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Abstract: Agroindustrial activities generate various residues or byproducts which are inefficiently
utilized, impacting the environment and increasing production costs. These byproducts contain
significant amounts of bioactive compounds, including dietary fiber with associated phenolic com-
pounds, known as antioxidant dietary fiber (ADF). Phenolic compounds are related to the prevention
of diseases related to oxidative stress, such as neurodegenerative and cardiovascular diseases. The
mechanism of ADF depends on its chemical structure and the interactions between the dietary fiber
and associated phenolic compounds. This work describes ADF, the main byproducts considered
sources of ADF, its mechanisms of action, and its potential use in the formulation of foods destined
for human consumption. ADF responds to the demand for low-cost, functional ingredients with
great health benefits. A higher intake of antioxidant dietary fiber contributes to reducing the risk
of diseases such as type II diabetes, colon cancer, obesity, and kidney stones, and has bile-acid
retention–excretion, gastrointestinal laxative, hypoglycemic, hypocholesterolemic, prebiotic, and
cardioprotective effects. ADF is a functional, sustainable, and profitable ingredient with different
applications in agroindustry; its use can improve the technofunctional and nutritional properties of
food, helping to close the cycle following the premise of the circular economy.
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1. Introduction

The fruit and vegetable processing industries generate large amounts of waste [1],
which can have different uses in the food industry [2] as functional ingredients [3]. These
byproducts are an abundant and economical source of valuable compounds such as
polyphenols, vitamins, carotenoids, and dietary fiber [1,3,4]. Dietary fiber is a component
of plant cell walls, responsible for providing structural support to fruits and vegetables.
Chemically, DF is constituted of various carbohydrate polymers, including homopolysac-
charides, heteropolysaccharides, lignans, oligosaccharides, resistant starches, gums, and
mucilages [5]. Some byproducts of tropical fruit processing identified as potential sources
of antioxidant dietary fiber are mango (Mangifera indica L.), avocado (Persea americana Mill.),
pineapple (Ananas comosus L.), papaya (Carica papaya L.), guava (Psidium guajava L.), grape
pomace [6], and carrot [7], among others. Some of these byproducts even have higher
concentrations of dietary fiber and polyphenols than some cereals [4,8]. These fibers are
characterized by the fact that endogenous enzymes do not hydrolyze them in the human
small intestine and their consumption is associated with beneficial health effects, includ-
ing regulation of intestinal transit and prevention or treatment of cancer, diabetes, and
cardiovascular disease [3,9]. DF can regulate glucose and cholesterol levels [3].
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Research has shown that fruit and vegetable processing byproducts such as peels,
seeds, and pomace are excellent sources of antioxidant dietary fiber, with nutritional and
physicochemical properties that are important in the food industry [10]. In accordance
with the above, the general objective of this review article is to describe the most important
aspects of antioxidant dietary fiber, the main byproducts considered to be sources of ADF,
and ADF’s mechanisms of action and use as a functional ingredient in foods.

2. Antioxidant Dietary Fiber (ADF)

Antioxidant dietary fiber can be defined as a dietary fiber concentrate that contains
significant amounts of natural antioxidants associated with the fiber matrix. These antioxi-
dants are mainly phenolic compounds [11,12]. This term was first introduced to describe a
natural product found in grape pomace that is rich in dietary fiber and antioxidants [12].
For a material to be considered an antioxidant dietary fiber it must meet the following
conditions: (i) The dietary fiber content must be greater than 50% on a dry basis, measured
via the AOAC method (AOAC enzymatic–gravimetric method); (ii) 1 g of the antioxidant
dietary fiber must have the capacity to inhibit lipid oxidation equivalent to at least 200 mg of
vitamin E (measured via the thiocyanate procedure) and a free-radical-scavenging capacity
equivalent to at least 50 mg of vitamin E (measured via the DPPH method); (iii) the antioxi-
dant capacity must be specific to the material and must not be due to other compounds
added or released because of previous enzymatic chemical treatments [3,12].

3. Phenolic Compounds Associated with Dietary Fiber

Antioxidant dietary fiber is characterized by having associated bioactive compounds [4,12]
that are mainly polymeric polyphenols and low-molecular-weight polyphenols [13]. Phe-
nolic compounds are secondary metabolites of plant origin. They are part of the plant’s
protection mechanisms against environmental factors and diseases. Their presence con-
tributes to the functional properties and influences the color, smell, and flavor of multiple
plants, vegetables, and fruits [3]. These are bound to the dietary fiber of the cell wall [4,12]
through hydrophobic aromatic rings and hydrophilic hydroxyl groups [8]. This association
between dietary fiber and phenolic compounds through ionic, covalent, or hydrogen bonds
is key to the recognition of potential antioxidant dietary fibers. This makes it possible to
associate the benefits of antioxidants with the properties of fiber [6,12,14]. The interaction
between polyphenols and dietary fiber regulates the release of bioactive compounds from
their matrices and their absorption in the gastrointestinal tract. Additionally, these interac-
tions depend on the type of antioxidant and its structure, size, and number of functional
groups [8]. Depending on their structure, antioxidants can have one or more phenolic
groups. More than 8000 phenolic compounds have been described. They are mainly classi-
fied into flavonoids and nonflavonoids [5]. Environmental factors such as pH, temperature,
and ionic strength can influence the polyphenol content in plant cell walls [8].

These polyphenols can be released during digestion (making them available for ab-
sorption) or released in the colon after fiber fermentation, where they can contribute to
benefit intestinal health or be excreted in the feces [8]. Phenolic content can be used as an
important indicator of antioxidant capacity and can be used as a preliminary screen for any
product when it is intended to be used as a natural source of antioxidants in functional
foods [15,16]. Some studies have reported a positive correlation between the total phenolic
content and antioxidant capacity of fruit extracts. According to Martinez et al. [16], exotic
fruit fibers can be considered good sources of natural compounds with significant antioxi-
dant activity. Table 1 presents the contents of total dietary fiber and phenolic compounds
in some of the most important byproducts considered sources of ADF.
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Table 1. Total dietary fiber (TDF) and total phenol content (TPC) of agroindustrial byproducts
considered sources of antioxidant dietary fiber.

Source Total Dietary Fiber
(g/100 g)

Total Phenol Content (TPC)
(mg GAE/g) 1 Reference

Avocado

Pulp (1.4–3); (4.10)
Leaf
Peel (1.29–54.63)
Seed (2.19–4.24)

Pulp (0.61 to 16.81); (0.94–32.67); (4.10)
Leaf (17 to 43.82)
Peel (1.81 to 227.90); (1.58–172.18); (4.3–172.2); (6.79)
Seed (1.55 to 292); (0.94–924.64); (5.7–88.2); (292); (7.04)

[17–21]

Mango DFC 2 (70) DFC (546) *; (283) ** [16]

Papaya Pulp DFC (59.8)
Peel DFC (53.8)

Pulp DFC (0.47)
Peel DFC (0.99) [22]

Pineapple DFC (75.8); (51) DFC (129); (1.49); (9.1); (2.6–51.1) [16,23–25]

Guava DFC (69.1); (43.21)
DFC (39) **; (2.43); (44.04)
Peel (77.9)
Pulp (26.2)

[16,26–28]

Orange Peel (71.62); (69)

Peel (40.67); (9.61–31.62)
Leaf (12.54–44.41)
NOP-IDF 3 (1.47–6.982)
BP (0.84–6.98)

[29–31]

Passionfruit Seed DFC (81.5); (85.9) 41.2 [10,16,24]
1 GAE: gallic acid equivalents. 2 DFC: dietary fiber concentrate (mango coproducts were mainly peel and pulp;
pineapple coproducts were mainly peel and heart; guava and passionfruit coproducts were mainly peel, pulp,
and seeds). 3 NOP-IDF: insoluble dietary fiber of navel orange peel. BP: bound polyphenols. * methanol: acetone
extractions; ** ethanol extraction.

Antioxidant dietary fiber is characterized by higher levels of TPC compared to aqueous
extracts of other food byproducts; examples include the residues of juice production (apple,
46 mg GAE/g; pear, 13 mg GAE/g; and red beet, 92 mg GAE/g); waste from the canning
industry (artichoke, 43 mg GAE/g; asparagus, 89 mg GAE/g; and tomato, 12 mg GAE/g);
crop residues (broccoli, 30 mg GAE/g; cucumber, 18 mg GAE/g; escarole, 34 mg GAE/g;
and chicory, 14 mg GAE/g); and minor crops (goldenrod, 112 mg GAE/g and hay, 63 mg
GAE/g) [16,32].

Table 2 shows the antioxidant activities reported for byproducts and dietary fiber con-
centrates. The types of phenolic compounds and their concentrations in the fruit and its
byproducts depend on several factors: variety, maturity stage, and harvest season; environ-
mental factors (soil and climate); and extraction method and type of solvent used [16,22].

Table 2. Antioxidant activities of fruit pulp, byproducts, and dietary fiber concentrates (DFCs).

Source ABTS
(µmol TE/g)

FRAP
(µmol TE/g)

DPPH
(µmol TE/g) Reference

Avocado Peel (112–791.5)
Seed (91–725); (173.3)

Peel (23100)
Seed (9500)

Peel (38–310)
Seed (128.3–410.7) [17,21]

Papaya Pulp (10.2)
Peel (25)

Pulp (12)
Peel (54.86) [22]

Guava (4.7)
(10.96)
Peel (392)
Pulp (233)

[27,28]

Orange BP (960–4100) BP (12.96–30.97) [31]
BP: bound polyphenols.
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4. Byproducts as Sources of Antioxidant Dietary Fiber

Traditionally, byproducts from the milling of cereals such as wheat, corn, sorghum,
and other cereals have been used as sources of fiber [33]. However, dietary fiber from fruit
and vegetable byproducts has the advantage of containing a more significant portion of
soluble dietary fiber (33%) compared to that found in cereals (7%). According to dietary
fiber requirements, it is essential that a fiber source has a balance between soluble and
insoluble fiber fractions, i.e., the water-soluble fraction should represent between 30 and
50% of the total dietary fiber [34].

Recent research has focused on obtaining antioxidant dietary fiber from plant food
byproducts [11]. Agroindustrial byproducts are of interest since they are inexpensive
and available in large quantities [35]. These byproducts are sources of dietary fiber and
other bioactive compounds, including vitamins and phenolic compounds [4]. Dietary fiber
obtained from fruit and vegetable byproducts (peels, seeds, and pomace) has excellent
physicochemical properties. This type of fiber plays an important role in the food and phar-
maceutical industries, so this type of fiber extraction has an assured market potential [36].

The processing of ADF can affect the content of fiber and bioactive compounds. High
temperatures can cause partial degradation of some components of soluble fiber [35,37].
Thermal processing (even for short periods) can decrease the total phenolic content and
reduce the antioxidant activity of plant materials [35,38]. This could explain the differences
that different studies have reported for the same residues. The following residues have
been studied as possible sources of ADF.

4.1. Avocado

Avocado byproducts (remains of pulp, peel, seed, and leaves) have been considered
as sources of bioactive compounds due to their polyphenol contents [17] (hydroxycinnamic
acids, hydroxy-benzoic acids, flavonoids, and proanthocyanins), as well as their contents
of acetogenins, phytosterols, carotenoids, and alkaloids [18]. Polyphenols are distributed
in the pulp, peel, seed, and leaves, while carotenoids and tocopherols are mainly found
in the avocado pulp [18]. The peel and seed are also sources of fermentable sugars and
fiber [39]. Natural extracts of the seed are rich in phenols with antioxidant properties [2],
with higher levels than those reported for the pulp and for common synthetic antioxidants
such as Trolox [39]. Phytochemical studies on avocado seeds have identified compounds
such as saponins, phytosterols, triterpenes, fatty acids, furanoic acids, flavonol dimers,
and proanthocyanidins. Protocatechuic acid was the main phenolic compound found,
followed by kaempferide and vanillic acid [21]. The seed extract possesses low toxicity [21];
however, some authors have reported that at concentrations of 500 mg/kg, the extracts
display toxic and genotoxic activity in mice [17,40,41]. Studies with hypercholesterolemic
mice have demonstrated the reduction of cholesterol and low-density lipoproteins by the
seeds, an effect attributed to their phenolic content, antioxidant activity, and dietary and
crude fiber content [21].

Avocado residue extracts have been reported to have numerous biological activities
useful in the food and pharmaceutical industries. Therefore, they could be used as sources
of fiber and phenolic compounds [18].

4.2. Mango

Mango is one of the most consumed fruits. The peel is the main byproduct of pro-
cessing [42,43], constituting about 15–20% of the total weight of the fresh fruit [44]. There
is much interest in the study of mango peel due to the large quantities generated by the
concentrate industry and its potential for use as an alternative ingredient in different food
matrices. It is considered a good source of bioactive components [45] such as dietary fiber;
compounds with antioxidant activity; phytochemicals such as polyphenols, carotenoids,
vitamin E, and vitamin C; and enzymes [43,44]. Mango peel is also a good source of pectin,
cellulose, hemicellulose, lipids, proteins, and reducing and nonreducing sugars, which
may vary according to variety [46]. Among the main phenolic compounds reported in
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mango peel are syringic acid, quercetin mangiferin pentoside, and ellagic acid [43]. Some
studies have reported that the main phenolic compounds present in mango participate in
synergistic or antagonistic interactions that modify antioxidant capacities. However, the
connection between the structure of these bioactive compounds and their biological activity
is still under investigation [8].

Mango peel is a good source of dietary fiber (soluble and insoluble) [43,47]. It can be
used for the extraction of bioactive compounds. In addition, the residue obtained can be
used in the preparation of foods rich in dietary fiber [42,46] or as a prebiotic [47].

4.3. Papaya

Papaya byproducts (peels, seeds, and pulp) contain large amounts of nutrients, in-
cluding dietary fiber and phenolic compounds with antioxidant activity [22,48]. Multiple
phenolic compounds have been identified in papaya byproducts (protocatechuic acid hex-
oside, mangalin, quercetin 3-O-rutinoside, caffeoyl hexoside, and ferulic acid), as have
lutein, zeaxanthin, β-carotene and β-cryptoxanthin, carotenoids, and ascorbic acid [22]. In
total, 65% of the polyphenols associated with these dietary fiber concentrates are highly
bioaccessible in the small intestine, and the nondigestible fiber portion shows antioxidant
capacity [22]. Papaya peel contains vitamins like vitamin A, vitamin C, riboflavin, thiamin,
and niacin. It is a source of phenols, alkaloids, flavonoids, tannins, and saponins [49]. The
physicochemical properties of papaya peel vary by geographic location, variety, and season,
which may affect processing and other associated activities. Therefore, extensive research
is required [49].

According to Calvache et al. [22] the phenolic compounds found in dietary fiber
concentrates from papaya peel were twice those found in the pulp (0.99 vs. 0.47 g/100 g).
On the other hand, it was found that about 22% of the polyphenols present in fresh papaya
pulp and more than 37% of the polyphenols present in the peel remained in the fiber after
the concentration process.

4.4. Pineapple

During pineapple processing, a series of residues are generated, including peels (30%),
pomace (50%), stems, crowns (13%), and fruit cores (7%). These residues or byproducts
represent between 25 and 35% of the total weight of the fruit [36]. They consist of structural
carbohydrates, dietary fiber, simple sugars, vitamins, and polyphenols [50]. The carbohy-
drates present in pineapple peel are bound to other compounds such as soluble fiber and
polyphenols [12,50]. The main polyphenols identified in pineapple peels are gallic acid
(31.76 mg/100 g of dry extracts), catechin (58.51 mg/100 g), epicatechin (50.00 mg/100 g),
and ferulic acid (19.50 mg/100 g) [51]. Because of this, pineapple byproducts are considered
biomass that can be exploited as a source of dietary fiber [50].

4.5. Grape pomace

After the vinification process, more than 70% of the grape polyphenols remain in the
pomace [52]. This waste from the wine industry is mainly made up of peel, residual pulp
and stalks, and seeds. These polyphenols structurally have one or more aromatic rings and
are usually found as esters, methyl esters, or glycosides, which can be conjugated with
mono-, oligo-, or polysaccharides in plant tissues [6,53].

4.6. Carrot

Carrot pomace is composed mainly of an insoluble, fiber-rich fraction, in which
the presence of peptic polysaccharides, hemicellulose, and cellulose stands out. Studies
have identified significantly enhanced functional properties, such as glucose-absorption
capacity and amylase-inhibition activity, compared to those of cellulose. As carrot pomace
is available in large quantities as a byproduct of juice production, it could be exploited as a
good source of dietary fiber [54]. However, it has been reported that at drying temperatures
above 90 ◦C, 20% of the β-carotene in carrots is degraded [35,55].
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5. Action Mechanisms

Phenolic compounds may be trapped within the complex of polysaccharide com-
pounds that make up the fiber (Figure 1) or bound through chemical interactions. Binding
through the hydrophobic aromatic rings and hydrophilic hydroxyl groups of phenolic
compounds to polysaccharides and/or proteins takes place on the surface of the cell
wall. [13,56]. Figure 2 shows the interactions between the hydroxyl groups of phenolic
compounds and the oxygen atoms of the glycosidic bonds of polysaccharides, as well as
the covalent bonds (ester bond) between phenolic acids and polysaccharides [11,13,57].

1 

 

 

 

 

 
 

Physical 

trapping 

Figure 1. Physical trapping of phenolic compounds in cellulose fibers.
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A large percentage of polyphenols are associated with dietary fiber. According to
the type of bonding and the nature of the phenolic compound, these polyphenols can
be considered extractable and nonextractable (attached to the cell wall). During food
digestion (gastric or small-intestine phase), some compounds are released. Those of higher
molecular weight, such as tannins and proanthocyanidins, covalently bound to dietary
fiber or proteins, can only be released under more drastic conditions such as hydrolysis
with sulfuric acid or enzymatic action [58]. The amount of nonextractable polyphenols is
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different in each food and depends on its nature; in foods such as wheat, barley, or coffee, it
can be higher than 50% [58].

As can be seen in Figure 3, some extractable polyphenols can be adsorbed in the
small intestine, or reach the colon bound to dietary fiber, resistant protein, and starch. In
the colon, ADF can be fermented by bacterial microflora, releasing metabolites that have
been associated with human health benefits [59]. In some cases, these benefits have been
related to the antioxidant environment generated by the phenolic compounds released
after fermentation [50].
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The use of byproducts as sources of ADF provides an opportunity to add value to pri-
mary production and mitigate the negative environmental impacts of poor disposal [35,39].
ADF obtained from these byproducts can be considered a functional ingredient because it
improves the nutritional quality of food; can increase water-holding capacity, oil-holding
capacity, emulsification, and/or gel formation; and improve texture, sensory characteristics,
shelf life, and antioxidant activity [1,10,23].

6. Benefits of Fiber Consumption

There are conflicting results regarding the action of antioxidants in reducing the risk
of developing some chronic diseases. Intervention studies have not fully confirmed the
beneficial effects. Different factors can affect the action of phenolic compounds, including
dosage, interaction with the food matrix, and bioavailability of polyphenols. Along with
endogenous factors including the gut microbiota and digestive enzymes, the food matrix
can also significantly affect the bioaccessibility, absorption, and subsequent metabolism
of polyphenols [58]. At the same time, bioavailability may be conditioned by molecular
interactions between the bioactive compounds and the food matrix [8].

Both dietary fiber and polyphenols have been linked separately to different health
benefits; however, recent research suggests that these two important health-promoting
components act in tandem [8,60]. Some studies have associated a greater intake of dietary
fiber with a decreased risk of coronary heart disease, diabetes, obesity, and some forms of
cancer [1], and with bile-acid retention–excretion, gastrointestinal laxative, hypoglycemic,
hypocholesterolemic, prebiotic, and cardioprotective properties.

The functionality of fiber is associated with a reduced risk of cardiovascular diseases,
diabetes, obesity, certain types of cancer, and intestinal diseases, all of which are directly
related to the different physiological functions of fiber and its physicochemical properties,
such as water-holding capacity (WHC), oil-holding capacity (OHC), swelling capacity
(WSC), glucose-absorption capacity (GAC), and cholesterol-absorption capacity. (CAC) [23].
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The physiological and metabolic effects of DF are related to the physicochemical, functional,
and nutritional properties of the product. For example, fiber with a high water-holding
capacity can directly influence the volume and mass of intestinal contents; highly viscous
water-soluble dietary fiber (WSSF) exhibits a glucose-diffusion-hindering effect and helps
to postpone carbohydrate absorption and digestion, resulting in a decrease in postprandial
blood glucose and an increase in bile-acid excretion, which also contributes to a decrease in
serum plasma cholesterol [60].

DF has an important role as a prebiotic, which is why it has been considered in the
development of new functional foods in recent years [61]. Other advantages offered by DF
are improved emulsion stability, texture, cooking performance, water-retention capacity,
and sensory properties when it is incorporated into meat product formulations, in addition
to inhibiting lipid peroxidation and microbial growth, prolonging the shelf life of meat and
meat products [62]. Many studies have focused on the valorization of byproducts via the
extraction and utilization of phenolic compounds [4]. However, this valorization leaves
behind a residue that in many cases can be considered ADF. These dietary fibers could be
incorporated into food formulations; in this regard, researchers have focused more on food
reformulation strategies than on sensory or consumption aspects [63]. There is a need to
study the use of ADF as a food ingredient in different formulations [2]. Technical, sensory,
consumption, economic, and sustainability aspects should be evaluated [63], as well as
optimizing the dosage of the products designed in animal models and carrying out clinical
trials in humans to determine the effect of these formulations [2,61].

6.1. Pancreatic-Lipase-Inhibitory Effect

The insoluble dietary fiber present in citrus peels has an inhibitory and absorptive
effect on pancreatic lipase activity. This ability is due to the structural and conformational
changes of pancreatic lipase generated by its binding with the insoluble dietary fiber, which
occur through a dynamic extinction process induced by electrostatic interactions with a
single binding site between them. This union produces an increase in the hydrophobicity
and a reduction in the polarity of the tyrosine (Tyr) and tryptophan (Try) residues, which
explains the conformational alterations [64].

6.2. Prevention of Obesity and Cardiometabolic Diseases

The consumption of dietary fiber in the diet favors energy homeostasis. The presence
of dietary fiber in food increases its density and decreases caloric intake [65,66]. The
feeling of satiety generated after the consumption of foods rich in fiber reduces food
ingestion. With the reduction of food intake (in some cases), a regulation of body weight
is observed [67]. Soluble dietary fiber influences metabolic processes such as gastric
emptying, starch hydrolysis, and diffusion of substrates and nutrients to the absorption
surface [65]. These effects collectively lead to sustained glucose release (i.e., they reduce
the glycemic index, which may help prevent type 2 diabetes (T2D) and obesity) [65].
However, the evidence is very mixed; there is no consensus on methodology and research
is limited for many fibers. In general, viscous fibers show better results in appetite indices
compared to nonviscous fibers [68]. Everyone will have a different response to the same
diet, due to interindividual differences in genetic, epigenetic, microbiotic, and metabolic
phenotypes. However, little research has been done to study the variation in response to
dietary interactions based on the metabolic characteristics of individuals following dietary
fiber intervention [69].

The consumption of dietary fiber has been associated for many years with a decreased
risk of cardiovascular disease. Research on individuals has found that diets high in total
dietary fiber (25 g/day) are associated with a lower risk of coronary heart disease and
cardiovascular disease [70]. Kromhout et al. [71] conducted a 10-year study of risk indica-
tors for coronary heart disease in which 871 middle-aged men from the city of Zutphen
(the Netherlands) participated. During the evaluation period, a reduction in mortality
from coronary heart disease and cancer associated with an increase in dietary fiber intake
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was demonstrated. Since then, much research has shown decreases in coronary heart
disease risk associated with an increased dietary fiber in the diet [66]. Blood cholesterol is
an important risk factor in coronary artery disease. A reduction in total cholesterol and
low-density lipoprotein (LDL) decreases the risk of coronary heart disease.

One strategy for the prevention of cardiovascular disease is the reduction of cholesterol
levels through the diet, using foods that can absorb cholesterol and bile acids or inhibitors
that target their biosynthetic pathways [65]. Dietary fiber intake has been recommended as
a safe alternative for cholesterol reduction [72] through multiple mechanisms, for example,
the trapping of dietary cholesterol in the matrix formed by soluble fiber (lower impact),
or the modification of cholesterol metabolism through short-chain fatty acids produced
during fiber fermentation by intestinal microbiota, causing a reduction in the level of LDL
cholesterol [70]. However, a study by Brown et al. [72] found that the cholesterol-lowering
effect of dietary fiber was low within the practical range of intake. In this case, ingesting 3 g
of oat soluble fiber (3 servings of 28 g) reduced total and LDL cholesterol by <0.13 mmol/L.
The effects of fiber on cholesterol reduction may vary depending on the nature of the
fiber. There are wide differences in the degree of cholesterol reduction caused by soluble
fibers [72]. An example is oat products, for which results can vary between 18% and 0%,
while pectin has produced results between 16% and 5%, and guar gum between 17% and
4% [72,73]. These marked differences are influenced by several factors, among which are
the amount of fiber ingested, sample size, baseline diet, and changes in body weight, as
well as the study population [72].

6.3. Effect of Fiber on the Intestinal Microbiota

For a food to be considered a prebiotic, it must meet three conditions: it must be
resistant to gastric acid, mammalian enzymatic hydrolysis, and gastrointestinal absorption;
it must have the ability to be metabolized by the intestinal microbiota; and it must stimulate
the selective growth or activity of bacteria with beneficial health effects [74,75].

Some fibers can be classified as prebiotics if they are metabolized by beneficial bac-
teria present in the gut microbiota [74]. Dietary fibers provide metabolic fuel for the
growth and/or proliferation of health-promoting bacteria that colonize the gastrointestinal
tract [65]. Resistant oligosaccharides (fructans (fructooligosaccharides, oligofructose, and
inulin) and galactans) have been widely documented as prebiotics, while other sources
are considered to have prebiotic potential or to be prebiotic candidates and others do
not present a prebiotic effect in humans [74]. As a result of the fermentation of dietary
fiber by the gut microbiota, different end-products such as vitamins and short-chain fatty
acids (SCFAs), including butyrate and propionate, are generated, which have healthy and
beneficial effects.

A diet that provides fructooligosaccharides increases the percentage of beneficial
intestinal microbiota, such as Lactobacillus and Bifidobacterium species. Fructans not only
decrease gastrointestinal symptoms, but also increase gut immune function, reduce in-
testinal inflammation, and beneficially modulate the gastrointestinal microbiota [65]. A
better understanding of the intimate interaction between dietary fiber and the intestinal
microbiota may help in the development of new therapeutic strategies to prevent and
treat diseases.

7. Antioxidant Dietary Fiber as a Food Additive and Natural Preservative

Different research reports have considered agroindustrial residues as natural and
economical sources of dietary fiber (soluble and insoluble), essential amino acids, and
phenolic compounds. The consumption of ADFs obtained from these byproducts has been
associated with health benefits, and their use as functional ingredients in foods at low
concentrations (0.5–3.0%) does not affect the physicochemical characteristics of foods. The
development of food formulations incorporating these new functional ingredients is an
emerging field. The latest products must meet a series of requirements for acceptability
and functional characteristics demanded by today’s consumers [3,76]. Incorporating these
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byproducts into food formulations could help to mitigate the environmental impact caused
by these wastes and improve the products’ nutritional quality.

One of the objectives of adding fiber to food formulations is to nutritionally enrich
the products, increasing their fiber content as well as improving structural and textural
properties [77]. Dietary fiber has been incorporated into baked goods, dairy products, jams,
meats, and soups, with favorable results in texture, stabilization of fats and emulsions,
improvement of shelf life, and, in some foods, prevention of syneresis [1]. Antioxidant
dietary fiber provides not only the benefits of fiber, but also the benefits of the phenolic
compounds present. Some foods even retain their antioxidant activity after heat treatment.

Table 3 presents a series of studies in which an agroindustrial byproduct (potential
ADF source) was incorporated into a food formulation and its contribution to nutritional
quality, functional properties, and/or acceptability was evaluated.

Table 3. Studies of incorporation of agroindustrial byproducts as sources of fiber and antioxidants.

Byproduct Product Added As Effect Reference

Pineapple
pomace

powder (PPD)

Yogurt
X Pomace was added (0%,

0.1%, 0.25%, and 0.5%)

X Increased dietary fiber
X Concentrations of 0, 0.1, and 0.25% showed

good acceptability
[23]

Vienna-type sausages

Chemical, physical, and
technological properties were
determined to select one pineapple
and to evaluate the effect of its
mixture with meats on
characteristics of
Vienna-type sausages

X Increased antioxidant carotenoids
and polyphenols [77]

Donuts, meat patties,
and golden
layer cakes

Functional ingredient for bakery
and meat products

X Higher dietary fiber content
X Improved physicochemical properties

of products
[78]

Cookies
Particle sizes 400–251
µm, 250–150 µm, and

≤149 µm) and
concentrations 5, 10,
and 15% into refined

wheat flour

Nutritional and functional
properties of PPD were evaluated
and the effect of PPD
incorporation on dough and
cookie quality was determined

X Increased content of dietary fiber
(1.79–2.45%) and carbohydrates.

X Decreased protein and fat content.
X There were no differences in the

physicochemical characteristics
X Low-gluten cookies with antioxidant activity

[79]

Cashew
apple residue Low-fat hamburgers

X 0 %–14.27 % cashew apple
residue

X Improved yield
X Higher dietary fiber content (0 to 7.66%)

(higher insoluble fiber content)
X Reduced lipids (35%)
X Decreased moisture and protein
X Increased carbohydrates and pH

[80]

Avocado peel
extract (APE) Beef and soy burgers X 0.5 % and 1 % APE

X Decreased concentrations of TBARS, hexanal,
and carbonyls (days 1 and 10) after cooking.

X Beef patties: addition of APE produced
greater preservative effect than the control
(sodium ascorbate)

X The addition of 0.5% APE inhibited the
formation of heterocyclic aromatic amines
and acrylamide in beef and soybean patties

X Modified color without
affecting acceptability

X APE can be an alternative to
synthetic antioxidant

[81]
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Table 3. Cont.

Byproduct Product Added As Effect Reference

Red
grape pomace

Chicken Hamburger
(raw and cooked)

X 0.5 %, 1 %, 1.5 %, and 2%
grape antioxidant dietary
fiber (GADF)

X Time: 0, 3, 5, and
10 days (4 ◦C)

X Improved oxidative stability and
antioxidant activity

X The addition of GADF did not affect
overall acceptability

X GADF was a very effective inhibitor of lipid
oxidation and has potential as a natural
antioxidant in raw and cooked chicken meat

[82]

Grape
antioxidant
dietary fiber

(GADF)

Minced fish
muscle (MFM)

X 0 %, 2 %, and 4 % GADF
was added to MFM samples

X Stored at −20 ◦C (6 months)

X Reduced lipid oxidation (3 months),
stored frozen [83]

Wine grape
pomace.

X Pinot
Grigio
WGP
(WWGP)

X Pinot
Noir
WGP
(RWGP)

Breads, muffins,
and brownies

X 5%, 10%, 15% for
bread (RWGP)

X 10%, 15%, 20%, 25% for
brownies (WWGP)

X 5%, 10%, 15% for
muffins (RWGP)

X 10%, 15%, 20% for
muffins (WWGP)

X This study reported that a 5.9% or 194.4%
increase in polyphenols and a >20% dietary
fiber increase could be achieved in
pomace-fortified breads or muffins,
respectively, without impacting consumer
acceptance of the products

[6]

Mango peel Beef burger
X 3 %, 6 %, 9 %, 12 % mango

peel dietary fiber

X Increased contents of dietary fiber,
polyphenols, and carotenoids in
hamburger meat

X Improved antioxidant activity
[84]

Generally, for the preservation of meat products, “sulfites” are used (a term that refers
to sulfur dioxide and different forms of sulfur agents). Sodium or potassium bisulfite, as
an antioxidant agent, is responsible for inhibiting microbial growth, as well as delaying
discoloration. These agents are effective against Gram-negative aerobic bacteria, molds,
and yeasts [85]. Their use has been questioned due to potential negative effects on health,
such as asthmatic reactions and, in high concentrations, deficiency of thiamin or vitamin
B1. For this reason, their use is limited in some countries. The estimated safe daily intake
is 0–0.7 mg/kg per person per day, an intake that is exceeded in some cases due to the
consumption of meat products. According to a FAO/WHO report on food additives (Safety
evaluation of food additives, 2009), the investigation of alternative conservation methods is
recommended to reduce the concentrations of SO2.

Other antioxidants used to control lipid oxidation in meat, such as butylated hydroxy-
toluene (BHT), butylated hydroxyanisole (BHA), propyl gallate (GP), and tertbutylhydro-
quinone (TBHQ), among others, have also raised concerns about their possible harmful
effects [86], which has created a need for and fueled research on alternative antioxidants,
particularly from natural sources [87].

The use of byproducts with antioxidant and antimicrobial properties as natural preser-
vatives to prolong shelf life in foods is a promising technology [22,88]. Some research has
shown the possibility of reducing the amount of sulfites in the formulation of cooked meat
products, with the possibility of extending shelf life, by adding natural compounds with
antioxidant activity such as antioxidant dietary fiber [89–91].

8. Conclusions

Byproducts of fruit and vegetable processing are important sources of antioxidant
dietary fiber. Their low cost and the accessibility of large quantities make these byproducts
viable raw materials for this use, in addition to the balance between the contents of soluble
and insoluble fiber, which is directly related to a greater functionality of the fiber (compared
to fiber from other sources such as cereals and mushrooms). Multiple studies have identi-
fied agroindustrial byproducts as sources of ADF. Research on the contents of bioactive
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compounds present in ADF, ADF’s function (in vivo), and its multiple applications in
the food and pharmaceutical industry is currently ongoing. However, more research is
needed regarding the interaction with the food matrix, bioavailability during processing
and storage, and other compounds present that may affect safety, which should be studied
before its possible commercial application.

Among the most outstanding uses of ADF is its application as a functional ingredient to
enrich foods, due to its contribution of dietary fiber, antioxidants, antimicrobials, colorants,
flavorings, and thickeners. In the same way, it can be used as a partial or total replacement
for preservatives in processed foods, especially meat products.
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