was
published by Qian et al. [170], in which the authors investigated how the fertilizers and
pesticides affected the elemental composition of rice and what was the impact on the origin
determination. In 2021, Xu et al. [172] developed an accurate analytical method for the
authentication of the geographical origin of Chinese GI rice samples by combining ICP-MS
and principal component analysis (PCAs). Figure 8a depicts the separation between the
different types of GI rice; separation is clear for few samples while the rest could not be
classified. In Figure 8b was shown the loading plot 1st and 2nd principal components; the
authors claimed that Al, Ga, Nb, V, and Ti contributed to the first two PCAs.
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The same year, Kongsri et al. [174] studied the tracing and authenticity of Thai Hom
Mali rice combining stable isotope and elemental analysis. Classification of the geographical
origin of samples was achieved based on Mn, Rb, Co, Mo, and δ18O.

Three extensive reviews with respect to traceability and authenticity of rice have been
published by Qian et al. [177] and Maione and Barbosa [5], in 2019, and by Quinn et al. [6],
in 2022.

4.9. Seeds and Nuts

Seeds and nuts constitute an essential part of human diet with a wide variety of
products. As all the aforementioned foodstuffs, seeds and nuts are also examined for
fraudulent practices possessing not only financial impact but also a high human health risk
due to allergic ingredients some of them contain.

The existing literature on authentication of coffee [178–183] and cocoa beans [184–186]
focuses mostly on the isotopic composition and multi-elemental concentrations measure-
ments. In 2011, Rodriguez et al. [179] supported that the use of S, O, C, N, and Sr isotope
ratios and elemental composition could lead to the geographical discrimination of green cof-
fee beans originated from Hawaiian islands. In a similar work, Santato and co-workers [182]
used IRMS and ICP-MS techniques to examine and classify samples of green coffee beans
from different places of the world. Recently, Albals et al. [180] investigated the elemental
composition by means of essential and toxic metals in green coffee beans from Brazil,
Ethiopia, Kenya, Columbia, and India. As regards cocoa beans, there are relatively few au-
thentication studies with the employment of ICP-MS technique. In 2016, Bertoldi et al. [184]
determined, for the first time, the elemental profile of cocoa beans (from Africa, Asia,
Central and South America) for tracing the geographical origin. The resulting records and
the statistical approach, they followed, led to the selection of Ag, As, Ba, Be, Bi, Ca, Cd, Co,
Cr, Cs, Cu, Fe, Ga, Hg, K, Li, Mg, Mn, Na, Ni, P, Rb, Se, Sr, Th, Tl, U, Y and Zn as efficient
tracers. A similar investigation of Acierno et al. [185] revealed Fe, Cr, and Cd as potential
geographical tracers.

A critical review in Food Science and Nutrition for traceability, authenticity and
sustainability of cocoa beans and their derivatives was published in 2022 by Perez and
co-workers [187].

Legumes are prominent members in human diet due to their nutritional value con-
taining high protein and mineral element concentrations. They are also considered as the
base of the vegetarian and vegan diet since they can substitute meat. This reason leads to a
higher demand of legumes, the last decades. There are few studies on authentication and
traceability of legumes [160,188–192] with the most studies being on fava beans. In particu-
lar, in 2014, Drivelos et al. [189] suggested the use of REE or their combination with trace
elements for the geographical discrimination of the PDO “Fava Santorinis” from different
Greek varieties of split peas. The results revealed that the combination of all elements
(lanthanides and trace elements) provided the best geographical classification. Two years
later, Drivelos and co-workers [190] examined the variations on elemental composition
of PDO “Fava Santorinis” through three harvesting years. The study revealed that, in
case of “Fava Santorinis”, there is discrimination of the fava beans samples from different
harvesting years, while fluctuations were not observed on REEs composition throughout
the years.

Similarly, nuts (almonds, hazelnuts etc.) are well-known superfoods; they are an
excellent source of protein, fiber, fats, vitamins, and minerals. Literature research showed
an increasing interest in studying the elemental composition of nuts for geographical origin
authentication [193–198] the last five years. The first attempt to classify hazelnuts according
to their geographical origin was accomplished by Oddone et al. [193], in 2009. The authors
investigated the elemental concentrations (trace elements and lanthanides) on hazelnuts
and the soils from their grown region. The results confirmed the correlation of lanthanide
distribution between hazelnuts and soil samples. Recently, Chen and co-workers [195]
examined the concentrations of macro (K, Ca, Mg, Na, and Al), micro (Fe, Zn, Mn, Ni, Sr,
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Mo, Cu, Se, V, and Co), and toxic (As, Cd, Cr, and Pb) elements, with ICP-MS, in peanuts
from different regions of China. Linear discriminant analysis (LDA) on all 19 elements
resulted the geographical discrimination of 97% for all regions. Moreover, the authors
performed radar plotting to display the elemental distribution among the different origins
(Figure 9).
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4.10. Spices and Herbs

In the spices/herbs branch fraudulent activities can occur in the form of mislabeling,
and adding fillers (i.e., flour, chalk etc.) and tend to become the most vulnerable food
class [199]. More recent attention has focused on the development of novel methodologies
for tracking the spices/herbs supply chain. In particular, the last five years, ICP-MS has
a dynamic appearance in the field of geographical origin authentication of spices and
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herbs [200–211]. Special attention has been paid to saffron due to its relatively high value.
In 2019, D’Archivio et al. [207] examined saffron samples produced in different Italian
territories. Geographical discrimination was achieved based on the analysis of the most
efficient variables which were: Li, B, Na, Ga, Rb, Sr, Zr, Nb, Cs, Ba, Sm, and Hf. Perini
and co-workers [206] worked on similar project by combining stable isotope ratio and
multi-elemental analysis. The authors analyzed 67 saffron samples from Italy, Iran and
Morocco succeeded the geographical discrimination based on the elements δ13C, δ34S, δ15N,
δ18O, δ2H, K, Cr, Mn, Ni, Zn, Rb, Sr, Mo, Cs, Nd, Eu, Pb, and Ni.

An interesting review has been written, few years ago, by Galvin-King et al. [212]
about herbs and spices industry. The authors clearly described the global spice and herb pro-
duction chain, mentioning the consequences of adulteration on economy and public health.
All the analytical methods for the safety control of spice and herbs were also referred.

Above all herbs, tea consists unique sector since it is the most popular beverage world-
wide following the fresh water. A growing body of literature has focused on the tracing of
tea origins with the use of ICP-MS technique [213–221] to further improve the accuracy of
their measurements. A detailed study has been performed, in 2020, by Liu et al. [214,215],
who examined the stable isotope ratios of C, N, H, O and various elements, through EA-
IRMS and ICP-MS, of Chongqing tuo and Pu’er teas. In case of Chongqing tuo teas, the
authors concluded to δ2H, δ18O, 98Mo/95Mo, 96Mo/95Mo, and 98Mo/96Mo as the most
sufficient tracers while in Pu’er tea project the geographical discrimination was achieved
based on the stable isotope ratio of δD, δ13C, and 154Sm/152Sm.

Currently, a comprehensive literature review was published by Shuai et al. [222],
summarizing the analytical techniques for the authentication of tea and the factors that
influence the content of these measurements.

Table 2. Table containing the overview of the literature regarding the authenticity and traceability of
agricultural products, foods and beverages.

Product Measured Elements Region References

1. Alcoholic Beverages (Wine) Li, Be, Na, Mg, Al, K, Ca, Sc, Ti, V, Mn, Co, Ni, Ga, As, Se,
Rb, Sr, Mo, Cs, Ba, La, Ce, W, and Pb Australia [40]

2. Alcoholic Beverages (Wine)
Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, In, K, Li,

Mg, Mn, Ni, Pb, Rb, Se, Na, Ag, Sr, Tl, V,
and U

Romania [41]

3. Alcoholic Beverages (Wine) Al, Cd, Co, Cr, Cu, Li, Mn, Ni, P, Pb, Rb, Sr, and Zn California (USA) [42]

4. Alcoholic Beverages (Wine)
B, Ba, Ca, Co, Cr, Cs, Cu, Fe, Ga, K, Li, Mg, Mn, Na, Ni, P,
Rb, S, Sc, Si, Sr, Ti, Zn, Zr, Al, As, Cd, Ce, La, Mo, Nd, Pb,

Sb, Sn, U, V, W, and Y
Spain [43]

5. Alcoholic Beverages (Wine) Al, As, B, Ba, Ca, Co, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Sr,
and Zn Portuguese [44]

6. Alcoholic Beverages (Wine) 87Sr/86Sr Romania [61]

7. Alcoholic Beverages (Wine) Na, Mg, Al, K, Ca, Mn, Fe, Cu, Zn, Rb, Sr, Li, Cd, Cs,
and Ba China [60]

8. Alcoholic Beverages (Wine) Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Re, Sm, Ta, Tb, Tm,
V, Y, and Yb Italy [64]

9. Alcoholic Beverages (Wine) As, Be, Bi, Co, Cr, Cu, K, Li, In, Tl, Se, Rb, V, U, Mg, Ni, Ba,
Al, Cd, Fe, Ag, Ni and Zn Romania [45]

10. Alcoholic Beverages (Wine)
Na, Mg, P, K, Ca, Cu, Co, Cr, Zn, Sn, Fe, Mn, Li, Be, B, V,
Sr, Ba, Al, Ag, Ni, As, Sn, Hg, Pb, Sb, Cd, Ti, Ga, Zr, Nb,

Pd, Te, La, Sm, Ho, Tm, Yb, W, Os, Au, Tl, Th, and U
Greece [46]

11. Alcoholic Beverages (Wine) Li, V, Co, Ni, Ga, Mo, Cd, Sb, Cs, Ba, Ce, Nd, Ta, W, Tl, Pb,
P, B, Si, Ca, Mn, Sr, K, and Rb California (USA) [47]

12. Alcoholic Beverages (Wine)
Mg, K, Ca, V, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr,

Mo, Cd, Ba, Pb, and U.
207Pb/206Pb, 208Pb/206Pb, 204Pb/206Pb, and 87Sr/86Sr

Argentina [62]
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Table 2. Cont.

Product Measured Elements Region References

13. Alcoholic Beverages (Wine) Li, Be, V, Mn, Co, Ni, Cu, Ge, As, Rb, Sr, Mo, Cd, Ba, Hg,
Tl, Pb, and Bi Argentina [48]

14. Alcoholic Beverages (Wine)
Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, In,

K, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Sr, Tl, V, U, Zn,
and Hg

Romania [63]

15. Alcoholic Beverages (Wine) Cu, Ni, Ca, Fe, B, Mg, As, Sb, Mn, Sn, P, Al, Zn, U, Sr, Cr,
S, Co, Ba, La, Mo, Ti, Pb, Ce and V

Okanagan Valley
(B.C., Canada) [38]

16. Alcoholic Beverages (Wine)
Li, Be, Mg, Al, P, Cl, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn,
As, Se, Br, Rb, Sr, Mo, Ag, Cd, Sb, I, Cs, Ba, La, Ce, Tl,

Pb, Bi, Th, and U

Okanagan Valley, and Niagara
Region (Canada) [49]

17. Alcoholic Beverages (Wine)
Al, As, Ba, Be, Bi, Cd, Co,

Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Se, Sr, Ti, Tl, V, Zn, U, Sn,
Sb, and Ga

Croatia [50]

18. Alcoholic Beverages (Wine) Sr, Rb, Ni, Co, Pb, Mn, Cd, Ga and Cs New Zealand [65]

19. Alcoholic Beverages (Wine) Na, Mg, P, K, Ca, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se,
Sr, Cd, Cs, Ba, and Pb Spain [51]

20. Alcoholic Beverages
(Champagne)

K, Ca, Mg, Na, B, Fe, Al, Mn, Sr, Rb, Ba, Cu, Ni, Pb, Cr,
and Li

6 different brands of different
vintages between 1983

and 2016
[52]

21. Alcoholic Beverages (Wine)
Al, As, B, Ba, Ca, Ce, Cs, Co, Cr, Cu, Er, Eu, Fe, Ga, K,

Mg, Mn, Mo, Na, Ni, P, Pb, Rh, Rb, Sb, Sn, Sr, Ti, Tl, Zn,
and V

West coast of
the USA [53]

22. Alcoholic Beverages (Wine)

Ag, Al, As, B, Ba, Be, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er,
Eu, Fe, Ga, Gd, Hf, K, La, Li, Mg, Mn, Mo, Na, Nd, Ni, P,
Pb, Pr, Rb, Re, Rh, Sb, Se, Sn, Sr, Ti, Tl, Tm, U, V, W, Yb,

and Zn

California (USA) [54]

23. Alcoholic Beverages (Wine) Ag, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Rb,
Sb, Sn, Sr, Te, Tl, U, and Zn

Italy, France, Poland, Spain,
Slovakia, Australia, Portugal,
Bulgaria, Germany, Hungary,

Moldova, Chile, Austria,
South Africa, New Zealand,
Ukraine, Argentina, Czech

Republic, Greece, UK,
Armenia, and USA

[55]

24. Alcoholic Beverages (Wine)

Li, Be, Al, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Br, Rb,
Sr, Y, Zr, Nb, Pd, Ag, Cd, Ba, Pr, Nd, Sm, Eu, Gd, Tb, Dy,
Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Pt, Tl, Pb, Bi, U, Mo,

Sn, Sb, La, and Ce

Portuguese [56]

25. Alcoholic Beverages (Wine) Na, K, P, Mg, and Ca Greece [57]

26. Alcoholic Beverages (Wine) La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb Italy [7]

27. Alcoholic Beverages (Wine) Ag, Al, As, B, Ba, Bi, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo,
Na, Ni, Pb, Sb, Se, Sn, Sr, Ti, Tl, V, Zn, and Zr Poland [58]

28. Alcoholic Beverages (Wine) Li, Al, V, Cr, Mn, Co, Ni, Cu, Rb, Sr, Mo, Ag, Cd, Ba, Tl,
Pb, Bi, U, Be, Fe, As, Se, and Zn

Poland, Hungary, Moldova,
and Bulgaria [59]

29. Alcoholic Beverages (Wine) La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb,
and Lu. Italy [66]

30. Alcoholic Beverages (Wine)

Li, Be, A1, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge,
As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In,
Sn, Sb Te, I, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy,
Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl,

Pb, Bi, Th, and U

Spain, and England [39]

31. Alcoholic Beverages
(Whiskey)

Al, Ti, V, Cr, Mn, Fe, Ni, Co, CU, Zn, Ga, As, Se, Rb, Sr,
Zr, Mo, Nb, Ru, Rh, Pd, Ag, Cd, Sn, Sb, Te, Cs, Ba, La,
Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta,

W, Re, Ir, Pt, Au, Tl, Pb, Th, and U

USA [67]

32. Alcoholic Beverages
(Whiskey)

Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K,
Li, Mg, Mn, Mo, Na, Ni, Pb, Rb, Se, Sr, Te, Tl, U, V,

and Zn
Scotland, Ireland, and USA [68]
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Table 2. Cont.

Product Measured Elements Region References

33. Alcoholic Beverages
(Whiskey)

Ag, Al, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb,
Sb, Sn, Sr, Te, Tl, U, and V

Scotland, the USA, Ireland,
Poland, Japan, the United

Kingdom, India, Azerbaijan,
Slovakia, Wales,

and Bulgaria

[69]

34. Alcoholic Beverages (Cider)
87Sr/86Sr, Li, Be, B, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,

Zn, Ga, As, Se, Rb, Sr, Y, Mo, Cd, Sn, Sb, Cs, Ba, La, Ce, W,
Tl, Pb, Bi, Th, and U

England, Switzerland,
France, and Spain [70]

35. Alcoholic Beverages (Cider)
Li, Be, B, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As,
Se, Rb, Sr, Y, Mo, Cd, Sn, Sb, Cs, Ba, La, Ce, W, Tl, Pb, Bi,

Th and U

Spain, England, France, and
Switzerland [71]

36. Alcoholic Beverages (Beer) V, Cr, Co, Ni, As, Se, Mo, Cd, In, Sb, Cs, Pb, Bi, and U USA [72]

37. Alcoholic Beverages (Beer) Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mo, Mn, Ni, Se, Sr, Pb,
and Zn

Hungary, Belgium, the
Czech Republic, Germany

and Austria
[73]

38. Alcoholic Beverages (Beer) K, Ca, Mg, Fe, Al, Mn, Zn, Na, Sr, Cu, Ti, Ba, Ni, Mo, V, Cr,
Pb, Co, As, Se, Sn, Sb, U, and Cd USA and Germany [74]

39. Alcoholic Beverages (Beer) Nb, Fe, Rb, Zr, Mg, Ni, and Zn Cavalese, and Imér [75]

40. Alcoholic Beverages (Liquor) V, Cr, Mn, Ni, Co, As, Se, Sr, Mo, Cd, Sb, Ba, Pb, Bi, Al, Fe,
and K China [76]

41. Milk and Dairy (Cow and
Buffalo Milk) P, S, K, Ca, V, Cr, Mn, Fe, Co, Zn, Ga, Rb, Sr, Mo, Cs and Ba Italy [77]

42. Milk and Dairy (Cow Milk) Li, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Cd, Ba, Pb,
and Bi Sri Lanka [8]

43. Milk and Dairy
(Cow and Goat Milk)

Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Cd, Cs, Ba, Pb,
U, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, and

Y
Italy [78]

44. Milk and Dairy (Cow Milk)
Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Sn, Sb, Ba,
La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Pb,

Th, and U
Italy [79]

45. Milk and Dairy (Cheese) Ca, Mg, Na, K, Cu, Mn, Mo, and I
Finland, England, Germany,

Austria, France,
and Switzerland

[80]

46. Milk and Dairy (Cheese) Li, Na, Mn, Fe, Cu, Se, Rb, Sr, Mo, Ba, Re, Bi, and U Italy [81]

47. Meat (Yak)

Na, Mg, Al, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As,
Se, Rb, Sr, Y, Mo, Ru, Rh, Pd, Ag, Cd, Sn, Sb, Te, Cs, Ba, La,
Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu, Yb, Hf, Ir,

Pt, Au, Tl, Pb, Th, and U

Qinghai-Tibetan [84]

48. Meat (Rabbit)
As, Be, Ca, Cd, Co, Cr, Cu, Fe, Li, Mg, Mn, Mo, Ni, Pb, Sb,
Se, Sr, Ti, Tl, V, Zn, Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr,

Sm, Tb, Tm, Yb, Sc, Y, Th and U
Lemnos (Greece) [85]

49. Meat (Pork) Ba, Be, Bi, Cd, Co, Cr, Cu, Cs, Ga, Li, Mn, Ni, Pb, Rb, Se,
Sr, U, and V

Korea, USA, Germany,
Austria, Netherlands,

and Belgium
[87]

50. Meat (Mutton) Be, Na, Al, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Ag,
Sb, Ba, Tl, Pb, Th, and U China [88]

51. Meat (Cured Ham)
Zn, Fe, Rb, Cu, Sr, Al, Mn, Se, Ni, Cs, Cr, Ba, Li, As, Pb, V,

Cd, Sc, Co, Ga, Tl, Y, Nd, Gd, Pr, Be, U, Sm, Dy, Yb, Eu,
Ho, Tb, Tm, Rb/Sr, and 87Sr/86Sr

Europe [89]

52. Meat (Rabbit) Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sc, Sm, Tb, Tm, Y,
Yb, Th, and U Lemnos (Greece) [86]

53. Meat (Beef) Na, Al, K, V, Cr, Mn, Fe, Ni, Cu, Rb, Sr, Mo, Cs, and Ba
Europe, USA, South

America, Australia, and
New Zealand

[83]

54. Fish and Seafood
(Sea Cucumber)

Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Hg,
and Pb

Bohai Sea, Yellow Sea, and
East China Sea (China) [92]
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Table 2. Cont.

Product Measured Elements Region References

55. Fish and Seafood (Mussels)
Ag, As, Ba, Cd, Co, Cr, Cu, Ga, Mn, Mo, Nb, Ni, Pb, Rb,
Sb, Se, Sn, Sr, Te, Tl, V, Zn, Ta, Zr; Ce, Dy, Er, Eu, Gd, Ho,

La, Lu, Nd, Pr, Sm, Th, Tm, U, Y, and Yb
Spain, and France [94]

56. Fish and Seafood (Salmon) B, Ba, Fe, K, Mg, Mn, Na, Pb, S, Sr, U and Zn Norway [96]

57. Fish and Seafood (various
Marine Species)

Cr, Mn, Fe, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Ni, Cd, Sn, I,
Ti, Ba, Hg, Pb, and Bi China [104]

58. Fish and Seafood (Mussels) Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, Sn, V,
and Zn

Mediterranean Sea
(Venice Lagoon) [95]

59. Fish and Seafood (Cuttlefish) Na, Mg, K, Ca, P, Cu, Zn, Cr, Fe, Mo, Co, V, Ni, Mn, As,
Cd, Pb, and Hg

Mediterranean Sea
(Sicilian Coasts) [97]

60. Fish and Seafood
(Manila Clam)

Na, Mg, Al, K, V, Mn, Fe, Co, Cu, Zn, As, Se, Rb, Sr, Mo,
Pd, Cd, Sn, Sb, Cs, Ba, La, Ce, Pb, and U China [98]

61. Fish and Seafood
(Mitten Crab) Na, Mg, Al, K, Ca, Mn, Cu, Zn, Sr, and Ba China [99]

62. Fish and Seafood (Sea Bass) La, Eu, Ho, Er, Lu, and Tb Mediterranean Sea [100]

63. Fish and Seafood
(Sea Cucumber)

Li, V, Cr, Mn, Co, Ni, Cu, As, Sn, Sr, Ag, Cd, Se, Ba, Pb,
Bi, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb,

Lu, and Sc
China [93]

64. Fish and Seafood (Shrimps) Pb, Cd, As, P, and S
Senegal, Mozambique, North

Atlantic,
Argentina, and Nigeria

[101]

65. Fish and Seafood (Caviar)

Cl, Na, P, S, K, Mg, Ca, Zn, Br, Fe, Mn, Si, Sr, Rb, Cu, I,
Se, As, Ba, Al, B, Co, Pb, Ag, Mo, Li, Ti, Hg, Cs, Ni, Ge,
Sn, Cd, V, Cr, Sb, Pb, Te, U, Tl, Zr, Nd, Ga, Rh, La, Y, Ce,
W, Be, Ta, Bi, Gd, Ru, Pr, Se, Sm, Th, Eu, Re, Dy, Au, Nb,

Er, Yb, Hf, Tb, Ho, Pt, Tm, Os, Lu, and Ir

Sweeden, and Finland [102]

66. Fish and Seafood (Anchovy)

Li, Be, B, Al, V, Cr, Fe, Mn, Ni, Cu, Zn, Co, Ga, Ge, As,
Se, Rb, Sr, Zr, Mo, Ru, Cd, In, Sn, Sb, Te, Cs, Ba, Hf, Ta,
Re, Pt, Tl, Pb, Bi, Th, La, Ce, Pr, Nd, U, Y, Sm, Eu, Gd,

Tb, Dy, Ho, Er, Tm, Yb, Lu, Na, Mg, P, K, Ca, Mn, Cu, Zn

Cantabria, Tunisia, and
Croatia [103]

67. Vegetables (Onion) Al, Ba, Ca, Cd, Ce, Cr, Dy, Eu, Fe, Ga, Gd, Ho, La, Mg,
Mn, Na, Nd, Ni, Pr, Rb, Sm, Sr, Tl, Y, and Zn Calabria (Italy) [106]

68. Vegetables (Onion) Co, Ni, Cu, Rb, Mo, Cd, and Cs

Japan, China, the United
States, New Zealand,
Thailand, Australia,

and Chile

[107]

69. Vegetables (Garlic) Cr, Ni, Cu, As, Se, Sb, Ba, Pb, Zn, Fe, Mg, Ca, Al, Na, K,
Mn and Cd Spain, Tunisia, and Italy [108]

70. Vegetables (Garlic) Li, B, Na, Mg, P, S, Ca, Ti, Mn,
Fe, Cu, Ni, Zn, Rb, Sr, Mo, Cd, and Ba

Argentine, Canada, Chile,
Korea, Mexico, Pakistan,
Thailand, United States,

and Vietnam

[109]

71. Vegetables (Soybean) Ag, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na,
Ni, Pb, Sb, Se, Sn, Sr, Ti, Tl, V and Zn

Zhejiang, Heilongjiang, Hebei,
Inner Mongolia, Henan,

Hainan, and
Fujian (China)

[110]

72. Vegetables (Tomato,
Pepper, Eggplant) Mn, Fe, Cu, Zn, Cr, Ni, Cd, and Pb Romania [111]

73. Vegetables (Peper
Capsicum annuum L.)

Ar, Ba, Ca, Cd, Co, Cr, Cs, Cu, Fe, K, Mn, Mg, P, Mo, Ni,
Na, Pb, Rb, Sb, Sn, Tl, Y, Sr, and Zn

Xiazi, Huaxi, and
Hezhang (China) [112]

74. Vegetables (Chili peppers)
Al, As, Ba, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Fe, Ga, La, Li,
Mg, Mn, Na, Nd, Ni, Pb, Pr, Rb, Sc, Se, Sr, Tl, Tm, V, Y,

Yb, and Zn
Calabria (Italy) [113]

75. Vegetables (Tomato) Al, As, Ba, Be, Ca, Cd, Ce, Cu, Dy, Fe, K, La, Lu, Mg,
Mn, Na, Nd, Pb, Rb, Sm, Sr, Th, U, V, and Zn

Italy, China, Greece
and California [114]

76. Vegetables (Tomato) Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Yb Italy [115]
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77. Vegetables (Tomato)
Li, Be, B, Na, Mg, Al, P, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu,
Zn, Ga, Ge, As, Se, Rb, Sr, Y, Mo, Ag, Cd, Sn, Sb, Cs, Ba,
La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Tm, Yb, Ir, Tl, Pb, U

Italy [116]

78. Vegetables (Chinese cabbage) Mn, Cu, Sr, Ba, S, Co, Cr, Li, Ni, Ti, V, and Zn China, and Korea [117]

79. Mushrooms (Truffles)

Li, Na, Mg, Al, K, V, Cr, Mn, Co, Ni, Cu, Ga, Rb, Sr, Mo,
Ag, Cd, Te, Ba, Tl, Pb, Bi, U, Sc, Y, La, Ce, Pr, Nd, Sm, Eu,

Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, Be, B, Fe, Zn, As,
and Se

Bulgaria, Romania, Croatia,
Hungary, Iran, Slovenia,
Italy, Spain, Australia,

and China

[118]

80. Fruits (Lemon)
K, Ca, Mg, Na, Fe, Zn, B, Cu, Al, Mn, Ni, Cr, Pb, Co, As,
Se, Cd, Sb, V, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er,

Tm, and Lu
Italy, and Turkey [119]

81. Fruits (Apples)
Ag, Al, As, Be, Bi, Cd, Co, Cr, Cu, Fe, Ga, In, Mn, Mo, Ni,
Pb, Rb, Se, Sn, Tl, U, V, Zn, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb,

Dy, Ho, Er, Tm, and and Lu
Italy [120]

82. Fruits (Mango)

Li, Be, B, Na, Mg, Al, P, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu,
Zn, Ga, Ge, As, Se, Rb, Sr, Y, Mo, Pd, Ag, Cd, In, Sn, Sb, Te,
Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Tm, Yb, Re, Ir,

Pt, Au, Hg, Pb, Th and U

Spain, Senegal, Ivory Coast,
Equatorial Guinea, Peru,

Mexico, and Brazil
[121]

83. Fruits (Avocado)
Li, Be, B, Na, Mg, Al, P, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn,
Ga, Ge, As, Se, Rb, Sr, Y, Mo, Pd, Ag, Cd, Sn, Sb, Cs, Ba, La,
Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Hg, Pb, and U

Spain, Brazil, Chile,
Colombia, Kenya, Mexico,

Peru, and South Africa
[122]

84. Fruits (Pear) Al, As, B, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo,
Na, Ni, P, Pb, Se, Sn, Sr, Tl and Zn Portuguese [123]

85. Fruits (Jackfruits) Ba, Al, Ca, Co, Cs, Cr, Cu, Fe, Ga, S, K, Li, Mg, Mn, Na, Ni,
Mo, Rb, Ti, U, B, Zn, Si, and Xe India [124]

86. Fruits (Clementine)
Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, In, K,
Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Sr, Tl, V, U, Zn, Ce, Dy, Er,
Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Sc, Tb, Th, Tm, Y, and Yb

Calabria (Italy) [125]

87. Oil (EVOO) Be, Mg, Ca, Sc, Cr, Mn, Fe, Co, Ni, As, Se, Sr, Y, Cd, Sb,
Sm, Eu, and Gd Italy [126]

88. Oil (EVOO) Li, B, Na, Mg, K, Ca, Mn, Co, Cu, Ga, Se, Rb, Sr, Mo, Cd,
Cs, Ba, La, Ce, Nd, Sm, Eu, Yb, Tl, Pb, and U Italy [127]

89. Oil (EVOO) Mg, K, Ca, V, Mn, Zn, Rb, Sr, Cs, La, Ce, Sm, Eu, U European Region [128]

90. Oil (VOO) Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Th Zakynthos, Iraklio, Lakonia,
and Messinia (Greece) [129]

91. Oil (VOO) Al, As Ba, Ca, Co, Cr, Cs, Cu, Fe, Ga, Hf, K, Li, Mo, Mn,
Mg Na, Sr, Nb, Ni, Pb, Rb, Sc, Se, Sn, and Ta Spain [130]

92. Oil (VOO) V, Mn, Ni, Cu, Ba, Na, K, Ca, Fe, Mg, Pb, As, Co, Cr,
and Zn

İzmir, Manisa, Aydın,
Muğla, Bursa, and Edremit

Bay (Turkey)
[131]

93. Oil (EVOO) Na, Mg, V, Fe, Mn, Zn, As, Rb, Sr, Ba, and Pb Tunisia [132]

94. Oil (EVOO)
Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Rb, Sr, Y, Cd, Sb, Ba, La,

Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, W, Tl,
Pb, Th, and U

Italy (different varieties) [133]

95. Oil (EVOO) B, Na, P, Ca, Li, Mg, Fe, Cu, and As Tunisia [134]

96. Oil (EVOO)
Li, Be, B, Na, Mg, Al, Si, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni,
Cu, Zn, Ga, As, Se, Rb, Sr, Zr, Nb, Mo, Ag, Cd, Sn, Sb, Te,

Cs, Ba, La, Ce, Pr, Nd, Tb, Dy, W, Tl, Pb, Bi, and U

Tuscany, Umbria, Apulia,
Sardinia, Sicily, Abruzzo,

Campania, and
Marche (Italy)

[135]

97. Oil (EVOO)

Ag, Al, As, B, Ba, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, Ge, K, Li,
Mg, Mn, Mo, Na, Ni, P, Pb, Rb, Sb, Se, Si, Sn, Sr, Ti, V, W,
Zn, Zr, Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Sc, Tb,

Tm, Yb, and Y

Tunisia [136]

98. Oil (VOO) and Olives Al, As, Cd, Co, Cr, Cu, Fe, Ni, Pb, Sb, and V Spain [137]

99. Olives Sr, Cu, Rb, Ti, Ni, Sn, Cr, V, Co, Sb Cd, Pb, As, and Zr Italy [138]
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100. Oil (EVOO) As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Ni, Rb, Sr, Pb,
V, and Zn Tunisia, and Europe [9]

101. Different types of oil Ag, As, Ba, Be, Cd, Co, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Ti,
Tl, and V Spain [139]

102. Oil (VCO) Na, Mg, Al, P, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Se, Rb, Sr, Mo,
Cs, and Pb

Kerala, Karnataka, Andhra,
Tamil Nadu, Goa (India) [141]

103. Honey Al, B, Ba, Ca, Cd, Cr, Cu, K, Mg, Mn, Na, Ni, Pb, Sr,
and Zn Poland [142]

104. Honey
Al, Cu, Pb, Zn, Mn, Cd, Tl, Co, Ni, Rb, Ba, Be, Bi, U, V, Fe,
Pt, Pd, Te, Hf, Mo, Sn, Sb, P, La, Mg, I, Sm, Tb, Dy, Sd, Th,

Pr, Nd, Tm, Yb, Lu, Gd, Ho, Er, Ce, and Cr
Brazil [143]

105. Honey Na, Mg, P, K, Ca, Mn, Fe, Cu, Zn, Rb, Sr, and Ba China [144]

106. Honey Mn, Cu, Cr, Ni, Se, Pb, Cd, and As Sicily, and Calabria (Italy) [145]

107. Honey As, Cd, Cr, Cu, Hg, Fe, Mn, Ni, Pb, and Zn Romania [147]

108. Honey

Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Cs, Cr, Co, Cu,
Dy, Er, Eu, Fe, Ga, Gd, Ge, Hg, Hf, Ho, Rb, K, La, Li, Lu,

Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, P, Pb, Pd, Pt, Pr, Re, Ru,
Se, Sb, Sr, Sm, Sn, Ta, Tb, Te, Th, Tl, Tm, Ti, U, V, W, Y, Yb,

Zn and Zr.

Africa, Asia, Europe, North
America, and Oceania [146]

109. Honey Al, As, Ba, Ca, Cd, Co, Cr, Cu, Mg, Mn, Na, Ni, K, Pb, Sr,
Ti, V and Zn Romania [148]

110. Honey
Al, As, Au, Ba, Co, Cr, Cs, Cu, Fe, In, Ir, Mg, Mn, Pb, Pd,
Pt, Rb, Sb, Se, Te, Th, Tl, U, V, Zn, Ce, Dy, Eu, Er, Gd, Ho,

La, Lu, Nd, Pr, Sm, Tb, Tm, Yb, and Zn

Santa Catarina, Paraná, and
Rio Grande do Sul (Brazil) [149]

111. Honey Li, Mg, Mn, Ni, Co, Cu, Sr, Ba, Pb, Y, La, Ce, Pr, Nd, Sm,
Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu

Greece, Bulgaria, Romania,
Italy, Thailand, and Poland [150]

112. Honey Ag, As, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo, Ni,
Pb, Sb, Sn, Sr, Te, Tl, V, and Zn Sardinia (Italy) [151]

113. Cereals (Wheat) Cd, Pb, Se, and Sr USA, Canada, and Europe [155]

114. Cereals (Wheat) Be, Na, Mg, Al, K, Ca, V, Mn, Fe, Cu, Zn, Mo, Cd, Ba,
and Th) China [156]

115. Cereals (Wheat) K/Rb, Ca/Sr, Ba, 87Sr/86Sr, Co, Mo, Zn, Mn, Eu, δ13C,
and Na

Buenos Aires, Córdoba, and
Entre Ríos [157]

116. Cereals (Wheat) Be, Na, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Se,
Rb, Sr, Y, Zr, Cd, Cs, and Pb China [158]

117. Cereals (Wheat) Mg, Al, Ca, Mn, Fe, Cu, Zn, As, Sr, Mo, Cd, Ba, and Pb China [159]

118. Cereals (Maize) B, Na, Mg, Al, P, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As,
Se, Rb, Sr, Mo, Cd, Cs, Ba, Pb, and U China [161]

119. Cereals (Wheat, Barley), and
Legumes (Faba Bean)

Li, Be, B, Na, Mg, Al, Si, P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn,
Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo,
Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Cs, Ba, La, Ce, Pr, Nd,
Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os,

Ir, Pt, Au, Hg, Tl, Pb, Bi, Th, and U

Zealand, Central Jutland, and
South Jutland [160]

120. Rice Ni, Mo, As, and Cd Vietnam [162]

121. Rice Ni, Mo, As, and Cd Vietnam [163]

122. Rice B, Ho, Gd, Mg, Rb, Se, and W India, Pakistan, USA, France,
Italy, Spain, [164]

123. Rice Al, Fe, Co, Ni, Cu, Rb, Sr, and Ba Japan, USA, China, and
Thailand [165]

124. Rice Mg, K, Ca, Na, Be, Mn, Ni, Cu, Cd, Fe, Al, Cr, Zn, Sb, and
Pb China [166]

125. Rice B, Co, Sr, Mo, Cd, Cs, Ba, Pb, Ti, V, As, Se, Mn, Cu, Rb,
Mg, Al, Cr, Fe, Ni, and Zn

Thailand, France, Japan, India,
Italy, and Pakistan [167]

126. Rice As, B, Ba, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, P,
Pb, Rb, Se and Zn Brazil [168]
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127. Rice B, Mg, Al, Ti, V, Cr, Mn, Fe, Ni, Zn, Ga, As, Sr, Cd, Sn, Sb, Ba,
Pb, Bi, and Tl China [169]

128. Rice

Al, As, Ba, Bi, Cd, Ca, Cr, Co, Cu, Fe,
Pb, Li, Mg, Mn, Mo, Ni, K, Se, Na, Sr, Tl, Ti, Zn, La, Ce, Pr,

Nd, Sm, Eu,
Ho, Er and Yb

China [170]

129. Rice
87Sr/86Sr, 207Pb/206Pb, 208Pb/207Pb, Li, Be, Na, Mg, Al, Ca,
Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Mo, Ag, Cd, Sn, Sb,

Ba, Pb, and Bi
China, Thailand, and Malaysia [171]

130. Rice B, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn,
Ga, Ge, As, Se, Rb, Sr, Nb, Mo, Ag, Cd, Cs, Ba, Hg, and Pb

Heilongjiang, Liaoning, Jiangsu,
Hubei, and Guangxi [172]

131. Rice Na, Mg, Al, Si, P, S, K, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn,
Ga, Ge, As, Se, Br, Rb, Sr, Y, Mo, Ba, La, Ce, Au, and Pb India, and Pakistan [173]

132. Rice Mn, Rb, Co, and Mo Thailand [174]

133. Rice
B, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn,

Ga, Ge, As, Se, Rb, Sr, Nb, Mo, Ag, Cd, Cs,
Ba, Hg, and Pb

China, India, Vietnam, and
Ghana [175]

134. Rice
Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, In, K,
Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Sr, Tl, U, V, Zn, Ce, Dy, Er,

Eu, Gd, Ho, La, Lu, Nd, Pr, Sc, Sm, Tb, Th, Tm, and Y
Vietnam [176]

135. Coffee Ba, Ca, Cu, Fe, Mg, Mn, P, Si, K, and S Ethiopia [178]

136. Coffee B, Na, Mg, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Mo, Ba,
Pb, Bi, Y, La, Ce, Pr, Sm, Nd, Eu, Dy, Th, Sc, Ho, and Gd

Hawaii, Kauai, Maui, Molokai,
and Oahu [179]

137. Coffee K, Mg, Ca, Fe, Al, Mn, Cu, Ba, Sr, Zn, Cr, Pb, Ni, V, Co, Ga,
U, Cd, Ag, Li, In, Bi, Th, and Tl

Brazil, Ethiopia, Kenya,
Columbia, and India [180]

138. Coffee Na, Ca, K, Mg, Al, As, Pb, Ni, Zn, Cu, Mn, Cd, Fe, Hg,
and Cr

Germany, Netherlands, Italy,
Austria, Slovenia, France,

Romania, Brazil, and Greece
[181]

139. Coffee

Li, Be, B, Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
Zn, Ga, Ge, As, Se, Rb, Sr, Y, Mo, Pd, Ag, Cd, Sn, Sb, Te, Cs,
Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Tm, Yb, Re, Ir, Pt, Au,

Hg, Tl, Pb, Bi and U

Central/South America, Africa,
and Asia [182]

140. Coffee Ba, Ca, Cu, Fe, K, Mg, Mn, P, Sr, Sc, and Zn Espirito Santo, Minas Gerais,
and São Paolo (Brazil) [183]

141. Cocoa

Li, Be, B, Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
Zn, Ga, Ge, As, Se, Rb, Sr, Y, Mo, Pd, Ag, Cd, In, Sn, Sb, Te,
Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Tm, Yb, Re, Ir, Pt,

Au, Hg, Tl, Pb, Bi, Th, and U

Africa, Asia, Central
and South America [184]

142. Cocoa Na, Cr, La, Ce, Mo, Cs, Ga, Ti, Y, Ba, Rb, Zn, Sr, Fe, Mg, Al,
Co, Cu, Cd, Mn, Ni, As, Pb, and V

Congo, Mexico, Ecuador,
Venezuela, Costa Rica, Vanuatu,

and Trinidad
[185]

143. Cocoa B, Ba, Ca, Cd, Co, Cr, Cs, Cu, K, Ni, Mg, Mn, Mo, P, S, Sr, V,
and Zn

Africa, Asia Pasific,
Central/South America [186]

144. Legumes (Cowpeas) Ag, As, Ba, Be, Cd, Cs, Co, Cr, Cu, Mo, Ni, Pb, Sb, Se, Sn, Sr,
Tl, Rb, V, and Zn Argentina [188]

145. Legumes (Yellow
Split Pea)

Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb, Th, Sc, B, Al,
Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Cd, Ba, and Tl

Santorini, different places of
Greece, India, Canada, USA,

Iran, and Australia
[189]

146. Legumes (Faba Beans) Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Be,
Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Ba Santorini (Greece) [190]

147. Legumes (Faba Beans) Li, B, Na, Mg, Al, P, S, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As,
Se, Mo, Cd, Ba, La, Hg, and Pb

Manitoba and Saskatchewan
(Canada) [191]

148. Legumes (Common
Beans) N, Mg, P, S, K, Ca, Mn, Fe, Cu, Na, Cr, Co, Zn, and Mo Slovenia [192]

149. Nuts (Hazelnuts) La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, 165Ho, Er, Tm, Yb,
and Lu Italy, and Turkey [193]
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150. Nuts (Pistachio) La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb Greece, and Turkey [194]

151. Nuts (Peanuts) K, Ca, Mg, Na, Al, Fe, Zn, Mn, Ni, Sr, Mo, Cu, Se, V, Co, As,
Cd, Cr, and Pb China [195]

152. Nuts (Walnuts)
Li, Be, B, Na, Mg, Al, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn,
Ga, As, Se, Rb, Sr, Y, Mo, Ag, Cd, Te, Ba, La, Ce, Pr, Nd, Sm,

Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Tl, Pb, Bi, Th, and U

Switzerland, Chile, China,
Germany, France,

Hungary, Italy, Pakistan,
Turkey, and USA

[196]

153. Nuts (Almonds) Li, B, Al, Ti, Mn, Fe, Ni, Cu, Zn, Rb, Y, Ag, Cd, Ba, Ce, Tl, and U Australia, Spain, Iran,
Italy, Morocco, USA [197]

154. Sesame seeds Mg, Al, K, Ca, Cr, Mn, Co, Ni, Cu, Zn, Rb, Sr, Cd, Ba, and Pb Korean, Chinese,
and Indian [198]

155. Spices Cr, Co, Ni, Cu, Hg, Cd, Pb, and As 17 Different Countries [200]

156. Spices (red pepper flake) Al, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, and Pb

Southeast Anatolia Region,
the Mediterranean Region,
and the Central Anatolia

Region (Turkey)

[201]

157. Spices (Black pepper) Mg, K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Se, Sr, Y, Mo, Sb, Ba, Pt,
and Pb

Vietnam, Pakistan,
and India [202]

158. Spices (Chili) Ba, Be, Co, Cr, Cu, Fe, Ga, Li, Mn, Ni, Rb, Se, Sr, V, Zn, As, Cd,
In, Pb, and Tl

South Korea, China,
and Vietnam [203]

159. Spices (Hot/Sweet Paprika) K, Mg, Fe, Zn, Cu, Mn, B, Al, Co, Ni, Se, Mo, As, Pb, and Cd

Serbia, and Hungry
(Comparison with

literature samples from
Spain, Turkey,
and Poland)

[204]

160. Spices
87Sr/86Sr, Rb, Sr, Y, Zr, Mo, Cd, Ba, Pb, Th, U, Mg, Ca, Sc, Ti,

Cr, Mn, Fe, Co, Ni, Cu, Zn, As, and REE

Hungary, Spain, Romania,
France, Senegal, China,

and Germany
[205]

161. Saffron
Li, Be, B, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Cs, Ba, La, Ce, Pr,

Nd, Sm, Eu, Dy, Ho, Er, Hf, Re, Pb
Italy, Morocco and Iran [206]

162. Saffron Fe, Ca, Na, Mg, Sr, Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo,
Ni, Pb, Sb, Tl, V, Zn, and U Italy, and Iran [207]

163. Herbs Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn,
Mo, Na, Ni, P, Pb, Sb, Se, Si, Sn, Sr, Ti, V, Zn, Zr China [208]

164. Spices, and Herbs Fe, Zn, Cr, Ni, Cu, Se, Pb, As, K, Ca, Mg, Na, Co, Mn, Hg
and Cd Italy, and Tunisia [209]

165. Spices, and Herbs Na, Mg, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Hg, and Pb Algeria [210]

166. Herbs Zn, Cd, Co, Cr, Cu, Ca, Mg, Mn, Mo, Ni, Pb, Sr, Fe, Na, and K China [211]

167. Tea La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, and Y China [213]

168. Tea

109Ag/107Ag, 138Ba/137Ba, 81Br/79Br, 112Cd/111Cd,
114Cd/112Cd, 114Cd/111Cd, 53Cr/52Cr, 72Ge/70Ge, 74Ge/72Ge,

74Ge/70Ge, 202Hg/200Hg, 7Li/6Li, 96Mo/95Mo, 98Mo/96Mo,
98Mo/95Mo, 60Ni/58Ni, 207Pb/206Pb, 208Pb/207Pb,

208Pb/206Pb, 123Sb/121Sb, 80Se/78Se, 120Sn/118Sn, 88Sr/86Sr,
47Ti/46Ti, and 48Ti/47Ti, 48Ti/46Ti, 205Tl/203Tl, 66Zn/64Zn,

68Zn/66Zn, 68Zn/64Zn, 71Ga/69Ga, 153Eu/151Eu,
154Sm/152Sm, 158Gd/156Gd, 160Gd/158Gd, 160Gd/156Gd,

164Dy/162Dy, 168Er/166Er, 174Yb/172Yb, 176Lu/175Lu

China [214]

169. Tea

109Ag/107Ag, 138Ba/137Ba, 81Br/79Br, 112Cd/111Cd,
114Cd/112Cd, 114Cd/111Cd, 53Cr/52Cr, 72Ge/70Ge, 74Ge/72Ge,

74Ge/70Ge, 202Hg/200Hg, 7Li/6Li, 96Mo/95Mo, 98Mo/96Mo,
98Mo/95Mo, 60Ni/58Ni, 207Pb/206Pb, 208Pb/207Pb,

208Pb/206Pb, 123Sb/121Sb, 80Se/78Se, 120Sn/118Sn, 88Sr/86Sr,
47Ti/46Ti, and 48Ti/47Ti, 48Ti/46Ti, 205Tl/203Tl, 66Zn/64Zn,

68Zn/66Zn, 68Zn/64Zn, 71Ga/69Ga, 153Eu/151Eu,
154Sm/152Sm, 158Gd/156Gd, 160Gd/158Gd, 160Gd/156Gd,

164Dy/162Dy, 168Er/166Er, 174Yb/172Yb, 176Lu/175Lu

China [215]
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Table 2. Cont.

Product Measured Elements Region References

170. Tea V, Cr, Co, Ga, Sr, Mo, Cd, Pb, Na, Al, Fe, Ni, Cu, Zn, Rb,
and Ba China [216]

171. Tea 86 Mineral elements China [217]

172. Tea
Ag, As, Ba, Be, Bi, Br, Cd, Co, Cr, Ge, Hg, Li, Mo, Nb, Ni, Pb, Rb,
Sb, Se, Sn, Sr, Ti, Tl, V, Zn, Cs, Hf, Y, La, Ce, Pr, Nd, Eu, Sm, Gd,

Dy, Ho, Er, Tm, Yb, Lu, Sc, and Tb
China [221]

173. Tea
Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, In, K, Li,
Mg, Mn, Na, Ni, Pb, Rb, Se, Sr, Tl, U, V, Zn, Ce, Dy, Er, Eu, Gd,

Ho, La, Lu, Nd, Pr, Sc, Sm, Tb, Th, Tm, and Y
China [218]

174. Tea Ti, Cr, Co, Ni, Cu, Zn, Rb, Cd, Cs, Ba, Sr, Ca, Mg, and Mn China [219]

175. Tea Al, Ba, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, K, Li, Mn, Ni, P, Pb, Rb, Sr,
Tl, U, Y, and Zn China [220]

5. Conclusions

The present systematic review summarizes the research and development on induc-
tively coupled plasma mass spectrometry (ICP-MS) in geographical origin authentication
of agricultural products, food, and beverages. In addition to multi-elemental analysis, C,
H, O, S, and Sr stable isotope ratio analysis is often utilized complementary, providing
a more complete data source for confirming the research objective. The reader is able to
understand the fundamentals of the ICP-MS technique in a brief tutorial presentation in
Section 2, while Section 3 offers a complete overview of the research about ICP-MS in
authenticity of geographical origin of food. Notwithstanding the fact that, when origin
authentication and traceability of agri-food products is the main issue, ICP-MS has been the
first option, confirming the superiority of the technique in the field. This is, also, confirmed
by the huge number of publications on the topic and even more by the representative works
of Zhou et al. [146] and Quinn et al. [6], who successfully determined the geographical
origin of global honeys and Asian rice samples, respectively. Hence, it can be safely con-
cluded that ICP-MS analysis is mature with the highest possible accuracy and precision in
multi-elemental measurements with low uncertainty. Novel instrumental developments
allow researchers to avoid and/or correct possible drawbacks of the technique including
the interferences (spectroscopic and non-spectroscopic), Plasma Effects, Space-Charge Ef-
fects and Sample Introduction Effects which result in false data. Edible products from
diverse areas have been shown to differentiate on their matrix compositions which affect
the inorganic components of food substances. Exploiting this, ICP-MS is highly beneficial
providing information about the geographical origin of food products due to the variety of
matrices and consequently the inorganic components.
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201. Tokalıoğlu, Ş.; Dokan, F.K.; Köprü, S. ICP-MS multi-element analysis for determining the origin by multivariate analysis of red
pepper flakes from three different regions of Turkey. LWT 2019, 103, 301–307. [CrossRef]

202. Ahmad, R.; Ahmad, N.; Amir, M.; Aljishi, F.; Alamer, M.H.; Al-Shaban, H.R.; Alsadah, Z.A.; Alsultan, B.M.; Aldawood, N.A.;
Chathoth, S.; et al. Quality variation and standardization of black pepper (Piper nigrum): A comparative geographical evaluation
based on instrumental and metabolomics analysis. Biomed. Chromatogr. 2020, 34, e4772. [CrossRef]

203. Hwang, I.M.; Moon, E.W.; Lee, H.-W.; Jamila, N.; Su Kim, K.; Ha, J.-H.; Kim, S.H. Discrimination of Chili Powder Origin
Using Inductively Coupled Plasma–Mass Spectrometry (ICP-MS), Inductively Coupled Plasma–Optical Emission Spectroscopy
(ICP-OES), and Near Infrared (NIR) Spectroscopy. Anal. Lett. 2019, 52, 932–947. [CrossRef]

http://doi.org/10.1021/jf200788p
http://www.ncbi.nlm.nih.gov/pubmed/21838232
http://doi.org/10.1177/00368504211026162
http://www.ncbi.nlm.nih.gov/pubmed/34152891
http://doi.org/10.1080/00032719.2015.1116003
http://doi.org/10.1002/jms.3018
http://doi.org/10.1039/C8AY00331A
http://doi.org/10.1016/j.foodcont.2016.01.013
http://doi.org/10.1016/j.foodres.2020.109212
http://doi.org/10.1016/j.jfca.2019.103277
http://doi.org/10.1080/10408398.2020.1819769
http://www.ncbi.nlm.nih.gov/pubmed/32942899
http://doi.org/10.1016/j.foodcont.2018.08.001
http://doi.org/10.1016/j.foodchem.2014.03.083
http://www.ncbi.nlm.nih.gov/pubmed/25038681
http://doi.org/10.1016/j.foodchem.2016.06.088
http://www.ncbi.nlm.nih.gov/pubmed/27451177
http://doi.org/10.3390/agronomy10040511
http://doi.org/10.5601/jelem.2021.26.2.2143
http://doi.org/10.1021/jf900312p
http://doi.org/10.3390/foods10020349
http://doi.org/10.1039/D2RA02148J
http://doi.org/10.3390/foods9111708
http://doi.org/10.1016/j.foodcont.2021.108689
http://doi.org/10.1007/s10068-017-0051-0
http://www.ncbi.nlm.nih.gov/pubmed/30263553
https://food.ec.europa.eu/safety/agri-food-fraud/eu-coordinated-actions/coordinated-control-plans/herbs-and-spices-2019-2021_en
https://food.ec.europa.eu/safety/agri-food-fraud/eu-coordinated-actions/coordinated-control-plans/herbs-and-spices-2019-2021_en
http://doi.org/10.3390/molecules26237081
http://doi.org/10.1016/j.lwt.2019.01.015
http://doi.org/10.1002/bmc.4772
http://doi.org/10.1080/00032719.2018.1508293


Foods 2022, 11, 3705 33 of 33

204. Poór, P.; Poór, P.; Ördög, A.; Tari, I.; Bátori, Z.; Štajner, D.; Popović, B. Comparison of the mineral content of processed spice
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