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Abstract: Mushrooms have always been an important source of food, with high nutritional value and
medicinal attributes. With the use of biotechnological applications, mushrooms have gained further
attention as a source of healthy food and bioenergy. This review presents different biotechnological
applications and explores how these can support global food, energy, and water security. It highlights
mushroom’s relevance to meet the sustainable development goals of the UN. This review also
discusses mushroom farming and its requirements. The biotechnology review includes sections on
how to use mushrooms in producing nanoparticles, bioenergy, and bioactive compounds, as well as
how to use mushrooms in bioremediation. The different applications are discussed under the water,
energy, and food (WEF) nexus. As far as we know, this is the first report on mushroom biotechnology
and its relationships to the WEF nexus. Finally, the review valorizes mushroom biotechnology and
suggests different possibilities for mushroom farming integration.

Keywords: mushroom farming; nanoremediation; bioenergy; nanobiotechnology; agro-wastes;
nanoparticles

1. Introduction

Water, energy, and food (WEF) are all important for human survival. A considerable
volume of studies in the literature are attributed to the global water, food, and energy
nexus (e.g., [1–3]). These studies mainly focused on the scarcity of these resources [4,5],
their potential impact on human health [1], their nexus security [6], assessment of WEF
using geographic information systems (GIS) [7], optimizing the WEF nexus under different
agricultural systems such as the agro-forestry–livestock system [8], and the risks to this
nexus [9]. The WEF nexus is essential for socioeconomic and sustainable development.
Many global changes (e.g., sea level rise, higher temperatures, and extreme weather events)
may influence WEF and its scarcity risk [9]. Furthermore, global stresses, such as the recent
COVID-19 pandemic and the ongoing Russia–Ukraine war, have worsened global energy
and food security problems [10]. These challenges force us to search for alternatives to
WEF resources and to rethink our approaches to minimize the loss of resources [10]. It has
been reported that 4 trillion megajoules of energy and 82 billion cubic meters of water are
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lost globally every year. Furthermore, 344 million tons of global avoidable food waste is
responsible for squandering 4 × 1018 joules of energy and 82 billion m3 of water [11].

A great deal of previous research into mushrooms has focused on applications in the
agricultural, industrial, and medicinal sectors. A mushroom is the fruit body of a fungus.
There are 44,000 known species in the fungi kingdom, but not all of them produce mush-
rooms. Fungi lack chlorophyll and are heterotrophic organisms that break down organic
matter in various ways [12]. The applications of mushrooms in food and medicine have
been widely investigated (e.g., [13–15]). More recent attention has focused on the global
issues of water, energy, and food from different points of view, including mushrooms as
bioresources for nutraceuticals and food [16], therapeutic values [17], producing biofuel [14],
producing high-protein food [18], and water remediation using mushroom residue [19,20].
Collectively, these studies outline a critical role for mushrooms in our life and support the
hypothesis that mushrooms have a crucial role to play in different fields. An important
theme emerging from the discussion of these studies is the water–energy–food nexus.

Recently, several studies have been published on a variety of mushroom species and
their relationships with health benefits. Examples include the shiitake mushroom (Lentinula
edodes) [17]; the biotechnological applications of the Yarrowia lipolytica mushrooms [21];
the green biotechnology of Pleurotus ostreatus L. [22]; and the biorefinery abilities of Pleu-
rotus ostreatus mushrooms [23]. A strong relationship between mushroom species and
their biotechnological attributes has been reported in the literature. Various studies have
provided insights into various fields, including the production of enzymes such as cellu-
lase [20], sugar alcohols such as arabitol, erythritol, and mannitol [21], and the processes
that lead to the production of biofuels or the use of bioenergy [24–26]. Hence, it could
conceivably be hypothesized that mushrooms have a crucial role to play in the production
of food and energy and that there is a strong relationship between mushrooms and the
water–energy–food nexus.

2. Methodology of the Review

The current study was designated to highlight the role of mushrooms in the produc-
tion of food and energy with a focus on their biotechnological applications (Figure 1). After
the formulation of the goal as described above, keywords were identified and database
searches were conducted (mainly PubMed, ScienceDirect, SpringerLink, Frontiers, and
MDPI). The keywords included were “water–food–energy nexus”, “edible mushrooms”,
“medicinal mushrooms”, “toxic mushrooms”, “mushroom farming”, “mushrooms and
space”, “mushroom nanobiotechnology”, “mushrooms and nanoparticles”, “mushrooms
and nanoremediation”, “mushrooms and bioenergy”, “mushrooms bioactives”, “mush-
rooms and medicine”, “mushrooms biorefinery”, etc. The article search was refined to
cover only the last five years. We focused on articles from journals with high impact factors
and/or a good reputation. After compiling the articles, they were sorted according to the
tentative sections planned for this review.
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close attention to the WEF nexus is essential to support food security, sustainable agricul-
ture, and overall human and environmental health. Therefore, there is an urgent need to 
manage global water, energy, and food resources by supporting their sustainable use, par-
ticularly when there is a scarcity of these resources [27,28]. The WEF nexus is linked to 
many global issues, for example, climate change [5], the sustainable use of resources [2], 
urban ecosystem services [29], sustainable irrigation systems [30], global water resources 
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water, energy, and food under globalization, urbanization, economic growth, and climate 
change [39]. Humanity faces serious problems in supplying enough water, energy, and 
food to meet global needs. These problems will be aggravated in the future. Thus, to 

Figure 1. A flowchart showing how this study was conducted and the review prepared.

3. Water-Energy-Food Nexus

Water and energy are crucial to food production. Thus, intensive scientific research on
water, energy and food is needed to reduce poverty for human wellbeing and sustainable
development (Figure 2). It is possible that natural resources (water, energy, and food
sources) benefit (i.e., there are positive outcomes) from various practices, including food
manufacturing, desalination, or the valorization of municipal waste, but negative results
may appear due to climate change, over-exploitation, emissions, and pollution. Paying close
attention to the WEF nexus is essential to support food security, sustainable agriculture,
and overall human and environmental health. Therefore, there is an urgent need to manage
global water, energy, and food resources by supporting their sustainable use, particularly
when there is a scarcity of these resources [27,28]. The WEF nexus is linked to many global
issues, for example, climate change [5], the sustainable use of resources [2], urban ecosystem
services [29], sustainable irrigation systems [30], global water resources allocation [31],
optimizing different agro-ecosystems like the agro-forestry–livestock system [8], managing
risk levels of available WEF resources [32], the co-production of WEF resources [33], urban
green and blue infrastructure [34], and predicting WEF security in the future [6].

Although the WEF nexus is a global issue, many studies have been focused on the local
level. These include case studies in Mexico [6], Egypt [7], China [8,30,35,36], Romania [37],
Iran [38], and in Africa [33], to name a few. Similar global stressors are faced in regions all
over the world. There is a need to find ways to supply proper and adequate water, energy,
and food under globalization, urbanization, economic growth, and climate change [39].
Humanity faces serious problems in supplying enough water, energy, and food to meet
global needs. These problems will be aggravated in the future. Thus, to ensure WEF
security and sustainability, it is crucial to understand the factors and dynamics that drive
WEF production and co-production to develop policies and plans more effectively [33].
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Figure 2. The concept of the water–energy–food nexus with focus on the positive (words in black)
and negative (words in red) sides of the nexus on human and environmental health as society works
towards sustainability.

4. Mushroom Farming: Basics and Requirements

Mushrooms are being referred to as the new superfood due to their health benefits.
It is thought that the benefits of mushrooms were already well-known 400 million years
ago, discovered by Egyptian and Roman civilizations as well as by the ancient Greeks.
The latter called mushrooms the “Food of the Gods” [16]. It is not possible to cultivate all
mushroom species, and a special protocol should be followed for any cultivation. The
protocols should include certain specific steps and requirements for production (Figure 3).
The existing mushroom farming systems are presented in Figure 4. The main aim of
mushroom production is food, but different farming systems can co-exist with different
aims, such as a mushroom–forest system, mushrooms for livestock feeding, mushrooms
for bee breeding, urban mushroom farming, and smart mushroom farming. Other major
applications for mushrooms include their use in the remediation of polluted soil and water
as well as in the production of enzymes, bioactives, and bioenergy.
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Figure 3. Basic information on mushrooms that include methods of cultivation, different kinds of
substrates, different types of spawn, and alternative cultivation methods of mushrooms.

The value of mushrooms as food has increased after the COVID-19 pandemic and the
global food crisis that followed. This impact has been recorded all over the world in many
zones and several countries (e.g., [40,41]). This global issue led many countries to search
for smart and novel food processing technologies [42] and healthy food alternatives like
mushrooms [16]. The role of mushrooms with bacteriocin nanocomposite in fighting the
COVID-19 pandemic was confirmed by inhibiting metal NPs-bacteriocin [43]. Mushrooms
promote human immunity, as reported during the COVID-19 pandemic [16]. More light
will be shed on this, and we will discuss in detail the applications of mushrooms in the
following sections.

Mushrooms have low water and energy requirements for cultivation. In general,
the main factors that control mushroom cultivation include relative humidity, aeration,
temperature, and contamination [44]. Adding a small amount of water to cultivated
mushrooms every day can provide the required humidity [44]. The total primary energy
consumed by Agaricus bisporus is 29.1 MJ (27.8 and 1.3 megajoule per kilogram from non-
renewable and renewable sources, respectively) per kilogram of mushroom product [45].
Producing 1.0 kg of mushrooms can generate 0.71 kg of CO2, whereas the amount for
field-grown vegetables was 0.37 kg CO2-eq/kg [46]. In general, each 1.0 kg of mushroom
product can generate about 5.0 kg of spent mushroom substrate (SMS) [47], whereas only
2.5 kg of fresh SMS results from the production of 1 kg of fresh A. bisporus mushrooms [48].
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Figure 4. Mushrooms can be part of many farming systems, including food production, livestock
feeding, forestry farming, and urban mushroom farming. Mushrooms have several applications such
as the remediation of polluted soil and water, producing enzymes, bioactives (examples of them and
possible attributes are given in the figure), and bioenergy.

5. Mushrooms as a Healthy Food

Due to their high nutritional value and functional potential, mushrooms are known
as ideal food supplements, a new super-food, next-generation food of the future, and
myco-protein food. There is a strong relationship between mushrooms and the WEF nexus
(Figure 5). The relationship has positive as well as negative aspects. Mushrooms have low
requirements of water and energy for cultivation, they produce bioenergy and obtain clean
water via myco-remediation, are vital for biorefineries, and make ideal food supplements.
The observed negative correlations between mushroom and the WEF nexus include air and
water pollution caused by spores, and the fact that some mushroom species are considered
poisonous, causing health problems.

Edible mushrooms are rich in proteins (30–48%), ash (7–17%), dietary fiber (16–20%),
carbohydrates (12.5–40%), minerals, and vitamins like B, C, D, and E. Mushrooms also
have low calorie, cholesterol, fat, and sodium contents [15,16,49,50]. Mushrooms contain
a variety of bioactives including alkaloids, lactones, polyphenolic compounds, polysac-
charides, sesquiterpenes, sterols, and terpenoids [51]. Mushrooms may have more than
100 bioactive extracts and 156 compounds such as eminent antibiotics [52]. Mushrooms
are rich in B vitamins, including thiamine (B1), riboflavin (B2), niacin (B3), pantothenic
acid (B5), and folate (B9), which produce red blood cells that carry oxygen throughout the
human body [49].



Foods 2023, 12, 2671 7 of 26Foods 2023, 12, x FOR PEER REVIEW 7 of 26 
 

 

 
Figure 5. The relationships between mushrooms and the water–energy–food nexus, including pos-
itive and negative aspects. Mushrooms can support humanity with healthy food, but at the same 
time poisonous varieties can be toxic. They can produce bioenergy, but also consume O2 and release 
CO2 when cultivated indoors. 

Recently, several reports have been published on the nutraceutical and therapeutic 
values of different species of edible mushroom [15,51,53,54], such as porcini (Boletus edulis) 
[55] and shiitake (Lentinula edodes) [17] mushrooms, which have health-promoting effects 
(Table 1). These reports emphasized that mushrooms have bioactive compounds related 
to proteins and peptides as fungal immunomodulatory proteins, including ubiquitin-like 
proteins, lectins, and some enzymes such as ergothioneine, laccases, and ribonucleases 
[56]. The common benefits of mushrooms may include their antibacterial, antifungal, an-
tioxidant, antiviral, antihypertensive, immunomodulatory, antitumor, antihypercholes-
terolemic, antihyperlipidemic, antidiabetic, and anti-inflammatory properties [56,57]. 

Table 1. Some mushroom species and their health benefits as provided in recent references. 

Mushroom Species Health Benefits References 

Shiitake mushroom (Len-
tinula edodes) 

Therapeutic potential that prevents diseases due to antiviral, anti-
microbial, anticancer, antidiabetic, antiobesity, and antioxidant 

activities. 
Ahmad et al. [17] 

Ganoderma spp. 
Have anti-inflammatory, antitumor, antioxidant, immune regula-

tion, and other functions due to high polysaccharides content. Yu et al. [57] 

Agaricus bisporus 
Protect against several human diseases due to many bioactive 

compounds (e.g., anticancer, anti-inflammation, and antioxidant 
agents). 

Ahmed et al. [58] 

Figure 5. The relationships between mushrooms and the water–energy–food nexus, including
positive and negative aspects. Mushrooms can support humanity with healthy food, but at the same
time poisonous varieties can be toxic. They can produce bioenergy, but also consume O2 and release
CO2 when cultivated indoors.

Recently, several reports have been published on the nutraceutical and therapeu-
tic values of different species of edible mushroom [15,51,53,54], such as porcini (Boletus
edulis) [55] and shiitake (Lentinula edodes) [17] mushrooms, which have health-promoting
effects (Table 1). These reports emphasized that mushrooms have bioactive compounds re-
lated to proteins and peptides as fungal immunomodulatory proteins, including ubiquitin-
like proteins, lectins, and some enzymes such as ergothioneine, laccases, and ribonucle-
ases [56]. The common benefits of mushrooms may include their antibacterial, antifungal,
antioxidant, antiviral, antihypertensive, immunomodulatory, antitumor, antihypercholes-
terolemic, antihyperlipidemic, antidiabetic, and anti-inflammatory properties [56,57].

Table 1. Some mushroom species and their health benefits as provided in recent references.

Mushroom Species Health Benefits References

Shiitake mushroom (Lentinula edodes)
Therapeutic potential that prevents diseases due to

antiviral, antimicrobial, anticancer, antidiabetic,
antiobesity, and antioxidant activities.

Ahmad et al. [17]

Ganoderma spp.
Have anti-inflammatory, antitumor, antioxidant,
immune regulation, and other functions due to

high polysaccharides content.
Yu et al. [57]



Foods 2023, 12, 2671 8 of 26

Table 1. Cont.

Mushroom Species Health Benefits References

Agaricus bisporus
Protect against several human diseases due to many

bioactive compounds (e.g., anticancer,
anti-inflammation, and antioxidant agents).

Ahmed et al. [58]

Lion’s mane mushroom
(Hericium erinaceus)

Antimicrobial action due to high content of corrinoids in
the form of vitamin B12. Rizzo et al. [59]

Ganoderma applanatum Prevent oxidative stress (antioxidant) due to high
ergothioneine content. Martinez-Medina et al. [60]

Oyster mushroom (Pleurotus ostreatus) Antimicrobial and prebiotic benefits for
human health. Xhensila et al. [61]

Pleurotus ostreatus Mushroom Rich in chitin and glucan prebiotics, which enhance
beneficial gut bacteria activity as antimicrobial agents. Tör˝os et al. [62]

Morel mushroom (Morchella esculenta L.)

Health-promoting due to bioactives (polysaccharides
and polynucleotides) that provide antidiabetic,

antitumor, cardiovascular protective, antiparasitic,
hepatoprotective, antibacterial, and antiviral properties.

Sunil and Xu [63]

Porcini mushroom (Boletus edulis)
Health-promoting effects from antineoplastic, antioxidant,

antibacterial, anti-inflammatory, antiviral, and
hepato-protective properties due to bioactive compounds.

Tan et al. [55]

Russula griseocarnosa

Health promoting actions include delaying aging and
therapeutic functions (e.g., immune regulation,

anticancer, antioxidant, hypoglycemic, and
hypolipidemic activities).

Liu et al. [64]

Tremella fuciformis
Exopolysaccharides have may health benefits
such as immune-enhancing, antitumor, and

hypoglycemic properties.
Li et al. [65]

Russula virescens

Polysaccharides have potential anticancer,
hypoglycemia, and immune-boosting activities by

inhibiting α-glucosidase and α-amylase and mediating
cellular immune response.

Li et al. [66]

6. Mushroom Biotechnology

Mushroom biotechnology is defined as the science in which mushrooms are included
in processes like bioconversion, biorefining, bioremediation, and biodegradation (Figure 6).
Negative and positive issues can arise from the relationship between mushrooms and WEF
(Figure 6). Biotechnology might guarantee the quality and security of WEF and thus con-
tribute to combatting infectious diseases, reducing hunger, and remediating environmental
degradation. The main problems within this relationship are represented by the production
of biological weapons and security/safety problems at the global level of WEF.

The many biotechnological applications of mushrooms have generated great attention
aimed at the growing demand for energy, food, fodder, and fertilizers [67–69]. Biotechnolog-
ical applications of mushrooms are considered an emerging approach for utilizing WEF re-
sources. In this section, four subsections will be presented, including the use of mushrooms
to produce nanoparticles, bioactive compounds, bioenergy, and for nanoremediation.
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Figure 6. The role of mushroom biotechnology on the water–energy–food nexus, including the
positive (pros in black color) and negative (cons in red color) aspects that may be generated due to dif-
ferent applications of biotechnology through certain processes, including bioconversion, biorefinery,
bioremediation, and biodegradation.

6.1. Mushrooms to Produce Nanoparticles

Myco- or green biosynthesis of eco-friendly nanoparticles (NPs) is one of the most
important recent applications of mushrooms. This biological method for producing NPs is
preferable compared to chemical or physical methods to avoid environmental pollution.
NPs have great applications in the fields of water, energy, and food, including enormous
benefits in water purification/remediation [70], producing high-efficiency energy and
its storage [71] and food security [72]. In this subsection, we will focus on different
applications of NPs in the fields of food and energy, whereas water will be discussed in the
next subsection. Nanoparticles produced by mushrooms have several applications in the
food and human health sectors, as tabulated in Table 2. Silver nanoparticles are the most
common among NPs, which can be produced using the mushroom Laxitextum bicolor for
myco-synthesis, as reported by [73].

Mushrooms can produce NPs through two different methods: (1) production inside
the mycelium cells stimulated by intracellular enzymes or (2) production outside these
cells by extracellular enzymes [74–76]. The myco-synthesis of NPs can be performed by
certain steps, as presented in Figure 7. Myco-synthesis can produce gold (Au-NPs), silver
(Ag-NPs), selenium (Se-NPs), magnesium oxide (MgO-NPs), titanium oxide (TiO2-NPs),
copper oxide (CuO-NPs), zinc oxide (ZnO-NPs), and cadmium sulfide (CdS-NPs) NPs [77].
Silver NPs are very common and can be generated using many mushroom species (Agaricus
bisporus, Amanita muscaria, Pleurotus ostreatus, Ganoderma applanatum, etc.). Ag-NPs have
been utilized for their antibacterial, anticancer, antioxidant, and antimicrobial activities [77].
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Figure 7. Steps for the biosynthesis of nanoparticles (NPs) from mushrooms (like oyster mushrooms)
are as follows: (1) use of mushroom extracts as biomolecules or capping or reducing agents by
slicing and then drying them in the oven (2), grinding these slices and using the mushroom powder
extract to prepare the aqueous extraction (3); this extraction is then filtered and freeze dried (4).
Mushroom extract was added into metal solution to reduce metallic ions from (M+) to (M0) via the
oxidation/reduction mechanism with continuous stirring (5) and centrifugation (6) to form clusters
of NPs that were confirmed after washing (7) and characterized using techniques (8) such as scanning
electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared
spectroscopy (FTIR), and X-ray crystallography (XRD). Examples of NPs formed from mushrooms
and factors that control this myco-formation are presented in the upper center of the figure (adapted
from Elsakhawy et al.) [77].

A proposed mechanism for forming NPs from mushrooms has been discussed in many
previous publications using different types of enzymes (mainly reductases), intracellular
or extracellular, for reducing and stabilizing NPs through the mushroom exudates of
biomolecules [92–94]. Mushroom hypha cells can secrete exudates as extracellular enzymes
and reduce the oxidation state of metal ions, creating elemental forms of these metals
through secondary metabolites such as alkaloids, cyclosporine, griseofulvin, flavonoids,
lovastatin, polysaccharides, mevastatin, and saponins [77]. The intracellular enzymes
work in the mushroom hypha cells in the presence of enzymes such ACCases (Acetyl-
CoA carboxylase), nicotinamide adenine dinucleotide (NADH), NADH-dependent nitrate
reductase enzymes, and peroxidases, which can reduce metallic ions into reduced metallic
elemental forms (M0), creating NPs. In both intra- and extra-cellular methods, NPs should
be purified to eliminate any remaining fungal by-products through simple filtration and
then centrifuging or chemical washing [75].
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Table 2. Selected studies on the biosynthesis of nanoparticles (NPs) by mushrooms and their sug-
gested applications related to water, energy, food, and human health.

Mushroom Species Nanoparticles (NPs) The Application References

Enoki mushroom
(Flammulina velutipes) Ag-NPs (~10 nm) Biodegradable natural biopolymers as active

food packaging films. [78]

Oyster mushroom
(Pleurotus florida) Ag-NPs (~12.62 nm)

Effective antimicrobial agents as an
alternative to traditional antibiotics to control

diseases/microbial infection.
[79]

Reishi mushroom
(Ganoderma lucidum) Ag-NPs (15–22 nm)

Ag-NPs can be applied in the
pharmaceutical, medical, and cosmetic fields

due to their antioxidant, antibacterial, and
antifungal activity.

[80]

Oyster mushroom
(Pleurotus florida) Gold-platinum (Au-Pt-NPs, 16 nm) Au-Pt-NPs showed anticancer activity

against human colon cancer. [81]

Pleurotus giganteus Ag-NPs (2–20 nm) Ag-NPs have antibacterial and α-amylase
inhibitory activity. [82]

Macrolepiota procera Ag-NPs (20–50 nm)
Ag-NPs have antibacterial activity as a green
corrosive inhibitor for mild steel in cooling

tower water systems.
[83]

Termitomyces heimii
mushroom CdS-NPs (<5 nm)

CdS-NPs have potential use in energy (solar
panels), biomedical, biofilm, drug delivery,

and environmental applications.
[84]

Cordyceps militaris
mushroom ZnO-NPs (1.83 nm)

ZnO-NPs can be used for the development of
therapeutic drugs and have antioxidant,
antidiabetic, and antibacterial activity.

[85]

Inonotus hispidus
mushroom Ag-NPs (69.24 nm)

Ag-NPs exhibited activity against different
pathogenic bacteria and fungi, showing

antimicrobial potential.
[86]

Ramaria botrytis
mushroom Ag-Au bimetallic composite NPs

The nano-composite was effective for
intensive industrial and biomedical

applications due to powerful antioxidant
properties for DPPH radical scavenging.

[87]

Shiitake mushroom
(Lentinula edodes) ZnO-NPs (21–25 nm)

ZnO-NPs degraded methylene blue dye
pollution by 90% within 135 min in

wastewater. It also showed promise as an
antibacterial product.

[88]

Portabello mushroom
(A. bisporus) Au-NPs (53 nm) Au-NPs reduced methylene blue by about

98% in wastewater and decolorized azo dye. [89]

Ganoderma lucidum ZnO-NPs (using 25 mL for
extraction)

ZnO-NPs were used in vitro as nanofertilizer
for feeding garden cress (Lepidium sativum). [90]

Edible mushroom
(A. bisporus) Ag-NPs (average 17 nm)

Myco-fabricated Ag-NP had
antioxidant/antimicrobial effects without
any cytotoxic impacts on human dermal

fibroblast cells.

[91]

6.2. Mushrooms for Bioremediation

Soil and water pollution resulting from rapid industrialization, the intensive use of
agrochemicals, including mineral fertilizers and pesticides, urbanization, and other an-
thropogenic activities is a serious global problem. Using plants to remove pollutants or
combining plants and microbes in phytoremediation has been known for the last several
decades, whereas myco-remediation has gained recent attention. Such remediation de-
pends on certain enzymes that the mushrooms can produce and that can be used in the
degradation of organic pollutants [95]. Myco-remediation can also be accomplished by
applying spent mushroom substrate (SMS) as a by-product after mushroom cultivation.
This has many advantages, including its eco-friendly nature and low cost (Table 3) [96].
The potential of myco-remediation can be increased by integration with nanomaterials,
leading to the nano-restoration of polluted soil and water [97,98]. Many recent studies
confirmed that mushroom remediation is a sustainable and promising approach for the
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biodegradation of persistent pollutants in soil and wastewater treatments through the
production of enzymes such as peroxidase and laccase (e.g., [95,98]).

Table 3. Selected studies on mushroom remediation of polluted soil and water using spent mushroom
substrate (SMS).

Mushroom Species Polluted Medium Main Finding of the Application Reference

SMS from Pleurotus eryngii
and A. bisporus

Cd-polluted paddy soil (total Cd,
72.87 mg kg−1)

Applied SMS improved the biomass
of root and straw at different growth
stages by reducing the uptake of Cd

and accumulation in rice parts.

[99]

SMW of Pleurotus ostreatus Anionic dyes with initial dose of
100–1300 mg g−1

Max. adsorption capacities of SMW
were found to be 15.46, 18, 14.62, and

20.19 mg g−1 for DB22, DR5B, RB5,
and DB71, respectively.

[100]

Spent mushroom substrate
compost (SMSC) or biochar

(SMSB)

Added 0.6, 1.2, 1.8, and 2.4 mg kg−1

Cd to soil

About 4% SMS can be used for
amending Cd-polluted soils by Cd

immobilization and improving
chemical and biological

soil properties.

[101]

SMS from Pleurotus ostreatus Soil contained 8.535 SMS, and its
applied rate was 20–40 mg kg−1

Optimum applied into the SMS is
8.86–9.51 g kg−1 soil when growing

pak choi (Brassica chinensis L.).
[102]

SMS of Pleurotus ostreatus Wastewater polluted with
sulfonamides

Up to 83–91% of sulfonamides were
removed over 14 days

sulfamethoxazole, sulfathiazole,
sulfadiazine, sulfapyridine, etc.

[103]

Spent mushroom substrate Constructed wetland with simulated
acid mine drainage

Removal rate of metal-burdened
wastewater by SMS was Al, Zn, Cu

(99%), Fe (97%), and Pb (97%) over a
period of 800 days.

[104]

Spent mushroom substrate
0.5% (w/w) Cd polluted soil, level at 0.6 mg kg−1

Applied SMS and biochar was more
efficient than lime in reducing Cd

content and increasing organic matter
and enzyme activity after 4 weeks.

[105]

Spent mushroom substrate Soil contaminated with carbendazim

SMS applied to fungicide-polluted
soil reduced soil carbendazim

residues and significantly increased
the total-N, OM, and microbial

biomass in the soil.

[106]

Substrates of Enoki,A. bisporus,
and Auricularia auricula (AAR) Soil polluted with chemical fertilizer

AAR recorded the highest level of soil
nutrients among the 3 SMS

replacements (mineral fertilizer by
25%); reduced heavy metals

contamination.

[107]

Spent mushroom substrate
and its biochar Cd polluted soil, level at 0.6 mg kg−1

Applied SMS and its biochar
alleviated the adverse effects of Cd
and N and increased pH, CEC, and

OM content in the soil.

[65]

6.3. Mushrooms to Produce Bioenergy

Due to its nutritional value and functional bioactivities, the direct product of mush-
room cultivation is healthy food. This builds global market value and has led to steady
growth in the mushroom industry [14]. Due to the ability of recycling and utilizing mush-
room residues, the cultivation of mushroom is considered an excellent biotechnological
process (Figure 8). After harvesting mushrooms, a huge amount of waste (spent mushroom
substrate; SMS) remains. It is urgent that these wastes be managed in a sustainable way that
protects the environment. Based on the concept of waste-to-fuel, one management option
for SMS lignocellulosic wastes is to use it as a feedstock to produce biofuels, including
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bioethanol, biogas, bio-H2, bio-oil, and solid biofuels [14]. Therefore, integrated mushroom
cultivation for food and biofuel production can simultaneously meet rapidly rising global
demands for both energy and food [14]. The cultivation of mushrooms can serve as an
efficient biological pretreatment for producing biofuel and promoting its yield, improving
the overall economy and supporting the biorefinery approach [108].
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Figure 8. It is important to move towards zero (0) waste from food production and processing, and
the mushroom industry can help with this. General food wastes are presented in (A), whereas the
generation of agro-industry residues are in (B). The cultivation of mushrooms is an important source
of healthy food (C). At the same time, producing only 1 kg of fresh mushroom may generate about
5 kg of wet byproducts, or spent mushroom substrate (SMS). Thus, this waste needs to be managed
through the biorefinery or circular bioeconomic approach (D).

There are increasing concerns within the mushroom industry about the accumulation
of SMS. If SMS waste is not properly managed, this may have an adverse impact on the
environment, economy, and human health. Therefore, there is an urgent need for an
effective strategy for the proper management of SMS by recycling and reutilization. Several
studies focused on this, and six examples are provided here: (1) Study the valorization of
SMS for producing low-carbon biofuel viewed through the circular economy of utilizing
and recycling SMS as renewable feedstock to produce biogas, biohydrogen, bioethanol, bio-
oil, and solid biofuels [14]. (2) Assess optimal conditions to increase the yield of biogas from
SMS using the hydrothermal pretreatment (HTP) method to improve the biodegradability
of the SMS by 87% compared to mechanically pretreated biodegradability of 61% [109].
(3) Combine SMS with sewage sludge (SS) to convert SS into renewable fuels and N-rich
liquid fertilizers through hydrothermal carbonization while also significantly improving
fuel and fertilizer quality [24]. (4) Apart from producing bioenergy, SMS can be used
to produce compost through the enzyme activity of polyphenol oxidase, carboxymethyl
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cellulase, catalase, and laccase, with are correlated with the composition of the microbial
community [110]. (5) Applying liquid organic fertilizer formed from anaerobic fermentation
of liquid SMS enhanced pak choi production by around 30% and improved the level of
nutrients in the studied soil due to the synthesized hormone indole-3-acetic acid, IAA [111].
(6) SMS extract efficiently protected the active components of Bacillus thuringiensis (Bt) from
UV irradiation by forming lignin and lignin–carbohydrate complexes, which possessed
the ability to scavenge reactive oxygen species (ROS), had a high UV-screening effect, and
improved the UV stability of Bt formulation [112].

6.4. Mushrooms to Produce Bioactives

Mushrooms are rich in pharmaceutical and nutritional compounds. These bioactives
have a variety of clinical applications and many therapeutic attributes because of their qual-
ities as antioxidants, as well as anticancer, antimicrobial, antidiabetic, anti-inflammatory,
and prebiotic activities [113]. Several recent studies on mushroom bioactives discussed the
compounds found in different groups of mushrooms (Table 4) and confirmed the benefits
of edible/medicinal mushroom as a source of healthy food [49]. Kour et al. [16] reported
on the nutraceuticals found in mushrooms and their benefits as food due to their con-
tent of bioactives, such as polysaccharides protein complexes, polysaccharides, peptides,
terpenoids, and phenolic compounds. The immunomodulatory effect of mushrooms as an-
ticancer foods was confirmed due to the existence of many phytoconstituents (e.g., lentinan,
maitake-D fraction, and schizophyllan), which can upregulate the production of cytokine,
cause cell cycle arrest, and mediate cytotoxicity [114]. The bioactives in edible mushroom
spores and their quality as a novel resource for both food and medical compounds were
reported by Li et al. [115]. These bioactive compounds may include the following groups:
polysaccharides, amino acids, alkaloids, fatty acids, nucleosides, triterpenes, and others.
The role of bioactive metabolites in edible mushrooms in preventing human hair loss
was investigated by Tiwari et al. [116]. They reported that hair loss could be due to the
existence of androgenic alopecia (AGA), which occurs because of the hyperactivity of the
steroid 5α-reductase2. Many review articles have been published on mushroom bioactives
and their therapeutic potential in general (e.g., [15,16,117–120]), or with focus on certain
bioactive compounds such as proteins [121,122], polysaccharides [123–125], non-peptide
secondar + y metabolites [126], terpenoids [127,128], etc.

Table 4. Some edible mushroom species and their primary bioactive compounds content.

Mushroom
Species

Main Groups of Bioactive Compounds
Refs.

Phenolics Polysaccharides Proteins Triterpenoids

Cordyceps aegerita Proto-catechuic acid Fucogalactan Ageritin Bovistols A-C Citores et al. [129]

Boletus edulis Gallic acid Polysaccharides
(BEBP-1) β-Trefoil lectin Boledulins A-C Luo et al. [130]

Agaricus bisporus Gallocatechin Heteropolysaccharide
ABP

Protein type
FIIb-1 Ergosterol Liu et al. [131]

Lactarius deliciosus Syringic acid, vanillic acid Polysaccharide
(LDG-M) Laccase Azulene-type

sesquiterpen Su et al. [132]

Coprinus comatus Flavones and flavonols Modified
polysaccharide Laccases Terpenoids Nowakowski et al. [133]

Pleurotus ostreatus Caffeic acid and ferulic acid Mycelium
polysaccharides Concanavalin A Ergosterol Fu et al. [134]

Pleurotus cornucopiae Gallic acid β-glucan Oligopeptides Ergostane-type
sterols Lee et al. [135]

Macrolepiota procera Proto-catechuic acid Polysaccharides β-Trefoil lectin Lanostane
triterpenoids Chen et al. [136]

Abbreviations: FIP (immunomodulatory proteins); PEPE (Pleurotus eryngii purified polysaccharides); PSK (polysac-
charide K); PSP (polysaccharide peptide); RVP (Russula virescens polysaccharide); LDG m (Lactarius deliciosus
polysaccharides); BEPF (crude polysaccharides isolated from B. edulis).
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7. Mushrooms: Pros and Cons

Several benefits of mushrooms have been reported, mainly in the fields of agri-
culture, medicine, pharmacology, and the food industry. The most crucial benefits of
mushrooms can help achieve many UN development goals (SDGs) (Figure 9). These
goals target water, energy, and food security at a global level for a bio-based circular
economy [68]. It is worth noting the crucial role mushrooms play in supporting the WEF
nexus under the SDGs. Myco-biotechnology can improve the myco-cell factories, which
can help meet 11 out of 17 SDGs [68].
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Mushrooms may cause allergic reactions affecting the skin, nose, throat, and lungs,
with additional problems arising from toxic or poisonous mushrooms. Poisonous mush-
rooms have toxins that pose a threat to human health and safety. Poisonous mushrooms can
be divided into six groups based on the symptoms they cause (Table 5), including cytotoxic,
myotoxic (rhabdomyolysis), neurotoxic, gastrointestinal irritation, metabolic (including
endocrine and related toxicity), and miscellaneous adverse reactions [137]. Although the
annual global number of fatalities resulting from poisonous mushrooms is unknown, cy-
totoxic and myotoxic poisoning from mushrooms are the most lethal poisonings and can
cause death [137]. The most common species of poisonous mushrooms include Agaricales,
Pezizales (Ascomycota), Russulales (Basidiomycota), and Boletales [138]. Poisonous mush-
rooms have a negative impact on human health, but many benefits can be achieved using
the toxins of such mushrooms as tools for research on developmental biology, structural
biology, and cell biology. Therefore, more research on poisonous mushrooms is needed to
explore possible beneficial applications of such mushrooms [137].
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Table 5. The most important poisonous mushrooms, their classification, and species for each category.

Poisonous
Mushroom Group

Target Organ(s) or
Symptoms Mushroom Species Toxic Dose * Main Mushroom

Toxins Ref.

1. Cytotoxic
mushrooms Liver and kidneys Amanita bisporigera LD50 0.4–0.8 mg kg−1

Amanitin (amatoxins,
phallotoxins, and

virotoxins)
[139]

2. Neurotoxic
mushrooms

Neuroexcitatory
effects

Amanita, Clitocybe,
Inocybe, Psilocybe 400 mg/kg psilocin Psilocybins, muscarines,

and isoxazole [140]

3. Myotoxic
mushrooms

Symptoms of
rhabdomyolysis

Russula subnigricans
and Tricholoma

equestre
LD50 63.7–88.3 mg/kg

Russuphelins and
cycloprop-2-ene
carboxylic acid

[141]

4. Metabolic or
endocrine

mushrooms

Disulfiram-like
symptoms

Coprinus, Coprinopsis,
and Ampulloclitocybe

10–50 mg kg−1

gyromitrin
Trichothecene and

gyromitrin [137]

5. Gastrointestinal
irritant mushroom

Gastrointestinal
poisoning

Agaricus, Entoloma,
Gomphus, Hebeloma,

etc.

** Poisoning is
rarely fatal

Specific toxins did not
identify, but toxic

phenolic compounds
may Agaricus sp.

[142]

6. Miscellaneous
adverse

mushrooms

Hemolytic
poisoning

Example of Paxillus
involutus (Batsch) Fr.

Symptoms after 2–3 h
take to death

The toxin is unknown
at present [143]

* Body weight in white mice. ** Vomiting is a hallmark of poisoning by gastrointestinal irritant mushrooms.

Studies of poisonous mushrooms have reported on a wide variety of topics, includ-
ing using poisonous mushrooms to extract non-peptide secondary metabolites for the
development of drugs [126], the potential global benefits and problems of poisonous mush-
rooms [137], the investigation of amino-group-containing mushroom toxins (i.e., muscimol,
ibotenic acid, 2-amino-4-pentynoic acid, and 2-amino-4,5-hexadienoic acid) that can cause
hallucination and neurotoxicity in humans [144], ustalic acid in Tricholoma ustale as a toxin
that causes gastrointestinal symptoms [145], discriminating the edibility and poisoning
of seven wild boletes mushrooms [146], and assessing the mortality rate of mushroom
poisoning and its effects on the human liver [147].

8. Future Perspectives

There is a strong relationship between mushrooms (edible ones) and food, as many
edible mushrooms are considered a source of healthy food and energy. To guide our discus-
sion, we posed nine questions: (1) What is the relationship between mushrooms and human
health? (2) What are the main factors controlling applications of mushrooms from farm to
pharmacy? (3) What are the main factors controlling the edibility/toxicity of mushrooms?
(4) To what extent can nanoparticles produced from mushroom contribute to the WEF
nexus? (5) What are the promising roles of mushrooms in protecting the environment?
(6) Are mushrooms a viable source of bioenergy production? (7) To what extent is the
production of bioactives by mushrooms valuable? (8) Can mushrooms be integrated with
crop production? (9) What new insights can be provided regarding mushrooms at the
farming and pharma industry levels?

Most edible mushrooms belong to the Basidiomycetes, such as Agaricus bisporus,
Ganoderma lucidum, Flammulina velutipes, Lentinus edodes, and Pleurotus ostreatus and boletes,
while a few are ascomycetes, such as Morchella esculenta, Cordyceps sinensis, Cordyceps
militaris, Helvella elastica, and truffles [115]. They can have a significant impact on human
health due to their contents of bioactives and nutritional compounds. Certain species can
have negative impacts up to and including death because of toxic compounds such as those
found in poisonous mushrooms. The identification of mushrooms and their edibility is a
critical subject [141].

The main factors controlling applications of mushrooms at the farm or pharmacy
levels may include which mushroom species can be cultivated and which criteria are
important to provide food, medicinal, or pharmaceutical benefits. Several mushrooms have
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been identified for edibility and many myco-chemicals have been identified in wild and
cultivated mushrooms, with a focus on their nutritional and health benefits [148]. This
may link to the criteria for the edibility/toxicity of mushrooms. This issue is still open and
needs more investigation as not all species have been thoroughly studied, and their toxic or
beneficial compounds are not yet fully understood [149]. Some recent studies reported on
the controlling factors that make mushrooms edible and novel food products that contain
mushrooms [150]. Some studies have started to highlight food poisoning from particular
mushrooms and its mortality rate [147], whereas nephrotoxic poisoning by mushrooms
and its global epidemiology was discussed by Diaz [151].

Research gaps concerning the WEF nexus and mushroom cultivation are presented
in Figure 10. The nano-WEF nexus is a challenge, yet the application of nanotechnology
in WEF resources can overcome this obstacle. The suggested role of myco-producing
nanoparticles for the WEF nexus may open up a new window for these applications.
Mushrooms have a role to play in achieving many SDGs, mainly linked to the goals based
on the WEF nexus. In general, the biosynthesis of nanoparticles using mushrooms is
a green and sustainable method which has already been applied for the remediation of
polluted soil and water, but the application of nanofertilizers/nanopesticides for mushroom
production still needs more investigation to produce healthy mushrooms as food. What
is the promising role of mushrooms in protecting the environment? As mentioned before,
mushrooms can produce NPs that are useful in environmental remediation (mainly soil and
water), although the accumulation of SMS that results from the cultivation of mushrooms
or mismanagement may lead to environmental problems. Regarding question six on
mushrooms as a viable source for producing bioenergy, mushrooms have a potential role to
play in producing bioenergy through myco-biorefinery by the bioconversion of food waste
or mushroom waste to different value-added products [108].
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Are the bioactives produced by mushrooms valuable? Yes, several bioactive com-
pounds can be produced from mushroom extracts that benefit human health as emerging
bioresources of nutraceuticals and food. These bioactive compounds have been successfully
applied against many kinds of cancer and other human diseases. Regarding our question
about the integrated production of mushrooms with cultivated crops, forests, or livestock,
this is an important research area that is in need of more investigation. Such integration may
support food and energy production as well as provide additional benefits (Table 6) [152].

Table 6. Some examples of integrated food and energy production from cultivated crops and
mushrooms.

Mushroom Species Plant Species Food or Energy The Main Purpose of Study Reference

Pleurotus ostreatus
Crop residues

(cassava, common
bean, maize, banana)

Food and mushroom
production

Cropping yield first and using crop
residues for mushroom production,

besides fodder and compost
by farmers.

[153]

Pleurotus sajor-caju,
P. ostreatus, and
Pleurotus eryngii

Peels from the
processing of fruits
(mango, bananas,

pineapple, avocado,
orange, and
watermelon

Mushroom production

Using fruit waste materials as a
low-cost method to produce edible

mushrooms as a source for
health-promoting compounds such

as antioxidants.

[154]

Oyster mushrooms
(Pleurotus ostreatus)

Faba bean
(Vicia faba L.) hulls

Combined mushroom
and feed production

Faba bean hulls as a substrate for
mushroom production led to higher
protein levels and feed production.

[155]

Oyster mushrooms
(Pleurotus ostreatus)

Banana leaf-midrib
sticks Mushroom production

Banana sticks were submerged in a
liquid mycelium culture to produce

spawn as a promising alternative
industrial application.

[156]

Pleurotus ostreatus or
A. bisporus

Tomato (Solanum
lycopersicum)

Integrated tomato and
mushroom production

Spent mushroom substrate was
applied as a nutrient source to feed
tomato seedlings in an integrated

co-production system.

[157]

Agaricus subrufescens
or A. bisporus

Lettuce, cucumber,
and tomato

Integrated vegetables
and mushroom

cultivation

Spent mushrooms were used as
compost combined with

vermicompost, green waste compost,
and fertigation with liquid digestate

of food waste.

[158]

King oyster
(Pleurotus eryngii)

Romaine lettuces
(Lactuca sativa L.) Food production

Sustainable agro-system using CO2
from mushrooms to cultivate lettuce

in a continuous system.
[159]

Our last question is what are the new insights into mushrooms under/at the farm-
ing and pharma industry levels? As mentioned in the previous sections, mushrooms
support many SDGs, mainly relating to food, energy, and water. Figure 11 presents a
proposed integrated mushroom cultivation under the green circular agricultural system
and its bioeconomy approach. This approach can be successfully applied to the sustainable
bioeconomy. The model in Figure 11 presents several possible combinations between
mushrooms (from one side) and the WEF nexus (from the other side). This model visualizes
the interrelationships among mushrooms, food, and energy. This is an interrelationship
that can control the production of food based on mushrooms or other sources of food and
different possibilities for mushrooms in producing energy.
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Figure 11. A suggested integrated mushroom cultivation plan in a green circular agricultural system
and its bioeconomy approach for a sustainable bioeconomy model (adapted from Grimm et al. [160]
and Sharma et al. [161]).

9. Conclusions

Mushrooms are a vital source of human food as part of a healthy and nutritious
diet. Mushrooms do not need much water or energy during their cultivation compared
to most crops. Thus, edible mushroom farming can contribute to achieving the UN’s
sustainable development goals. Mushrooms are rich in bioactives and other pharmaceutical
attributes. Mushrooms can increase food production (on the farm level) and contribute to
the production of new medicines (on the pharmacy level). Mushrooms have a promising
ability to remediate polluted soil and water. The crucial role of mushrooms in the water,
energy, and food nexus has become increasingly clear; integrated mushroom farming
may support global food security and guarantee more healthy food for many nations.
Mushrooms are a particularly valuable resource that need more investigation to discover
important qualities mainly in the fields of food, water, and energy for the future of humanity.
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