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Abstract: In this work, untargeted metabolomics was used to shed light on the impact of different
pasture-based diets on the chemical profile of Sarda sheep milk. The study considered 11 dairy sheep
farms located in Sardinia, and milk samples were collected in 4 different periods, namely January,
March, May, and July 2019, when all sheep had 58, 98, 138, and 178 days in milk, respectively. The
animal diet composition was based on the intake of grazed herbage in natural pasture, hay, and
concentrate. Overall, the combination of two comprehensive databases on food, namely the Milk
Composition Database and Phenol-Explorer, allowed the putative identification of 406 metabolites,
with a significant (p < 0.01) enrichment of several metabolite classes, namely amino acids and peptides,
monosaccharides, fatty acids, phenylacetic acids, benzoic acids, cinnamic acids, and flavonoids. The
multivariate statistical approach based on supervised orthogonal projections to latent structures
(OPLS-DA) allowed us to predict the chemical profile of sheep milk samples as a function of the high
vs no fresh herbage intake, while the prediction model was not significant when considering both
hay and concentrate intake. Among the discriminant markers of the herbage intake, we found five
phenolic metabolites (such as hippuric and coumaric acids), together with lutein and cresol (belonging
to carotenoids and their metabolites). Additionally, a high discriminant power was outlined for lipid
derivatives followed by sugars, amino acids, and peptides. Finally, a pathway analysis revealed that
the herbage intake affected mainly five biochemical pathways in milk, namely galactose metabolism,
phenylalanine metabolism, alpha-linolenic acid metabolism, linoleic acid metabolism, and aromatic
amino acids involved in protein synthesis (namely tyrosine, phenylalanine, and tryptophan).

Keywords: UHPLC-QTOF; foodomics; polyphenols; grazing dairy sheep; permanent pasture

1. Introduction

European sheep milk production represents about 29% of the world production, and
the Italian contribution is about 3%. Sardinia contributed 65% to the total dairy milk
sheep produced in Italy, which is all processed into cheese, with about 30% belonging to
the protected denomination origin (PDO). Additionally, most of the dairy sheep farms
are located in the plains or in the hills (considering altitudes below 500 m). Overall, one
of the most adopted farming systems is represented by the semi-extensive one, where
ewes graze on natural and/or crop pastures, which represent 80% of the dry matter (DM)
annually ingested by the flock. Additionally, the remaining 20% of DM consumption
consists of roughages and concentrates [1]. In the last decades, intensive farming systems
are being largely adopted by using great amounts of concentrate and dried fodder, with
less grazing activity, thus resulting in natural pasture abandonment in the less favored
areas [2,3]. It is well assumed that pasture-based diet significantly increased the contents of
carotenoids, tocopherol, polyunsaturated fatty acids (PUFA), and monounsaturated fatty
acids (MUFA) in dairy products compared to conserved forage-based diets, as recently
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reported by Cabiddu et al. [4]. Actually, results on the effect of natural pasture-based
diet on milk contents are very scanty in particular considering the effect of the botanical
composition and phenological stage of plants on milk composition. Overall, even if it is not
clear, feeding management affects milk composition in ruminant products in a large way
for milk compared to meat, decreasing when moving from cows to sheep and goats [4].

According to the literature [5], sheep milk shows a different composition when com-
pared to cow milk as it is mainly produced by the seasonal breeding of ewes. Instead,
looking at cow milk, cows are recognized to have year-round breeding. Therefore, the
particular season of the year considered represents a driving factor towards the actual
sheep milk composition, since from late winter to middle spring plants are usually at
the vegetative stage, whereas from late spring to summer plants are in the reproduc-
tive/maturity stage. In the last years, several analytical approaches have been used to
evaluate the chemical composition and metabolic profile of sheep’s milk. Among these
latter approaches, metabolomics (both targeted and untargeted) has emerged as an essential
tool to obtain metabolites for prediction of herd health, techno-functionality, and mainly
product authentication [6]. In a previous work, Caboni et al. [7] provided a metabolomics
comparison between sheep’s and goat’s milk because a rising interest in their nutritional
and health-promoting properties. These authors pointed out that sheep’s milk was particu-
larly abundant in arabitol, citric acid, α-ketoglutaric acid, glyceric acid, myo-inositol, and
glycine. Moreover, a LC-QTOF/MS untargeted metabolomics approach was recently used
to evaluate the impact on milk composition following the replacement of soybean hulls
with cocoa husks in the ewes’ diet [8].

However, the reviewed scientific literature suggests that data correlating sheep’s
milk metabolomics profile to a certain feeding system, such as the potential influence
of permanent pasture on milk traits, are still scanty. Therefore, in this work, we used
a comprehensive untargeted mass spectrometry approach to establish those main milk
markers sourced from a pasture-based diet, such as small molecular weight compounds,
secondary metabolites, and fatty acid derivatives. The final aim was to propose significant
biomarkers likely useful to establish future threshold values to test the link between dairy
products (i.e., milk from pasture-based diets) and the territory of origin.

2. Materials and Methods
2.1. Collection of Milk Samples and Main Characteristics of Feeding System

This study was conducted in 2019 and considered 11 dairy sheep farms located in a
hilly central area of Sardinia (i.e., in the region of Màrghine (300–700 m a.s.l.). In each farm,
bulk milk samples (50 mL) from morning session milking were collected on 4 sampling
days over 4 months, namely January, March, May, and July, 2019, when all Sardinian
sheep had 58, 98, 138, and 178 days in milk, respectively. The animals’ estimated diet
composition was indicated as intake of (a) grazed herbage in natural pasture (HeI), (b) hay,
and (c) concentrate. Detailed information regarding the feeding system considered for each
sampling day are reported in Tables 1 and 2. Briefly, dry matter intake at each sampling date
was estimated considering milk yield and composition, animal body weight, amount of hay,
and concentrate supplementation considering the time of access to pasture as also reported
by [4]. Additionally, the herbage intake was estimated by the difference between the
potential intake capacity of the animals at the different sampling dates and the encumbrance
provided by the other feedstuffs fed to the sheep in agreement with [3]. However, more
details about the management factors (e.g., feeding supplementation, pasture botanical
composition, and chemical composition of diets) are reported elsewhere [4].



Foods 2023, 12, 143 3 of 13

Table 1. Chemical composition of pastures and supplements used by farmers in the 4 sampling days.

Pasture Hay Concentrate

Jan March May July SEM Hay SEM Conc HCP Conc. Starch SEM

DM (%) 18.65 19.81 22.63 67.11 3.30 83.13 1.38 88.73 87.21 0.40
Ash (%DM) 12.02 12.62 9.59 7.66 0.48 7.89 0.40 5.46 3.00 0.52
EE (%DM) 3.12 2.92 3.09 2.43 0.15 1.92 0.07 3.19 2.94 0.29
CP (%DM) 16.69 16.49 13.16 5.96 0.95 8.41 0.81 15.57 9.05 0.67
NDF (%DM) 52.36 43.77 48.24 68.18 1.93 65.35 1.42 24.73 15.71 2.15
ADF (%DM) 27.07 21.51 26.51 38.93 1.25 40.42 0.80 10.74 6.00 1.10
ADL (%DM) 3.58 2.14 2.63 4.88 0.27 6.19 0.34 1.34 0.51 0.18
TPC (%DM) 1.18 1.65 1.99 1.22 0.11 0.00 0.00 0.00 0.00 0.00
Starch (%DM) - - - - 0.00 0.00 0.00 38.36 55.2 3.56

DM = dry matter; EE = ether extract; CP = crude protein; NDF = neutral detergent fiber; ADF = acid detergent fiber;
ADL = acid detergent lignin; Conc. HCP = concentrate high in crude protein content; Conc. Starch = concentrate
high starch content; TPC = total phenolic content (as gallic acid equivalent). SEM = standard error of means.

Table 2. Average contribution (%) of different feed types (HeI = fresh herbage intake, Conc. = concentrate)
to the flocks’ diet throughout the milk production season, considering 11 commercial Sarda ewe farms.

Sampling HeI Conc. Hay Standing Hay

January 44.32 31.08 24.85 0.00
March 67.66 22.28 13.68 0.00
May 85.32 16.80 0.98 0.00
July 0.00 19.58 2.97 77.44

2.2. Extraction Step of Milk Metabolites from the Different Collected Samples

The extraction process for untargeted metabolomics profiling was performed as previ-
ously reported by Rocchetti et al. [9], with small modifications. Briefly, a skimming of milk
samples was carried out using a centrifugation step (4500× g for 10 min at 4 ◦C). After-
wards, the 45 skim sheep milk samples were thawed and finally vortex mixed; 2 mL of each
sheep milk sample was extracted with 14 mL of acetonitrile (LC-MS grade, Sigma-Aldrich,
Madison, CA, USA) acidified with 1% formic acid. Following a vortexing step for 2 min,
samples were finally ultrasonic processed (DU-32 ARGOLab, Milan, Italy) for 5 min at
maximum power (120 Watt) to promote the extraction of metabolites. Thereafter, samples
were centrifuged for 15 min (at 12,000× g, considering cold conditions at 4 ◦C) to promote
the precipitation of large biomolecules (such as proteins). Finally, the supernatants were
filtered using a 0.22 µm cellulose syringe filters. Samples were collected in amber vials
until further instrumental analysis based on UHPLC-QTOF mass spectrometry.

2.3. UHPLC-QTOF Mass Spectrometry Approach to Profile Milk Metabolites

The metabolomics profiling was performed by exploiting a chromatographic system
(Agilent 1200 series, from Agilent Technologies, Santa Clara, CA, USA) hyphenated with a
QTOF mass spectrometer (Agilent 6550 iFunnel, from Agilent Technologies, Santa Clara,
CA, USA) [9]. The sheep milk extracts were analyzed under positive polarity (ESI+), in
full scan mode, considering an m/z range of 100–1200. Additionally, the acquisition rate
consisted of 0.8 spectra/s, considering an extended dynamic range mode (nominal mass
resolution = 30,000 FWHM). The chromatographic gradient consisted of the exploitation
of water/acetonitrile (both LC-MS grade, from Sigma-Aldrich, Milan, Italy) moving from
6% up to 94% acetonitrile in 35 min. Furthermore, 0.1% formic acid was used as phase
modifier and added to both water and acetonitrile. The Agilent Zorbax Eclipse Plus
C18 column (50 × 2.1 mm, 1.8 µm) was selected for the chromatographic separation.
Regarding the electrospray conditions followed, they are reported elsewhere [10]. The
injection volume was 6 µL (n = 3), and the sequence injection was randomized to avoid bias
during the sample running. Additionally, quality control samples (QCs) were prepared
by pooling a small aliquot of extract from each milk sample (20 µL). These QCs were
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analyzed adopting a typical data-dependent MS/MS mode, selecting 12 precursor ions
per cycle (1 Hz, 50–1200 m/z, positive polarity, active exclusion after 2 spectra), and
considering typical collision energies (i.e., 10, 20, and 40 eV), using the software MS-Dial and
exploiting the information reported on the database MoNA (Mass Bank of North America,
https://massbank.us/, accessed on 13 September 2022). Additionally, a representative
chromatogram (TIC) of the pooled QC sample together with those metabolites confirmed
by MSMS can be found in Table S1.

Following the instrumental analysis, the software Agilent Profinder B.06 (Agilent
Technologies) was used for the data elaboration and identifications step. The identification
was carried out considering several parameters, such as the monoisotopic mass information,
the isotopic profile (both spacing and ratio) of each milk metabolite, and the selection of a
5 ppm tolerance for a better mass accuracy achievement. Therefore, under our experimental
conditions, a Level 2 of identification was achieved, according to the standard conditions
reported by COSMOS Metabolomics Standards Initiative [11]. The mass features were
identified against two comprehensive databases, namely Milk Composition Database
(MCDB) [12] and the database Phenol-Explorer 3.6 (http://phenol-explorer.eu/, accessed
on 13 September 2022). The databases used allowed us to consider the most important
milk metabolites to study the impact of different feeding conditions. Regarding data
pre-processing and data filtering, we used the software Agilent Profinder B.06; overall,
compounds were retained when passing mass accuracy (5 ppm) and frequency of detection
(within 100% of replications in at least one sample grouping) thresholds. Therefore, as
reported in a previous work by Foroutan et al. [12], we used the term “metabolite species”
referring to milk metabolites with non-unique chemical formulas or masses (e.g., lipids
and their isomeric structures). Finally, the term “unique compound structures” was used
to refer to those compounds having a unique chemical formula or mass.

2.4. Multivariate Statistical Data Analysis

The multivariate statistical data analysis was carried out exploiting two different
software applications, namely MetaboAnalyst 5.0 [13] and SIMCA 13 (Umetrics, Malmo,
Sweden). The step-by-step workflow of multivariate statistical data analysis is reported
in detail in our previous work [14]. Overall, following a data normalization step, we
used supervised multivariate statistics based on orthogonal projections to latent structures
discriminant analysis (OPLS-DA) to evaluate the differences and analogies induced by the
feeding systems under investigation. To this aim, the discriminant power of each milk
metabolite annotated was evaluated through the application of a variable selection method,
also known as VIP (i.e., variables importance in projection), selecting a typical cut-off range
for discrimination (VIP score) higher than 0.8. Additionally, the accumulation trend of
those discriminant VIP compounds was evaluated through the calculation of fold-change
values based on fold-change analysis (FC, cut-off value = 2) and the analysis of variance
(ANOVA, p < 0.05; post hoc test: Tukey HSD; multiple testing correction: Bonferroni
FWER). In addition, the software MetaboAnalyst 5.0 was used to perform an enrichment
analysis that was used to inspect metabolomics-dataset in order to check what chemical
classes were actually the most represented within the features annotated. Finally, the most
significant metabolic pathways underlined by VIP discriminant metabolites were evaluated
by using the online software MetaboAnalyst (using a specific pathway library: Kyoto
Encyclopedia of Genes and Genomes, KEGG, https://www.genome.jp/kegg/, accessed
on 13 September 2022).

3. Results and Discussion
3.1. Untargeted Screening of Sheep Milk Samples by UHPLC-QTOF-MS

In this study, the untargeted screening based on UHPLC-QTOF mass spectrometric
analysis of ewes’ milk allowed us to identify 406 compounds according to a level 2 of
confidence in annotation. A comprehensive list of all the metabolites is reported in Table S1,
together with their individual raw abundance values and mass spectra collected for each

https://massbank.us/
http://phenol-explorer.eu/
https://www.genome.jp/kegg/
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sample. Additionally, a representative chromatogram (TIC) of the pooled QC sample
together with those metabolites confirmed by MSMS against the database MoNA can
be found in Table S1. Among those metabolites confirmed by the MSMS strategy, we
found 19 compounds mainly belonging to amino acids (such as tyrosine), polyphenols
(such as hippuric acid and other phase-II metabolites), fatty acid derivatives (such as 2-
methylbutyroylcarnitine), and nucleobases (such as uracil and guanine) (Table S1). As the
next step, an enrichment analysis was performed to evaluate the most represented classes
of metabolites in the metabolomics dataset. The output obtained of is reported as Figure 1.
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Figure 1. Enriched chemical classes considering sheep milk metabolites annotated by untargeted
UHPLC-ESI-QTOF-MS. Abbreviations: tricarboxylic acids (TCA).

As shown in the figure, the most significantly enriched class of metabolites belonged
to amino acids and peptides, followed by monosaccharides, fatty acids and conjugates,
phenylacetic acids, benzoic acids, cinnamic acids, and flavonoids. The wide number
of features annotated using our metabolomics workflow is consistent with the overall
complexity of the food matrix (i.e., milk) under investigation. The chemical composition of
sheep milk can be significantly affected by numerous production factors representing the
farming system, such as genotype, method of milking, stage and number of lactations, and
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farming methods (including the feeding system followed by ewes) [15,16]. Actually, the
link between all of these aspects can be really difficult and complex to fully evaluate [17],
but among all the factors, the feeding and seasonal breeding of ewes play a major role
in modulating the chemical composition of milk. Haenlein and Wendorff [18] reported
that the chemical composition of sheep milk is largely affected by seasonal breeding of
ewes. Therefore, the season of the year represents for sure a driving factor towards the
definition of the actual sheep milk composition. According to the literature, sheep milk
contains 18.3% total solids, 6.0% fat, 12.3% non-fat solids, 4.9% lactose, 0.94% ash, and
5.2% protein [5]. Interestingly, characteristic of sheep milk are the higher concentrations
of butyric acid, conjugated linoleic acid (CLA), and omega-3 fatty acid content when
compared with other ruminant milks [19]. Considering the difference in terms of fatty
acid profile, the effects of feeding management [20] and breeding [21] are well recognized.
In particular, pasture-based diets increase PUFA contents such as linoleic and linolenic
acids in cow and small ruminant milk products. The presence ofω-3 andω-6 FA in milk
fat together with other less common FA (such as linoleic acid isomers), is gaining a great
interest due to the consumer demand for a healthy diet [22]. However, it is important
to consider that a greatest seasonal difference can be measured in sheep milk CLA, e.g.,
1.28% in summer and 0.54% at the end of the winter period [5]. In addition, season affects
milk fatty acid profiles as a consequence of forage species and their phenological stage, as
previously reported by Cabiddu et al. [22]; in fact, regarding the milk CLA content in sheep
milk, a more significant effect was found in legumes than in grass when plants turn from
the vegetative (winter period) to the reproductive stage (late spring period). Therefore,
looking at the chemical composition revealed by untargeted metabolomics (Table S1), our
findings generally agree with those reported in the scientific literature, highlighting a great
abundance of linoleic acid isomers, amino acids, and peptides of functional interest. In
this regard, Barłowska et al. [23] showed that goat and sheep milk are characterized by
the best composition of exogenous amino acids. Therefore, these milk samples fully cover
the requirement for all essential amino acids. Accordingly, in this work, we successfully
annotated several essential amino acids, such as valine, leucine, isoleucine, methionine,
and phenylalanine (Table S1). Another important factor that has a crucial role on milk
composition is represented by the inclusion of phenolic compounds in the diet. Overall, the
transfer of these compounds in animal tissues increases the quality of livestock products
and potentially improves the oxidative stability of milk and cheese [24]. As products of
plant secondary metabolism, polyphenols can naturally occur in the diet of herbivorous
farm animals. In this regard, a higher content of phenolics has been previously detected
in sheep milk as a consequence of the administration of a pasture-based diet compared
with concentrate- and silage-based diets [25]. Dietary polyphenols can affect milk fatty
acid profiles, reducing the growth of some strains involved in the biohydrogenation of
polyunsaturated fatty acids when considering sheep ruminal metabolism [26]. Additionally,
as extensively reviewed by Zhu et al. [27], relatively few comprehensive metabolomics
studies on milk from smaller ruminants, such as goats and sheep, have been published so
far; therefore, our findings support the utilization of untargeted metabolomics to shed light
on the chemical differences triggered by different typical ewe feeding regimens. The level
of such bioactive compounds detected could be explained by the content of legumes and
forbs plants species in the pasture, which is also in agreement with Mariaca et al. [28].

3.2. Discrimination of Milk Samples as a Function of the Different Feeding Strategies (Herbage,
Hay, and Concentrate Intake)

To investigate the correlation between milk metabolomics profile and animal diet com-
position, a multivariate supervised orthogonal projection to latent structures discriminant
analysis (OPLS-DA) was carried out considering as class discriminant parameters the dif-
ferent feeding systems, i.e., based on (a) herbage intake, (b) hay intake, and (c) concentrate
intake. Firstly, multivariate statistics based on supervised OPLS-DA prediction models
were used to evaluate the impact of hay- and concentrate-based feeding strategies on
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the metabolomics profile of sheep milk. However, as reported in Table S1, although a
separation trend could be observed, both models were characterized by a non-significant
prediction ability (Q2 < 0.5). These results agree with a previous paper which considered
the effect of hay or concentrate supplementation on macro- and micro-components in
milk [4]. Therefore, considering the scarce prediction ability, no discriminant metabolites
were extrapolated from either model.

As the next step, we focused attention on the ability of the untargeted metabolomics-
based approach to provide potential biomarker compounds able to highlight the effect
of pasture forages on the sheep milk metabolome. In particular, the milk samples were
classified according to the average contribution of fresh herbage in the daily diet, being
high (High-HeI), medium (Medium-HeI), and no-herbage intake (No-HeI). As can be
observed from the OPLS-DA score plot in Figure 2, the orthogonal latent vector was
effective in highlighting the effect of herbage intake on the milk metabolomics profile, thus
providing a clear grouping and separation trend related to the classification criterion chosen.
Additionally, this OPLS-DA model showed high goodness of fit (R2Y (cum) = 0.806) and
prediction ability (Q2 = 0.510).
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Then, to provide the most discriminant compounds related to the herbage intake (HeI),
the variable importance in projection (VIP) method was associated with a fold-change
(FC) analysis for the comparison “High-HeI vs. No-HeI”. This comparison resulted more
informative about the potential impact of pasture-based diets on the chemical profile of
sheep milk, establishing the main biomarkers. Overall, 37 compounds were found to pos-
sess the highest discriminant potential, having a VIP score value >1 and these markers are
reported in Table 3, grouped in chemical classes (according to the classification reported on
the comprehensive Milk Composition Database). Additionally, one-way ANOVA showed
p-values < 0.05 for 24 out of 37 compounds (Table 3). From the VIP analysis, we found that
a diet rich in herbage affected the levels of several compounds, mainly ascribed to lipids,
sugars, and other lower-molecular-weight derivatives. Interestingly, the lipids detected
were characterized by a general up-accumulation when considering the High-HeI vs. No-
HeI comparison, thus indicating that the pasture-based diet had a particular incidence in
the fatty acid profile of ewes’ milk. In particular, the lipid compounds that were found to
be associated with high LogFC score values were mainly diacylglycerols and polyunsat-
urated fatty acids (PUFA). These results agree with the reviewed scientific literature [18],
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highlighting the positive effect of pasture-based diets on the milk PUFA content because
of the higher content of fatty acid precursors in fresh herbage [29]. An important role
in increasing milk PUFA content comes from plant secondary metabolites, which occur
in greater number compared to crop pasture. In Table 1, linolenic acid and polyphenols
appear as discriminant markers between pasture-based diets and the conserved forage
group, thus confirming our previous results found at the farm level [4].

In our experimental conditions, we found two main discriminant PUFA compounds,
such as linolenic acid and stearidonic acid. Since linolenic acid is the main fatty acid which
occurs in fresh herbage (about 80% of total fatty acids) and which is mainly biohydrogenated
by ruminal bacteria to biohydrogenated intermediates such as CLA and stearic acid [29].
However, fractions of these molecules are detected in ewe tissues and milk, reflecting their
enrichment in the ruminant’s diet. In this regard, pasture supplementation of animal diet
has been reported as a sustainable dietary strategy able to increase the content of n-3 fatty
acids, with positive effects on human health [30]. Other important accumulation trends
were pointed out considering the amino acid composition detected by the VIP analysis.
Amino acids showed a high average LogFC value (i.e., average LogFC value = 4.92), mainly
characterizing pasture-based ewes’ milk samples. These results were consistent to those
reported by other studies [31,32], which found more products of amino acid metabolism
in the resultant milk produced by herbage-based diets characterized by a high protein-to-
digestible-carbohydrate ratio. As concerns the discriminant VIP compounds, phenylalanine,
L-tyrosine, the dimer proline–isoleucine, and taurine showed strong up-accumulation
trends. Tyrosine has already been detected [33] as biomarker of pasture-derived milk, and
it is also recognized as one of the most abundant free amino acids in raw sheep milk [34].
Regarding the other amino acid compounds, it is complicated to find stronger correlations
with the feeding regimen followed by the ewes. For example, taurine, highlighted for
its evident up-regulation, derived directly from sulfur-amino acid derivatives and has
important function in humans as an important nutrient for the newborn [35]. All these
results partially agree with Cabiddu et al. [36], who found a small relationship between
milk total phytanic content and daily fresh herbage contribution to daily diet intake.

Moreover, pasture-based diets also have a greater influence on phenolic composition
than concentrate and conserved forage-based diets. Our findings revealed the presence of
important phenolic acids and carotenoids such as hippuric acid, coumaric acid, lutein, and
cresol in milk as a function of pasture-enriched diets. As previously observed [4,37], feeding
livestock with pasture-based systems enhances the oxidative stability of ewes ‘milk with
higher levels of lutein and other milk carotenoids (with respect to conserved forage-based
diets) according to the high levels of carotenoids in fresh herbage [38]. In addition, p-cresol
appears a crucial metabolite related to milk flavor attributes, and it is produced from the
rumen metabolism of isoflavones derived from pastures. Interestingly, a previous work by
Faulker et al. [39] indicated p-cresol (a degradation product of β-carotene) as a potential
biomarker for bovine milk derived from pasture. These authors also associated p-cresol
with the deamination and decarboxylation of certain amino acids, such as tryptophan and
tyrosine, due to higher levels of available protein in the forage-based diet. Therefore, our
findings also support the utilization of p-cresol as discriminant marker of the pasture-based
regimen when considering sheep milk. It is of interest that p-cresol is also an intermediate
of polyphenol oxidase (PPO) activity, and, as reported by Cabiddu et al. [40], the high
biodiversity rate of pasture in Sardinia is also characterized by high levels of PPO activity,
so probably the reason for an increase in milk p-cresol could be due to the combination
effect of PPO and lutein content in fresh forages. Additionally, the high levels detected
for hippuric acid (LogFC = 1.30) agree with a higher herbage intake, considering that this
phenolic metabolite (derived from a conjugation reaction between benzoic acid and glycine)
has been widely detected in different animal biofluids and related to pasture-based feeding
regimens [41].
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Table 3. VIP discriminant compounds (both down- and up-accumulated) in milk samples as a function
of the fresh herbage intake (HeI vs. no-HeI). * = at least 2 isomeric structures (i.e., metabolite species).
FC = fold change.

Class Discriminant Marker
(OPLS-DA)

VIP Score
(OPLS-DA)

Log2FC
(HeI vs. No-HeI)

p-Value
(ANOVA)

Lipids and derivatives 20:5 Cholesteryl ester 1.37 ± 1.06 −3.28 0.0189
Stearidonic acid 1.10 ± 0.48 2.32 p > 0.05

TG(4:0/15:0/16:0) 1.47 ± 0.95 1.65 0.0136
Alpha-Linolenic acid * 1.43 ± 1.13 2.42 p > 0.05

TG(4:0/10:0/14:0) 1.21 ± 0.36 4.86 p > 0.05
DG(12:0/20:2(11Z,14Z)/0:0) * 1.13 ± 1.02 11.71 0.0252

DG(12:0/20:1(11Z)/0:0) * 1.19 ± 0.52 12.16 0.0389
DG(14:0/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) 1.48 ± 1.08 12.84 0.0385

Hydroxybutyrylcarnitine 1.24 ± 0.80 13.19 0.0282
Vitamin K1 1.65 ± 0.67 14.88 0.0028

DG(14:0/20:1(11Z)/0:0) * 1.23 ± 0.99 15.01 0.0476
LogFC (avg) = 7.98

Aminoacids and derivatives N-hydroxy-L-tyrosine 1.65 ± 1.02 −1.30 p > 0.05
Arg-Thr-Lys-Arg 1.34 ± 0.89 −1.20 0.0297

2-Aminooctanoic acid 1.22 ± 1.09 −0.75 p > 0.05
2,4-Diaminobutyric acid 1.52 ± 1.18 −0.52 p > 0.05

Taurine 1.07 ± 0.63 9.15 p > 0.05
L-Tyrosine 1.31 ± 0.31 10.76 0.0095

Pro-Ile 1.06 ± 0.62 11.13 p > 0.05
L-Phenylalanine 1.67 ± 1.11 12.07 0.0191

LogFC (avg) = 4.92
Sugars and derivatives D-Glucose * 1.63 ± 0.97 −1.62 p > 0.05

Threonic acid 1.76 ± 0.91 −0.94 0.0013
Glyceric acid 1.23 ± 0.95 −0.47 0.0136

Alpha-lactose * 1.46 ± 0.79 0.41 0.0266
Galactitol * 1.17 ± 0.93 11.69 0.0201

LogFC (avg) = 1.81
Phenolics and metabolites 4-aminobenzoic acid 1.83 ± 1.23 −0.85 p > 0.05

Hippuric acid 1.69 ± 0.96 1.30 p > 0.05
5-(3′,5′-dihydroxyphenyl)-

gamma-valerolactone 3-O-glucuronide 1.36 ± 0.77 9.60 0.0292

Coumaric acid * 1.41 ± 0.81 10.33 p > 0.050
3,4,5,4′-Tetramethoxystilbene 1.16 ± 1.01 16.24 0.0498

LogFC (avg) = 7.32
Carotenoids and metabolites Lutein * 1.59 ± 0.95 13.19 0.0088

Cresol * 1.59 ± 0.61 2.23 0.0227
LogFC (avg) = 7.71

Other compounds 3-Methylfuran 1.45 ± 0.84 −1.61 p > 0.05
Hypoxanthine 1.72 ± 0.82 −0.93 0.0059

Inosine 1.80 ± 0.57 −0.76 0.0010
Uracil 1.93 ± 0.84 2.76 0.0006

Benzyl methyl sulfide 1.10 ± 1.05 4.58 0.0427
5-Methoxyindoleacetate 1.86 ± 0.77 11.59 0.0058

LogFC (avg) = 2.60

3.3. Pathway Analysis of Sheep Milk Samples According to the Herbage Intake

To confirm the impact of the herbage intake on the milk metabolome, a pathway
analysis was built considering the VIP-discriminating metabolites of the comparison High-
HeI vs. No-HeI samples, and the obtained output is reported in Figure 3. As a general
consideration, several metabolic pathways were highlighted as extremely significant and
impacting at metabolomics level, involving mainly galactose metabolism, linoleic acid
metabolism, and phenylalanine, tyrosine, and tryptophan metabolism. Interestingly, galac-
tose metabolism was annotated with a huge Log p-value (i.e., 3.5), likely affected by the
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presence of galactitol, a breakdown product of lactose degradation. In our experimental
conditions, both galactitol and lactose showed up-accumulation trends, and a recent work
by Angeles-Hernandez et al. [42] revealed that high-concentrate-based diets are richer in
lactose than those fed with high-forage strategy. In addition, linoleic acid and alpha-linoleic
acid metabolism showed a crucial effect on the discrimination of sheep milk samples
according to the different level of herbage intake. As already reported in this work, graz-
ing has an important impact on n-3 PUFA content, especially on the high distribution
of alpha-linolenic acid. Interestingly, Jin et al. [43] showed that concentrate-based diets
were characterized by a large amount of linoleic acid derivatives and their presence has
been proposed as possible marker of indoor feeding system. In addition, Lock et al. [44]
demonstrated the efficacy of conjugated linoleic acid (CLA) supplements in dairy cow diets
as potent inhibitors of milk fat synthesis. Looking at our findings, milk samples with a low
herbage intake were characterized by a lower amount of PUFA and glycerophospholipids
when compared with milk samples from higher grass-based intakes. This trend partially
agreed with previous findings reported in literature for cow’s milk; however, further stud-
ies are needed to better evaluate the impact of linoleic acid metabolism on lipid synthesis in
sheep rumen. Regarding the other affected metabolomics pathways, the up-accumulation
of certain amino-acid-related biosynthetic routes, such as those involving tyrosine and
tryptophan, are consistent with the increase in some discriminant VIP marker compounds,
such as the previously cited p-cresol (a VIP marker of the herbage intake) and to the higher
protein levels associated with forage-based diets.
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Overall, this untargeted metabolomics-based approach demonstrated a great ability to
investigate possible correlations between milk chemical composition and sheep feeding
regimens based on permanent grasslands. Our findings revealed the influence of grazing
herbage intake on fatty acid composition but also in the amino acid and polyphenolic



Foods 2023, 12, 143 11 of 13

profiles. Milk from grazing sheep has a specific influence on n-3 PUFA content associated
with other bioactive properties, such as carotenoids and polyphenols.

4. Conclusions

A comprehensive UHPLC-ESI-QTOF allowed us to highlight the impact of different
pasture-based diets on the chemical profile of Sarda sheep milk, considering animal diets
based on the intake of grazed herbage in natural pasture, hay, and concentrate. Several com-
prehensive databases on food, such as the Milk Composition Database and Phenol-Explorer,
allowed the identification of 406 metabolites, with amino acids and peptides, monosaccha-
rides, fatty acids, phenylacetic acids, benzoic acids, cinnamic acids, and flavonoids being
the most significantly enriched. A multivariate statistical approach based on supervised
OPLS-DA successfully predict the chemical profile of sheep milk as function of the high vs.
no fresh herbage intake, while recording a non-significant prediction when considering
both hay and concentrate intake. The most discriminant marker compounds of the herbage
intake were 5 phenolic metabolites, followed by carotenoids. In addition, lipid derivatives
followed by sugars, amino acids, and peptides showed a great discrimination potential.
Finally, five biochemical pathways in milk were found to be affected by the inclusion of
fresh herbage, such as galactose metabolism, phenylalanine metabolism, alpha-linolenic
acid metabolism, linoleic acid metabolism, and aromatic amino acids (tyrosine, phenylala-
nine, and tryptophan). Taken together, our findings highlight the suitability of untargeted
metabolomics as powerful tool in milk authenticity studies, thus supporting what is stated
by similar studies already available in the scientific literature [45,46]. These results also
need to be implemented with a large database in the next future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods12010143/s1, Table S1: Annotated metabolites by using
an untargeted UHPLC-ESI-QTOF mass spectrometry approach considering the different sheep milk
samples under investigation. Each metabolite is reported with the corresponding abundance values
and mass spectrum.
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