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Abstract: Food spoilage is a major concern in the food industry, especially for highly perishable
foods such as beef. In this paper, we present a versatile Internet of Things (IoT)-enabled electronic
nose system to monitor food quality by evaluating the concentrations of volatile organic compounds
(VOCs). The IoT system consists mainly of an electronic nose, temperature/humidity sensors, and
an ESP32-S3 microcontroller to send the sensors’ data to the server. The electronic nose consists
of a carbon dioxide gas sensor, an ammonia gas sensor, and an ethylene gas sensor. This paper’s
primary focus is to use the system for identifying beef spoilage. Hence, the system performance
was examined on four beef samples stored at different temperatures: two at 4 ◦C and two at 21 ◦C.
Microbial population quantifications of aerobic bacteria, Lactic Acid Bacteria (LAB), and Pseudomonas
spp., in addition to pH measurements, were conducted to evaluate the beef quality during a period of
7 days to identify the VOCs concentrations that are associated with raw beef spoilage. The spoilage
concentrations that were identified using the carbon dioxide, ammonia, and ethylene sensors were
552 ppm–4751 ppm, 6 ppm–8 ppm, and 18.4 ppm–21.1 ppm, respectively, as determined using a
500 mL gas sensing chamber. Statistical analysis was conducted to correlate the bacterial growth with
the VOCs production, where it was found that aerobic bacteria and Pseudomonas spp. are responsible
for most of the VOCs production in raw beef.

Keywords: IoT; food quality monitoring; beef quality; e-nose; food spoilage; food waste

1. Introduction

The issue of food loss and waste (FLW) has been recognized as a serious problem for
food security, the environment, and economies. It has been estimated that about 1.3 billion
tons of all the food produced for human consumption are lost or wasted throughout the
food supply chain annually [1]. Moreover, the growing demand for meat is putting a
major strain on the environment and the food supply chain’s overall sustainability as
the meat industry is considered among the leading producers of greenhouse gases. The
environmental cost of raising a cow for beef production is considerable—from water use
and waste discharge down to greenhouse gas emissions due to intensive land use [2,3].
The total global meat production is currently estimated to be around 340 million tons;
however, 23% of this amount is wasted throughout the entire supply chain [4]. These
losses are mainly due to overproduction, poor handling and packaging methods, inap-
propriate storage and transportation conditions, inefficiencies during food processing,
lack of infrastructure (such as refrigeration), lack of technical knowledge and skills, or by
consumers [5,6]. Spoilage during storage and transportation is a major cause of meat loss
across the supply chain. Although meat storage temperatures should not exceed 5 ◦C, the
temperature increases during storage and transportation are thought to be a key factor in
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meat quality degradation, particularly during the summer. For instance, studies have re-
vealed that the acceptable maximum temperature for refrigerated storage is frequently not
fulfilled and that temperatures above 10 ◦C are not uncommon during transportation [7,8].
Meat can be damaged even before it reaches retail outlets, which is a widespread food
safety risk existing across the meat supply chain. Hence, it is necessary to continuously
monitor the quality of fresh meat during cold storage and transportation to ensure product
freshness and safety, improve these processes, and reduce the loss and waste across the
supply chain [9]. Several methods have been used to examine the food quality, such as
microbial load counts, spectroscopic techniques [10–13], laser speckle imaging [11,14–16],
E-tongues [17–20], and enzyme biosensors [10,21,22]. These methods have been able to
successfully quantify and detect the freshness, shelf life, and early spoilage of various foods,
i.e., fish, meat, and beverages. However, some of these methods are sample destructive,
laborious, bulky, time-consuming, and require special training, while others are expensive,
require frequent calibration, or cannot offer real-time monitoring [17,21,23]. In contrast,
gas sensing is a quick, accurate, and operation-friendly method for detecting spoilage and
food quality [9,10,21,24]. Every food product produces different aromas or gases consisting
of a distinctive composition of volatile organic compounds (VOCs), which can indicate
food quality, safety, and spoilage [25]. Moreover, owing to the effectiveness of gas sensing
systems in providing real-time, simple, and cost-effective food quality monitoring, its
applications are widespread in fruit, vegetable, seafood, beverage, and meat industries, and
various researchers have studied the application of gas-sensing methods in food spoilage
and ripening monitoring [10,11,23–25]. Among them, electronic nose systems (e-nose)
have been used widely to monitor food ripening and detect spoilage. For instance, Wang
et al. [26] developed an e-nose for the real-time freshness and spoilage evaluation of pork
meat, banana, and leeks by analyzing hydrogen sulfide, ammonia, and ethylene production.
The results showed that this method is effective in monitoring the freshness of sampled food
in the refrigerator with a high accuracy that reaches 92% [26]. Similarly, [27] developed an
e-nose using a six-sensor array with MOS sensors to monitor the levels of ethylene, alcohol,
ammonia, and hydrogen produced from bananas. It was concluded that the sensor array’s
capability for detecting ripening fingerprints is acceptable [27]. Rivai et al. [28] combined
the usage of gas sensors and a neural network to study the ripeness state of durian to
detect ethylene, hydrogen sulfide, and ethanol; this system successfully distinguished the
ripeness of durian with an accuracy of about 91%. In another comprehensive study, Rivai
et al. [29] evaluated the freshness of meat using a gas sensor array that detects H2S and NH3
with a neural network pattern recognition to accurately identify fresh and non-fresh meat
samples [29]. A variety of gases can indicate the food quality, including alcohols, amines,
and esters as well as organic compounds [24]. Hence, the selection of sensors for the
electronic nose systems varies between studies based on the gases produced by the targeted
food types. Carbon dioxide is among the primary indicators of food safety and freshness
as it is a by-product of bacterial metabolism in the fresh produce ripening process [24,30].
Similarly, ammonia production is an important biomarker for the spoilage of various foods.
In particular, the spoilage of protein-rich food (such as meat, pork, and fish) results in the
production of nitrogenous compounds, including ammonia, dimethylamine, and trimethy-
lamine, which are produced due to the decomposition of amino acids and microbiological
activities [31,32]. Likewise, in post-harvest quality control and preservation, the role of
ethylene gas is important as it affects the ripening of many fruits and vegetables [33]. To
assess the fruit quality and delay spoilage, controlling the ethylene levels in the fruit distri-
bution systems to regulate the ripening process is important [24]. Even in different storage
conditions, such as modified atmospheres, the ethylene concentration should be carefully
monitored as a low concentration is sufficient to trigger ripening in various fruits (i.e.,
climacteric fruits) [34]. Therefore, detecting ethylene is necessary to determine the ripeness
or spoilage of fruits and vegetables. Generally, complex laboratory equipment (such as
GC-MS) is used to detect the presence of ethylene; thus, the procedures for determining its
quantity could be difficult and expensive [24]. There have been many efforts to develop
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universal, low-cost, and easy-to-use electronic nose systems for food quality monitoring
and spoilage detection. Therefore, we present an IoT-enabled e-nose system for monitoring
the overall food quality and detecting the spoilage of meats and fresh produce. Three
gas sensors were selected for the e-nose system: an optical carbon dioxide gas sensor, a
chemo-resistive ammonia gas sensor, and a chemo-resistive ethylene gas sensor. In this
paper, we measure the gases produced from raw beef using the e-nose system and correlate
the results with the conventional microbiological plate count to identify the spoilage and its
gaseous concentrations. Since microbial growth, lipid oxidation, and enzymatic reactions
are the main causes of meat deterioration [35], this paper also investigates the effect of
aerobic bacteria, Pseudomonas spp., and Lactic Acid Bacteria (LAB) on the production of
carbon dioxide, ammonia, and ethylene in raw beef using linear regression.

2. Materials and Methods

To identify the gas concentration levels that correspond to quality deterioration:

• The e-nose system measures the emissions of volatile organic compounds (VOCs)
using the gas sensors array every 6 h.

• The beef quality is assessed daily by counting the microbial populations of Pseu-
domonas spp., Lactic Acid Bacteria (LAB), and aerobic bacteria, and performing
Salmonella detection and pH levels measurements.

• Two shelf-life experimental runs were carried out for each storage temperature (4 ◦C
and 21 ◦C) to verify the microbiological quantification results and validate the precision
of the shelf-life estimation and gas concentration measurements.

2.1. Sample Preparation

Four fresh CAB boneless rib beef steaks were purchased from a local supermarket
(Thuwal, Saudi Arabia) in January 2023. The samples’ weights ranged between 120 and
150 g. Within 15 min of being purchased, the samples were transported to the lab while
being kept in thermal bags. The beef samples were stored separately in 1.4 L Eastman
Tritan PCTG TX1001 plastic containers (STATUS, Metlika, Slovenia) and were split into two
groups: the first group was stored in a fridge at 4 ◦C and the other one was stored at room
temperature (21 ◦C).

2.2. Quality Monitoring System
2.2.1. The Architecture Design of the IoT Monitoring System

The proposed IoT system consists of three main layers: (1) data sensing layer, (2) data
transmission layer, and (3) user interface layer as shown in Figure 1. The data sensing layer
features temperature, humidity, carbon dioxide, ammonia, and ethylene sensors. The data
transmission layer enables remote data access via the Blynk server (Blynk Inc., New York, NY,
USA), which uses HTTPs protocol to send the data from the sensing layer to the API. The user
interface layer provides real-time monitoring with visual widgets in the Blynk system.
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2.2.2. The E-Nose System Architecture and Components

The e-nose system consists of a cylindrical gas chamber that contains the gas sensor
array and an agitator, temperature, and humidity sensors, a vacuum pump, an air pump, a
valve, and a controller as illustrated in Figure 2. The gas chamber has a 500 mL volume, a
6.3 cm height, and a 5 cm base radius. The chamber body was 3D printed using a Form 3L
printer (Formlabs Inc., Somerville, MA, USA) and SLA resin, while the lid was created by
cutting a 0.6 cm thick acrylic sheet using Epilog 75 w laser cutter (Epilog Laser, Golden,
CO, USA). A 0.5 cm thick silicone gasket was created using Sylgard 184 PDMS (Dow
Corning, Freeland, MI, USA) to ensure the gas confinement inside the chamber. The sensors
used in the e-nose system include an AM2302 temperature and humidity sensor (Aosong
Electronics Co., Guangzhou, China), MH-Z19C carbon dioxide sensor, ZE03-NH3 ammonia
sensor, and ZE03-C2H4 ethylene sensor (Winsen Electronics Technology Co., Zhengzhou,
China). The detection range, response time, accuracy, and operating temperatures of the
sensors are shown in Table 1. The main processing unit of the presented IoT system is
the ESP32-S3 controller (Espressif Systems Shanghai Co., Shanghai, China), which has an
extensive set of peripherals and can be easily connected to the internet using a native WiFi
system. The ZE03-C2H4 and ZE03-NH3 sensors were connected to the ESP32-S3’s ADC
pins, while the MH-Z19C gas sensor is connected to the UART1 channel. The AM2302
temperature sensor and relays were connected to the ESP32-S3’s digital I/O pins. The
SC2701XPV vacuum and air pumps (Shenzhen Skoocom Electronic Co., Shenzhen, China)
and GD3010-N agitator (Gulf Electrics Co., Kaohsiung City, Taiwan) were connected to
the relays. The ESP32-S3 controller was programmed using the ESP-IDF framework. The
code was written in C++ and included various algorithms for collecting and processing the
sensor data, controlling the pumps and the valve (SC0526GF, Shenzhen Skoocom Electronic
Co., Shenzhen, China), and sending the data to the cloud.
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Table 1. Sensors’ specifications.

Sensor Detection Range Accuracy Response Time Operating Temperatures

ZE03-NH3 1–100 ppm ±1 ppm ≤150 s From 0 ◦C to 50 ◦C
ZE03-C2H4 0–100 ppm ±0.1 ppm ≤30 s From 0 ◦C to 50 ◦C
MH-Z19C 400–5000 ppm ±1 ppm ≤120 s From −10 ◦C to 50 ◦C

AM2302 From −40 ◦C to 80 ◦C and
0–100% RH ±0.5 ◦C and ±0.3% RH ≤5 s From −40 ◦C to 80 ◦C

2.2.3. The E-Nose Block Diagram

Figure 3 shows the block diagram of the electronic nose system. The vacuum pump
was used to suck the air from the beef containers and pump it into the gas chamber every
6 h. Various studies have demonstrated that the levels of VOCs produced by a variety of
microorganisms start to increase after six hours [36,37]. Therefore, the 6-h time interval was
chosen because the accumulation of VOCs in the storage medium is necessary for accurate
spoilage detection. The e-nose system collects the data automatically for 15 min in every
measurement cycle. The agitator ensures the gas composition’s homogeneity inside the
e-nose chamber. After 12 min of reading the data, the air pump injects fresh air into the gas
chamber. The valve controls the airflow between the container and the gas chamber.
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2.3. Shelf Life and Quality Assessment
2.3.1. Microbial Population Quantification

According to ISO standards, the aerobic mesophilic bacteria (ISO 4833-2:2013), Pseu-
domonas spp. (ISO 13720:2010), and lactic acid bacteria (ISO 13721:1995) were counted in
both beef samples by using Plate Count Agar (PCA, Oxoid, Thermo Scientific, Basingstoke,
UK), Pseudomonas CFC Agar Base (Oxoid, Thermo Scientific, Basingstoke, UK), SR0103E
Pseudomonas C-F-C supplement and glycerol, and De Man, Rogosa Sharpe agar (MRS,
Oxoid, Thermo Scientific, Basingstoke, UK), respectively. Salmonella sp. was also identified
(ISO 6579:2002) using Rappaport Vassiliadis soya peptone broth (RVS, Condalab, Madrid,
Spain), Muller–Kauffmann Tetrathionate Novobiocin Broth (MKTTn, Condalab, Madrid,
Spain), and Xylose Lysine Deoxycholate (XLD, Condalab, Madrid, Spain). The instruments
and workspace were sterilized with 70% alcohol. Five grams of each sample was then
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placed in stomacher bags and homogenized for 2 min in the stomacher with 45 mL of
sterile physiological solution to produce the first suspension (10−1 dilution). For the second
dilution (10−2), 1 mL of the first dilution was added to 9 mL of the physiological solution
using a sterile pipette. More dilutions were created by repeating the same procedures.
Then, 100 µL of each dilution was spread–plated into CFC and incubated at 25 ◦C for
48 h to determine the Pseudomonas spp. population, while 1 mL of each dilution was
poured–plated into PCA and MRS and incubated at 30 ◦C for 72 h to determine the aerobic
mesophilic bacteria and LAB populations. Salmonella sp. was detected by incubating the
initial dilution for no more than 20 h, followed by enrichment of 1 mL in MKTTn broth and
incubation at 37 ◦C for 24 h. Additionally, 0.1 mL of RVS broth was enriched and incubated
for 24 h at 41.5 ◦C. After streaking 10 µL of each bouillon onto XLD Petri dishes, the dishes
were incubated at 37 ◦C for 24 h. Daily microbial analyses were performed throughout the
shelf life of each sample to evaluate the microbial growth, which influences the sensory
properties and is used to determine the expiration of the beef samples. The colony-forming
units per gram (CFU/g) were used to evaluate the results.

2.3.2. pH Measurement

The pH levels were measured using a Thermo Scientific Orion 5 Star pH meter. Fol-
lowing the instructions in ISO 2917:1999, 5 g of each sample were collected, and the pH
was then determined from the sample at a temperature of 20 ± 2 ◦C.

2.4. Statistical Analysis

Linear regression was used to study bacterial proliferation’s effect on gaseous pro-
duction. Aerobic bacteria, LAB, and Pseudomonas spp. are the independent variables that
can influence the production of gases, which were used as dependent variables in the
analysis. Since it is essential to test the normality assumption when undertaking parametric
statistical analyses, a Shapiro–Wilk test was used to assess the normality of the residuals of
the linear regression results. All the analyses were conducted using JASP software (JASP,
Amsterdam, The Netherlands).

3. Results
3.1. Quality and Shelf Life Assessment

The microbial population counts of Pseudomonas spp., LAB, and aerobic bacteria in
the beef samples in addition to the pH measurements are shown in Figure 4. The GCC
Standards Organization’s microbiological food safety criteria were used to identify when
the meat samples had reached their expiration dates (GSO 1016:2015). According to the
GSO standards, the aerobic bacteria population count is the primary indicator for the
expiration of beef, and a sample is considered spoiled when it exceeds the threshold of
106 log CFU/g. Salmonella is another sign of beef’s expiration; a single colony is sufficient
to deem a beef sample expired. Additionally, several researchers identified the count of
various microbes, such as Pseudomonades spp. and lactic acid bacteria, etc., that indicate the
spoilage occurrence. For instance, Odeyemi et al. indicated that raw meat samples expired
when the Pseudomonas spp. and LAB population counts reached 107–108 CFU/g and
108 CFU/cm2, respectively [38]. Therefore, the beef samples stored at room temperature
expired on day 2 while the samples stored in the fridge expired on day 4, as illustrated
in Figure 4c. However, the microbial population counting and the e-nose data collection
were continued until day 7 to visualize the connection between the gas emissions and the
microbial growth of Pseudomonas spp., LAB, and aerobic mesophilic bacteria.
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(d) the pH measurements of the beef samples.

3.2. Electronic Nose System

Figure 5 presents the data collected from the e-nose system over a period of 7 days
for two experimental runs for each storage temperature. As indicated via the microbial
population counts in Section 3.1, the beef samples stored at room temperature and in the
fridge expired on the second and fourth days, respectively. Hence, the shelf life of beef at
room temperature is 1 day and the beef stored in the fridge is 3 days, as shown in Figure 5d.
Therefore, the gas concentrations that correspond to beef spoilage were identified using
the e-nose data on day 2 for the samples stored at room temperature and on day 4 for the
samples stored in the fridge. Accordingly, the gas concentrations that correspond to the
spoilage of beef range from 4552–4751 ppm for the CO2 gas sensor, 6–8 ppm for the NH3
gas sensor, and 18.4–21.1 ppm for the C2H4 gas sensor, as shown in Figure 5a–c.
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in different storage temperatures, (e) humidity overview, and (f) storage temperature overview.

3.3. Statistical Analysis

The statistical analysis aimed to determine the impact of aerobic bacteria, LAB, and
Pseudomonas spp. in beef on the production of carbon dioxide, ammonia, and ethylene.
The unprocessed data of the bacterial proliferation and gas production were subjected to
a normality test using the Shapiro–Wilk test. The p-value of the Shapiro–Wilk test results
were less than the significance threshold of 5% for all the raw data, indicating that the
residuals of the bacterial growth on the gas production are not normally distributed, which
may introduce bias in the research results. To eliminate anomalous residual conditions, a
Log transformation was applied to the microbial population data due to its high variance.
After data transformation, the p-values of the Shapiro–Wilk test results were greater than
5%, which confirms that the linear regression residuals of aerobic bacteria, Pseudomonas spp.,
and LAB on carbon dioxide, ammonia, and ethylene production are normally distributed.
Then, the regression analysis was carried out by looking at the marginal effect, regression
coefficient (β), and p-value. The marginal effect visually demonstrates the effect of the
independent variable (bacteria) on the dependent variable (gas). The regression coefficient
(β) shows the amount of influence exerted by each bacterium on the gas production, while
the p-value is used to determine whether the bacterial growth has a significant effect on the
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production of each gas. Figure 6 shows the marginal effect, regression coefficient (β), and
p-value of each type of bacteria on the gas production.
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3.3.1. Linear Regression Result of Bacterial Growth on CO2 Production

The linear regression analysis depicted in Figure 6a shows a positive trend for the
marginal effect of aerobic bacteria with a regression coefficient of 464.531. The p-value
(0.005) is less than 5%, indicating a significant effect of aerobic bacteria on CO2 production.
The analysis results show that the presence of more aerobic bacteria in beef will increase
CO2 production, and vice versa. Likewise, Figure 6b shows that Pseudomonas spp. has
a significant effect on CO2 production, as indicated by the p-value (0.008), which is less
than the 5% significance level. The Pseudomonas spp. regression coefficient (1224.121) and
the positive tendency in the marginal effect indicate that the presence of Pseudomonas spp.
in beef increases CO2 production. In contrast to aerobic bacteria and Pseudomonas spp.,
Figure 6c presents the marginal effect of LAB, which demonstrates a negative trend as
indicated by the regression coefficient of −898.446. The marginal effect, regression coeffi-
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cient, and p-value are all less than 0.001, indicating that LAB has a statistically significant
negative influence on CO2 production. Hence, the greater the concentration of LAB, the
lower the CO2 production, and vice versa.

3.3.2. Linear Regression Result of Bacterial Growth on NH3 Production

The linear regression analysis results in Figure 6d shows that the marginal effect of
aerobic bacteria has a positive trend with a positive regression coefficient of 3.588 and a
p-value of less than 0.001, which indicates the significant positive impact exerted by aerobic
bacteria on the NH3 production. Hence, the rise in the aerobic bacteria population in beef
will result in a higher NH3 production, and vice versa. Similarly, Pseudomonas spp. has a
significant impact on NH3 production as shown in Figure 6e. The regression coefficient
of Pseudomonas spp. (6.043) and the positive trend in the marginal effect indicates that the
increase in the Pseudomonas spp. populations in beef triggers a greater NH3 production.
Conversely, the marginal effect of LAB tends to show a negative trend, which is reinforced
by the regression coefficient of −6.788 as shown in Figure 6f. The marginal effect, regression
coefficient, and p-value < 0.001 indicate that LAB has a negative and significant impact
on NH3 production. The greater the amount of LAB, the smaller the NH3 produced, and
vice versa.

3.3.3. Linear Regression Result of Bacterial Growth on VOCs Detected by C2H4 Sensor

The linear regression analysis depicted in Figure 6g reveals the positive impact of
aerobic bacteria on the production of C2H4 or the VOCs that can be detected by the C2H4
sensor, particularly H2. The p-value (0.005), which is less than 5%, indicates a significant
effect of aerobic bacteria on C2H4 production, and that the rise in aerobic bacteria in beef
will increase the VOCs concentration. Nevertheless, Pseudomonas spp. was not proven
to have a significant effect on gaseous production as indicated by a p-value greater than
5%, as shown in Figure 6h. In contrast, the marginal effect of LAB tends to demonstrate
a negative trend, as indicated by the regression coefficient of −41.705 in Figure 6i. The
marginal effect, regression coefficient, and p-value are all less than 0.001, indicating that
LAB has a statistically significant negative influence on the production of C2H4 and/or H2.

4. Discussion

Perishable quality monitoring during storage and transport is vital for the food indus-
try as it helps in maintaining quality standards, reducing losses and waste, and ensuring
that products are safe for human consumption. Conventional culturing methods are highly
reliable and can accurately detect microbial spoilage based on the number of bacterial
colonies. However, it is a very time-consuming and laborious method as the detection
process takes 5–7 days and requires professional manpower, sterilized workspaces, sophis-
ticated machines, and tools [39–41]. To overcome these drawbacks, numerous businesses in
the food industry are currently investing in advanced technologies to monitor food quality
and safety and many researchers are presenting various e-nose-based food monitoring
systems that are highly accurate. However, most of the e-nose systems were designed
to monitor the gases produced by either a specific type of food (i.e., chicken or meat) or
by a limited selection of perishables, such as climacteric fruits. For instance, J. Brezmes
et al. [42] and L. Ma et al. [43] highlighted e-nose systems that mainly monitor ethylene gas
production to evaluate the ripeness levels and shelf life of a variety of fruits (i.e., apples,
peaches, nectarines, pears, and kiwifruit), M. A. Putra [44] developed an e-nose system
to assess the quality of milk by monitoring the NH3 and H2S levels, and Rivai et al. [29]
evaluated meat freshness by monitoring the H2S and NH3 production [29,42–44]. Therefore,
we developed a cost-effective, noninvasive, and versatile food quality monitoring system
that can evaluate the freshness of a variety of food items, including meats, fruits, and
vegetables. This was enabled by our gas sensor selection, which can monitor the major
VOCs produced from meats and fresh produce. A carbon dioxide gas sensor was selected
as CO2 is a primary by-product of bacterial activities [24,30]. An ammonia sensor was



Foods 2023, 12, 2227 11 of 14

also selected as NH3 is an important signal of the deterioration of meats and protein-rich
foods [31,32]. Similarly, an ethylene sensor was chosen because it is a primary indicator of
the maturity of numerous fresh produce items, so monitoring its concentration is important
for controlling the ripening process [24,33]. Moreover, the ME3-C2H4 ethylene sensor that
was used in this research can also respond to a few other gases, primarily hydrogen [45]. In
addition, humidity and temperature sensors were included to assess the environmental
conditions during storage and transportation as their fluctuation can significantly influence
the shelf life and overall food quality. Hence, the sensor selection causes our e-nose system
to be applicable to various fresh food industries. In this research, we used the IoT-enabled
e-nose system to monitor the VOCs emissions of raw beef to identify the levels that cor-
respond to spoilage by correlating the e-nose readings with the conventional plate count
results. When beef undergoes spoilage, the biochemical and physiochemical activities
result in the production of amino acids, causing the meat to be vulnerable to microbial
activities and growth [46]. As a result, volatile compounds such as CO2, NH3, and H2S are
produced. Therefore, the concentration of nitrogen and hydrogen compounds can be used
for evaluating the freshness of meat in the market as well as during storage [47,48]. Various
microorganisms populate the beef substrate and produce a variety of gases that can be
used to predict spoilage proximity. However, the impact of different bacteria that populate
the beef substrate (i.e., Pseudomonas spp., LAB, and aerobic bacteria) on the production
of VOCs has not been thoroughly investigated. Several studies associated LAB with the
production of CO2, H2, and NH3 during the spoilage of beef [49,50]. However, the gaseous
contribution of LAB in comparison to the contributions of other microorganisms in beef
has not been evaluated by these studies. Hence, evaluating the gaseous production of these
bacteria while they are in the same medium to comprehend the indications of the emissions
of VOCs is important. For instance, although the LAB proliferation was significant in the
beef samples, as shown in Figure 4b, their contribution to the production of gases was
minimal, as illustrated in Figure 6c,f,i. This could be due to the dominance of facultatively
heterofermentative LAB species in the beef samples, which are characterized by producing
two moles of lactate from glucose without gas formation [50,51]. To validate that, the
singular effect of LAB bacteria on gas production was analyzed without including the
effect of Pseudomonas spp. nor aerobic bacteria in the regression model. The test results
in Figure 7 show a positive influence of LAB on all VOC production. This contradicts the
findings in Figure 6c,f,i, which demonstrates that the interactions between LAB bacteria
and other bacteria in beef might lessen the gas generation engendered by LAB bacteria.
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Thus, it can be concluded that the production of VOC concentrations in beef could be
used to indicate the proliferation of aerobic bacteria and pseudomonas. Although different
volatile compounds are produced by different bacteria, CO2 was identified by performing
the headspace technique as a predominant gas that is produced by various species in
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beef [49]. In addition, the amines are among the metabolites generated by the activity of
Pseudomonas spp. utilizing nitrogenous substances in raw beef [50,52]. This explains the
positive marginal effect trends of Pseudomonas spp. and aerobic bacteria on the production
of VOCs (Figure 7). The e-nose system demonstrated that the gas concentrations recorded
by the carbon dioxide, ammonia, and ethylene sensors at the time the beef expired ranged
from 552 ppm to 4751 ppm, 6 ppm to 8 ppm, and 18.4 ppm to 21.1 ppm, respectively.
After the spoilage occurrence, the CO2 concentration and the concentrations of the gases
detected by the ethylene sensor, predominantly C2H4 and H2, increased rapidly. This
results in the saturation of the carbon dioxide and ethylene sensors as they reached their
maximum detection ranges of 100 ppm and 5000 ppm, respectively, indicating that there
are no more active sites available to react with new gas molecules as the concentrations
rise. The identified gas concentration ranges that correspond to the beef spoilage can be
utilized as a baseline to detect beef deterioration in the future using only the electronic
nose, thus removing the need of using conventional microbiological plate counts. However,
a data set that contains the gas concentrations associated with the shelf lives of various
food items (e.g., fruits, vegetables, seafood, etc.) is required for the effective utilization of
the electronic nose in smart food systems. The shelf-life estimation of different food items
is a pivotal piece of information that will define this system’s intelligence. For that, our
future research would extend to include more gas sensors in the e-nose system, identify
the gas concentration levels produced from a wider range of fresh foods (i.e., meats and
fresh produce), and develop a prediction model for spoilage and ripening classification. In
addition, since glucose consumption is of crucial significance for bacterial growth and their
by-products, our future research may extend to include the glucose content in raw beef in
the linear regression analysis of bacterial proliferation and VOC production.

5. Conclusions

This paper presents an IoT-enabled e-nose system for food quality monitoring. Raw
beef was used to evaluate the system’s performance. The VOC concentrations produced
from the beef samples stored at 4 ◦C and the two stored at 21 ◦C were evaluated using the
e-nose system that utilizes a carbon dioxide gas sensor, ammonia gas sensors, and ethylene
gas sensors. Microbial population quantifications of aerobic bacteria, Pseudomonas spp.,
and LAB were conducted to evaluate beef quality and identify spoilage. The production
of VOCs was correlated with the proliferation of bacteria using linear regression, and it
was discovered that aerobic bacteria and Pseudomonas spp. play a significant role in the
production of VOCs in raw beef, as opposed to LAB. The VOC concentrations that are
associated with raw beef spoilage were identified using the e-nose system and can be used
in the future to detect beef spoilage without needing to use microbial plate counts.

Author Contributions: Conceptualization, A.N.D., L.O.O. and K.N.S.; Data curation, A.N.D., L.O.O.,
C.K.O., A.A. and R.H.; Formal analysis, A.N.D., L.O.O. and A.A.; Funding acquisition, A.N.D.
and K.N.S.; Investigation, A.N.D., L.O.O., C.K.O. and A.A.; Methodology, A.N.D., L.O.O., C.K.O.,
A.A. and R.H.; Project administration, A.N.D.; Resources, A.N.D. and K.N.S.; Supervision, K.N.S.;
Validation, L.O.O., C.K.O. and A.A.; Visualization, A.N.D., L.O.O., C.K.O. and A.A.; Writing—original
draft, A.N.D. and C.K.O.; Writing—review and editing, A.N.D. and K.N.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the King Abdullah University of Science and Technology
(KAUST), under KAUST baseline funding; and Uvera Inc., under the research and development funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors Asrar Nabil Damdam, Levent Osman Ozay, Cagri Kaan Ozcan,
Ashwaq Alzahrani, and Raghad Helabi are employed by the company Uvera Inc., where the company
is a research spin-off from KAUST. The remaining authors declare that the research was conducted in
the absence of any commercial or financial relationships that could be construed as a potential conflicts
of interest. The authors declare that an intellectual property disclosure was obtained from KAUST.



Foods 2023, 12, 2227 13 of 14

References
1. U. N. E. Programme. Food Waste Index Report. 2021. Available online: https://www.unep.org/resources/report/unep-food-

waste-index-report-2021 (accessed on 25 February 2023).
2. Kustar, A.; Patino-Echeverri, D. A review of environmental life cycle assessments of diets: Plant-based solutions are truly

sustainable, even in the form of fast foods. Sustainability 2021, 13, 9926. [CrossRef]
3. Costantini, M.; Vazquez-Rowe, I.; Manzardo, A.; Bacenetti, J. Environmental impact assessment of beef cattle production in

semi-intensive systems in Paraguay. Sustain. Prod. Consump. 2021, 27, 269–281. [CrossRef]
4. Damdam, A.N.; Alzahrani, A.; Salah, L.; Salama, K.N. Effects of UV-C Irradiation and Vacuum Sealing on the Shelf-Life of Beef,

Chicken and Salmon Fillets. Foods 2023, 12, 606. [CrossRef]
5. Ishangulyyev, R.; Kim, S.; Lee, S.H. Understanding food loss and waste—Why are we losing and wasting food? Foods 2019, 8, 297.

[CrossRef] [PubMed]
6. Stenmarck, Â.; Jensen, C.; Quested, T.; Moates, G.; Buksti, M.; Cseh, B.; Juul, S.; Parry, A.; Politano, A.; Redlingshofer, B.; et al.

Estimates of European Food Waste Levels; IVL Swedish Environmental Research Institute: Stockholm, Sweden, 2016.
7. Wickramasinghe, N.N.; Ravensdale, J.; Coorey, R.; Chandry, S.P.; Dykes, G.A. The predominance of psychrotrophic pseudomonads

on aerobically stored chilled red meat. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1622–1635. [CrossRef] [PubMed]
8. Yim, D.G.; Jin, S.K.; Hur, S.J. Microbial changes under packaging conditions during transport and comparison between sampling

methods of beef. J. Anim. Sci. Technol. 2019, 61, 47–53. [CrossRef]
9. Wang, J.; Wang, H.; He, J.; Li, L.; Shen, M.; Tan, X.; Min, H.; Zheng, L. Wireless sensor network for real-time perishable food

supply chain management. Comput. Electron. Agric. 2015, 110, 196–207. [CrossRef]
10. Prabhakar, P.K.; Vatsa, S.; Srivastav, P.P.; Pathak, S.S. A comprehensive review on freshness of fish and assessment: Analytical

methods and recent innovations. Food Res. Int. 2020, 133, 109157. [CrossRef]
11. Ajaykumar, V.; Mandal, P.K. Modern concept and detection of spoilage in meat and meat products. In Meat Quality Analysis;

Elsevier: Amsterdam, The Netherlands, 2020; pp. 335–349.
12. Fletcher, B.; Mullane, K.; Platts, P.; Todd, E.; Power, A.; Roberts, J.; Chapman, J.; Cozzolino, D.; Chandra, S. Advances in meat

spoilage detection: A short focus on rapid methods and technologies. CyTA-J. Food 2018, 16, 1037–1044. [CrossRef]
13. Lohumi, S.; Lee, S.; Lee, H.; Cho, B.-K. A review of vibrational spectroscopic techniques for the detection of food authenticity and

adulteration. Trends Food Sci. Technol. 2015, 46, 85–98. [CrossRef]
14. Yoon, J.; Lee, K.; Park, Y. A simple and rapid method for detecting living microorganisms in food using laser speckle decorrelation.

arXiv 2016, arXiv:1603.07343.
15. Jung, Y.; Min, J.; Choi, J.; Bang, J.; Jeong, S.; Pyun, K.R.; Ahn, J.; Cho, Y.; Hong, S.; Hong, S.; et al. Smart paper electronics by

laser-induced graphene for biodegradable real-time food spoilage monitoring. Appl. Mater. Today 2022, 29, 101589. [CrossRef]
16. Dong, D.; Jiao, L.; Li, C.; Zhao, C. Rapid and real-time analysis of volatile compounds released from food using infrared and laser

spectroscopy. TrAC Trends Anal. Chem. 2019, 110, 410–416. [CrossRef]
17. Poghossian, A.; Geissler, H.; Schöning, M.J. Rapid methods and sensors for milk quality monitoring and spoilage detection.

Biosens. Bioelectron. 2019, 140, 111272. [CrossRef] [PubMed]
18. Nowshad, F.; Khan, M.S. Electronic tongue for food safety and quality assessment. In Techniques to Measure Food Safety and Quality;

Springer: Berlin/Heidelberg, Germany, 2021; pp. 229–247.
19. Kaur, G.; Bhari, R.; Kumar, K. Electronic noses and tongue-based sensor systems in food science. In Nanosensing and Bioanalytical

Technologies in Food Quality Control; Springer: Berlin/Heidelberg, Germany, 2022; pp. 357–384.
20. Shi, J.; Xiao, Y.; Jia, C.; Zhang, H.; Gan, Z.; Li, X.; Yang, M.; Yin, Y.; Zhang, G.; Hao, J.; et al. Physiological and biochemical changes

during fruit maturation and ripening in highbush blueberry (Vaccinium corymbosum). Food Chem. 2022, 410, 135299. [CrossRef]
21. Jiang, S.; Liu, Y. Gas sensors for volatile compounds analysis in muscle foods: A review. TrAC Trends Anal. Chem. 2020, 126,

115877. [CrossRef]
22. Thakur, M.; Ragavan, K. Biosensors in food processing. J. Food Sci. Technol. 2013, 50, 625–641. [CrossRef]
23. Loudiyi, M.; Temiz, H.T.; Sahar, A.; Haseeb Ahmad, M.; Boukria, O.; Hassoun, A.; Aït-Kaddour, A. Spectroscopic techniques for

monitoring changes in the quality of milk and other dairy products during processing and storage. Crit. Rev. Food Sci. Nutr. 2022,
62, 3063–3087. [CrossRef]

24. Shaalan, N.M.; Ahmed, F.; Saber, O.; Kumar, S. Gases in food production and monitoring: Recent advances in target chemiresistive
gas sensors. Chemosensors 2022, 10, 338. [CrossRef]

25. Ali, M.M.; Hashim, N.; Aziz, S.A.; Lasekan, O. Principles and recent advances in electronic nose for quality inspection of
agricultural and food products. Trends Food Sci. Technol. 2020, 99, 1–10.

26. Wang, M.; Gao, F.; Wu, Q.; Zhang, J.; Xue, Y.; Wan, H.; Wang, P. Real-time assessment of food freshness in refrigerators based on a
miniaturized electronic nose. Anal. Methods 2018, 10, 4741–4749. [CrossRef]

27. Sanaeifar, A.; Mohtasebi, S.S.; Ghasemi-Varnamkhasti, M.; Ahmadi, H.; Lozano, J. Development and application of a new low
cost electronic nose for the ripeness monitoring of banana using computational techniques (PCA, LDA, SIMCA, and SVM). Czech
J. Food Sci. 2014, 32, 538–548. [CrossRef]

28. Rivai, M.; Budiman, F.; Purwanto, D.; Al Baid, M.S.A.; Tukadi; Aulia, D. Discrimination of durian ripeness level using gas sensors
and neural network. Procedia Comput. Sci. 2022, 197, 677–684. [CrossRef]

https://www.unep.org/resources/report/unep-food-waste-index-report-2021
https://www.unep.org/resources/report/unep-food-waste-index-report-2021
https://doi.org/10.3390/su13179926
https://doi.org/10.1016/j.spc.2020.11.003
https://doi.org/10.3390/foods12030606
https://doi.org/10.3390/foods8080297
https://www.ncbi.nlm.nih.gov/pubmed/31362396
https://doi.org/10.1111/1541-4337.12483
https://www.ncbi.nlm.nih.gov/pubmed/33336914
https://doi.org/10.5187/jast.2019.61.1.47
https://doi.org/10.1016/j.compag.2014.11.009
https://doi.org/10.1016/j.foodres.2020.109157
https://doi.org/10.1080/19476337.2018.1525432
https://doi.org/10.1016/j.tifs.2015.08.003
https://doi.org/10.1016/j.apmt.2022.101589
https://doi.org/10.1016/j.trac.2018.11.039
https://doi.org/10.1016/j.bios.2019.04.040
https://www.ncbi.nlm.nih.gov/pubmed/31170654
https://doi.org/10.1016/j.foodchem.2022.135299
https://doi.org/10.1016/j.trac.2020.115877
https://doi.org/10.1007/s13197-012-0783-z
https://doi.org/10.1080/10408398.2020.1862754
https://doi.org/10.3390/chemosensors10080338
https://doi.org/10.1039/C8AY01242C
https://doi.org/10.17221/113/2014-CJFS
https://doi.org/10.1016/j.procs.2021.12.188


Foods 2023, 12, 2227 14 of 14

29. Rivai, M.; Budiman, F.; Purwanto, D.; Simamora, J. Meat freshness identification system using gas sensor array and color sensor
in conjunction with neural network pattern recognition. J. Theor. Appl. Inf. Technol. 2018, 96, 12.

30. Weston, M.; Geng, S.; Chandrawati, R. Food sensors: Challenges and opportunities. Adv. Mater. Technol. 2021, 6, 2001242.
[CrossRef]

31. Matindoust, S.; Farzi, G.; Nejad, M.B.; Shahrokhabadi, M.H. Polymer-based gas sensors to detect meat spoilage: A review. React.
Funct. Polym. 2021, 165, 104962. [CrossRef]

32. Zhang, D.; Yu, S.; Wang, X.; Huang, J.; Pan, W.; Zhang, J.; Meteku, B.E.; Zeng, J. UV illumination-enhanced ultrasensitive ammonia
gas sensor based on (001) TiO2/MXene heterostructure for food spoilage detection. J. Hazard. Mater. 2022, 423, 127160. [CrossRef]
[PubMed]

33. Matindoust, S.; Baghaei-Nejad, M.; Abadi, M.H.S.; Zou, Z.; Zheng, L.-R. Food quality and safety monitoring using gas sensor
array in intelligent packaging. Sens. Rev. 2016, 36, 169–183. [CrossRef]

34. Falagan, N.; Terry, L.A. Recent advances in controlled and modified atmosphere of fresh produce. Johns. Matthey Technol. Rev.
2018, 62, 107–117. [CrossRef]

35. da Costa, T.P.; Gillespie, J.; Cama-Moncunill, X.; Ward, S.; Condell, J.; Ramanathan, R.; Murphy, F. A systematic review of real-time
monitoring technologies and its potential application to reduce food loss and waste: Key elements of food supply chains and IoT
technologies. Sustainability 2023, 15, 614. (In English) [CrossRef]

36. Reese, K.L.; Rasley, A.; Avila, J.R.; Jones, A.D.; Frank, M. Metabolic profiling of volatile organic compounds (VOCs) emitted by
the pathogens Francisella tularensis and Bacillus anthracis in liquid culture. Sci. Rep. 2020, 10, 1–17. [CrossRef] [PubMed]

37. Chen, J.; Tang, J.; Shi, H.; Tang, C.; Zhang, R. Characteristics of volatile organic compounds produced from five pathogenic
bacteria by headspace-solid phase micro-extraction/gas chromatography-mass spectrometry. J. Basic Microb. 2017, 57, 228–237.
(In English) [CrossRef] [PubMed]

38. Odeyemi, O.A.; Alegbeleye, O.O.; Strateva, M.; Stratev, D. Understanding spoilage microbial community and spoilage mecha-
nisms in foods of animal origin. Compr. Rev. Food Sci. Food Saf. 2020, 19, 311–331. [CrossRef] [PubMed]

39. Ferone, M.; Gowen, A.; Fanning, S.; Scannell, A.G.M. Microbial detection and identification methods: Bench top assays to omics
approaches. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3106–3129. (In English) [CrossRef]

40. Böhme, K.; Cremonesi, P.; Severgnini, M.; Villa, T.G.; Fernández-No, I.C.; Velázquez, J.B.; Castiglioni, B.; Calo-Mata, P. Detection of
food spoilage and pathogenic bacteria based on ligation detection reaction coupled to flow-through hybridization on membranes.
Biomed. Res. Int. 2014, 2014, 156323. (In English) [CrossRef]

41. Paniel, N.; Noguer, T. Detection of salmonella in food matrices, from conventional methods to recent aptamer-sensing technologies.
Foods 2019, 8, 371. (In English) [CrossRef]

42. Brezmes, J.; Fructuoso, M.; Llobet, E.; Vilanova, X.; Recasens, I.; Orts, J.; Saiz, G.; Correig, X. Evaluation of an electronic nose to
assess fruit ripeness. IEEE Sens. J. 2005, 5, 97–108. [CrossRef]

43. Ma, L.; Wang, L.; Chen, R.; Chang, K.; Wang, S.; Hu, X.; Sun, X.; Lu, Z.; Sun, H.; Guo, Q.; et al. A low cost compact measurement system
constructed using a smart electrochemical sensor for the real-time discrimination of fruit ripening. Sensors 2016, 16, 501. [CrossRef]

44. Putra, M.A.; Rivai, M.; Arifin, A. Milk assessment using potentiometric and gas sensors in conjunction with neural network. In
Proceedings of the 2018 International Seminar on Intelligent Technology and Its Applications (ISITIA), Bali, Indonesia, 30–31
August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 409–412.

45. Winsen Co. Electrochemical Ethylene Gas Sensor ME3-C2H4. 9 July 2021. Available online: https://www.winsen-sensor.com/d/
files/me3-c2h4-0-100ppm(ver1_1)-manual.pdf (accessed on 12 March 2023).

46. Nastiti, P.; Bintoro, N.; Karyadi, J.; Rahayoe, S.; Nugroho, D. Classification of freshness levels and prediction of changes in
evolution of NH3 and H2S gases from chicken meat during storage at room temperature. J. Tek. Pertan. Lampung J. Agric. Eng.
2022, 11, 90–98. [CrossRef]

47. Pavase, T.R.; Lin, H.; Shaikh, Q.-U.-A.; Hussain, S.; Li, Z.; Ahmed, I.; Lv, L.; Sun, L.; Shah, S.B.H.; Kalhoro, M.T. Recent
advances of conjugated polymer (CP) nanocomposite-based chemical sensors and their applications in food spoilage detection: A
comprehensive review. Sens. Actuators B Chem. 2018, 273, 1113–1138. [CrossRef]
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