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Abstract: Objectives: To assess prevalence and types of extended-spectrum β-lactamase (ESBL)-
producing bacteria in retail seafood. Methods: A literature review was completed according to
international guidelines for systematic reviews, except for being performed by a single reviewer.
Kruskal–Wallis and Dunn tests were used to determine statistical differences between continents or
seafood types. Results: Among 12,277 hits, 42 publications from 2011 to 2023 were deemed relevant
to the review’s objectives. The median prevalence of ESBL-contaminated products was 19.4%. A
significantly lower prevalence was observed in Europe (p = 0.006) and Africa (p = 0.004) compared
to Asia. Amongst the 2053 isolates analyzed in the selected studies, 44.8% were ESBL-positive.
The predominant type was CTX-M (93.6%), followed by TEM (6.7%) and SHV (5.0%). Only 32.6%
and 18.5% of the CTX-M-positive isolates were typed to group and gene level, respectively. While
group 1 (60.2%) was prevalent over group 9 (39.8%) among Enterobacterales, the opposite trend was
observed in Vibrio spp. (60.0% vs. 40.0%). Information at gene level was limited to Enterobacterales,
where CTX-M-15 was the most prevalent (79.2%). Conclusions: On average, one in five seafood
products sold at retail globally is contaminated with ESBL-producing Enterobacterales of clinical
relevance. Our findings highlight a potential risk for consumers of raw seafood, especially in Asia.

Keywords: antimicrobial resistance; seafood; extended-spectrum β-lactamases

1. Introduction

Antimicrobial resistance (AMR) poses a significant global threat and is a major public
health concern. In 2019, bacterial infections caused 4.95 million deaths, with 1.27 million
of those deaths being potentially preventable if the causative agent was susceptible to
antimicrobials. This places AMR as the 12th leading cause of death, surpassing HIV
and malaria [1]. In Europe alone, AMR is estimated to result in 33,000 deaths annually,
with associated healthcare and productivity losses amounting to €1.5 billion [2]. Notably,
resistance to β-lactam antimicrobials is responsible for over 70% of AMR-related deaths [3].

Extended-spectrum β-lactamases (ESBL) are enzymes produced by Gram-negative
bacteria that inactivate β-lactam antimicrobials [4]. These bacterial enzymes are a major
cause of resistance to third- and fourth-generation cephalosporins, which are classified as
critically important antimicrobials in human medicine by the World Health Organization
(WHO) [3]. ESBL-producing Enterobacterales have been classified by the WHO as “priority
pathogens” due to their significant threat to human health and the urgent need for new
antibiotics [5]. These bacteria are commonly multidrug-resistant, increasing the risk of
mortality and prolonged hospital stays [6]. The ESBL-encoding genes belong to three main
families: blaCTX-M, blaTEM, and blaSHV [7]. While TEM and SHV types were predominant
in the 1980s and 1990s, CTX-M has progressively become the most prevalent ESBL type.
CTX-M is further categorized into six phylogenetic groups (CTX-M-1, CTX-M-2, CTX-
M-8, CTX-M-9, CTX-M-25, and CTX-M-151) based on amino acid sequence [8]. CTX-M
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groups 1 (e.g., CTX-M-1 and CTX-M-15) and 9 (e.g., CTX-M-14 and CTX-M-27) are the most
commonly described groups, with CTX-M-15 being the most widespread variant among
clinical Enterobacterales worldwide [9].

While human-to-human transmission is the primary source of ESBL-producing Es-
cherichia coli carriage in high-income countries [10], there is growing concern about the pres-
ence of these AMR determinants in food and their potential transmission to humans [11].
Unlike meat from livestock, seafood is often consumed undercooked or raw, facilitating
foodborne transmission. In the Netherlands, a large source attribution study indicated
seafood as the most significant non-human source for human carriage of E. coli producing
CTX-M-15 (10%) and CTX-M-27 (10%) [12]. However, the contributions of different non-
human sources to this transmission have yet to be quantified in other parts of the world.

There is scattered information in the scientific literature regarding the extent and char-
acteristics of ESBL contamination in seafood products marketed in different geographical
regions. The objective of this review was to gather the available information on prevalence
and types of ESBL-producing Gram-negative bacteria in retail seafood products. The data
extracted from the selected studies were analyzed to detect significant variations between
continents, seafood types and bacterial hosts.

2. Materials and Methods
2.1. Review Protocol and Registration

We searched for studies investigating prevalence and types of ESBL-producing Gram-
negative bacteria in a wide range of retail seafood products, including mollusks, crustaceans,
and fish. The review adhered to the guidelines outlined in the Cochrane Handbook for Sys-
tematic Review and Interventions, with the exception that the quality and acceptance of the
included studies were assessed by a single reviewer [13]. The review was conducted based
on a study protocol registered in PROSPERO (registration number: CRD42020207039) [14].

2.2. Data Source and Literature Search Strategy

A comprehensive search was conducted on five electronic databases, namely PubMed,
ScienceDirect, Web of Science, SCOPUS, and CAB direct. CAB direct additionally contained
national reports which were also selected for screening based on our inclusion/exclusion
criteria. An initial search was performed in August 2022 and was followed by a second
search update in July 2023. The search strategy employed a Boolean combination of
free text words and MeSH (Medical Subject Headings) terms to identify relevant records
[(“Seafood”, “Fish” OR “Shellfish”) AND (“Extended-spectrum β-lactamase” OR “ESBL)
AND (“Antimicrobial resistance” OR “AMR”)].

2.3. Selection Process and Inclusion/Exclusion Criteria

We uploaded all the identified studies as PDFs to a bibliographic management soft-
ware (Mendeley version 1.19.8 for macOS), where duplicates were removed automatically.
Additional duplicates were identified and removed manually by the first author (R.P.),
who also performed abstract and full-text screening in two separate steps. We included
research studies and scientific reports that reported the occurrence of ESBL-contaminated
seafood products at retail. Only documents written in English were selected, without any
limitation on publication dates. We excluded studies that were based on samples that were
not collected at retail level (Figure 1).



Foods 2023, 12, 3033 3 of 18Foods 2023, 12, x FOR PEER REVIEW 3 of 20 
 

 

 

Figure 1. Prisma flow diagram of studies incorporated in the review. 

2.4. Data Extraction 

Data extraction was conducted by R.P. using a MS Excel (version 16.75.2) template 

created to capture relevant information such as publication year, sampling year, country 

where the study was performed, country where the seafood originated from, seafood 

type, sample size, number of ESBL-positive samples, ESBL-producing bacterial gen-

era/species, and method for ESBL detection. Whenever available, data on the specific ESBL 

types, such as CTX-M group or variant, were extracted and included in the analysis. For 

SHV and TEM, data were only extracted if strains were confirmed to exhibit a ESBL phe-

notype through susceptibility testing with cefpodoxime, cefotaxime, and/or ceftazidime 

since some enzymes belonging to these ESBL types (i.e., TEM-1, TEM-2, and SHV-1) are 

not classified as ESBL. 

2.5. Data Analysis 

The data extracted from the selected studies were tested for normal distribution by 

using Shapiro–Wilk normality test, which indicated a non-normal distribution (W = 0.8, p 

≤ 0.001). Accordingly, we used the Kruskal–Wallis test followed by a post hoc Dunn’s test, 

including the Bonferroni method for p-values’ adjustment, to determine statistically sig-

nificant differences between regions (Europe, Asia, and Africa) and between seafood types 

(mollusks, crustaceans, freshwater fish, and saltwater fish) in terms of prevalence of ESBL 

contaminated products. The data were visualized as Box-and-Whisker Plots and the re-

sults were presented as the median and the 25th and 75th percentiles. All statistical anal-

yses were implemented in R (Version 3.4.1R Foundation for Statistical Computing, Vi-

enna, Austria). Additionally, the prevalence of the types of ESBL (CTX-M groups, CTX-M 

variants, SHV, and TEM) contaminating the seafood products and carried by bacteria iso-

lated from those seafood products was calculated as the number of ESBL-contaminated 

seafood samples divided by the number of seafood samples tested. 

  

Figure 1. Prisma flow diagram of studies incorporated in the review.

2.4. Data Extraction

Data extraction was conducted by R.P. using a MS Excel (version 16.75.2) template
created to capture relevant information such as publication year, sampling year, country
where the study was performed, country where the seafood originated from, seafood type,
sample size, number of ESBL-positive samples, ESBL-producing bacterial genera/species,
and method for ESBL detection. Whenever available, data on the specific ESBL types,
such as CTX-M group or variant, were extracted and included in the analysis. For SHV
and TEM, data were only extracted if strains were confirmed to exhibit a ESBL phenotype
through susceptibility testing with cefpodoxime, cefotaxime, and/or ceftazidime since
some enzymes belonging to these ESBL types (i.e., TEM-1, TEM-2, and SHV-1) are not
classified as ESBL.

2.5. Data Analysis

The data extracted from the selected studies were tested for normal distribution by
using Shapiro–Wilk normality test, which indicated a non-normal distribution (W = 0.8,
p ≤ 0.001). Accordingly, we used the Kruskal–Wallis test followed by a post hoc Dunn’s
test, including the Bonferroni method for p-values’ adjustment, to determine statistically
significant differences between regions (Europe, Asia, and Africa) and between seafood
types (mollusks, crustaceans, freshwater fish, and saltwater fish) in terms of prevalence
of ESBL contaminated products. The data were visualized as Box-and-Whisker Plots and
the results were presented as the median and the 25th and 75th percentiles. All statistical
analyses were implemented in R (Version 3.4.1R Foundation for Statistical Computing,
Vienna, Austria). Additionally, the prevalence of the types of ESBL (CTX-M groups, CTX-M
variants, SHV, and TEM) contaminating the seafood products and carried by bacteria
isolated from those seafood products was calculated as the number of ESBL-contaminated
seafood samples divided by the number of seafood samples tested.
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3. Results
3.1. Literature Search Results

Among the 12,277 documents retrieved by our literature search, 42 were deemed
relevant based on our inclusion and exclusion criteria (Figure 1). These studies comprised
four national reports (i.e., DANMAP from 2018 and NethMap from 2017, 2018 and 2019)
and 38 scientific articles (Table 1). The countries in which the studies were conducted
included Vietnam (n = 8), South Korea (n = 8), India (n = 4), the Netherlands (n = 3), China
(n = 2), Egypt (n = 2), Nigeria (n = 2), Thailand (n = 2), Saudi Arabia (n = 1), Germany
(n = 1), Algeria (n = 1), Tanzania (n = 1), Cambodia (n = 1), Spain (n = 1), Myanmar (n = 1),
Denmark (n = 1) Portugal (n = 1), Tunisia (n = 1), and Brazil (n = 1). Out of the 42 included
studies, 22 (52.4%) reported the origin of the seafood items under study and 20 (90.9%) of
them tested seafood items which were domestically produced.

The study from Brazil was excluded from the statistical analysis on geographical
differences because it was the only study was available from the Americas. Two additional
studies were excluded from this analysis because they did not contain quantitative data
on ESBL-contaminated products but were used to report the prevalence of ESBL types in
bacteria isolated from seafood. Sixteen studies in which the type of seafood product was
not defined were excluded from the statistical analysis of ESBL prevalence among seafood
types (i.e., mollusks, crustaceans, freshwater fish, and saltwater fish).

A wide array of culture methods and selective media were used for the isolation and
identification of ESBL-producing bacteria (Table 2). Most studies (n = 31/42) involved
enrichment and subculture onto selective agar and five of them employed commercial
ESBL-selective media. The remaining 11 studies employed direct streaking on selective agar
(n = 3) or plating sample wash/homogenate without enrichment (n = 3). The remaining
studies did not specify the isolation methods (n = 5). Thirty-seven studies detected putative
ESBL producers using the double-disk synergy test, while five studies used minimum
inhibitory concentrations (MIC) determined by broth microdilution. Thirty-seven studies
typed ESBL genes to either a class, group or gene level using PCR methods, whereas
six studies employed whole genome sequencing (WGS) for the identification of ESBL-
encoding genes.

Table 1. List of selected publications reporting the occurrence of ESBL-producing bacteria in retail
seafood products.

Study Type
[Reference]

Data Collec-
tion/Publication Year Study Country

Seafood
Origin (N
Samples)

Seafood
Type(s)
(N Samples)

Sample Size
(N Samples)

ESBL
Prevalence
(%)

Original article
[15] 2018/2020 Korea Korea (120) Snail 120 29 (24.2)

Original article
[16] 2018/2019 Korea Korea (145) Clam 145 36 (24.8)

Original article
[17] 2018/2020 Korea Korea (120) Snail 120 32 (26.7)

Original article
[18] 2013/2015 Vietnam Vietnam (60) Shrimp 60 11 (18.3)

Original article
[19] 2016/2020 Nigeria Unknown

(1440) Shrimp 1440 120 (8.3)

Original article
[20] 2017/2019 Myanmar Unknown (21)

Clam 5 1 (20.0)

Shrimp 16 1 (6.3)

Original article
[21] 2014/2018 Thailand Unknown (35) Undefined

seafood 35 31 (88.6)
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Table 1. Cont.

Study Type
[Reference]

Data Collec-
tion/Publication Year Study Country

Seafood
Origin (N
Samples)

Seafood
Type(s)
(N Samples)

Sample Size
(N Samples)

ESBL
Prevalence
(%)

Original article
[22]

2016/2020 India Unknown (50)

Sardine 5 1 (20.0)

Perch 5 1 (20.0)

Croaker 3 1 (33.3)

Sea Bass 2 1 (50.0)

Sea Bream 2 1 (50.0)

Moon fish 2 1 (50.0)

Anchovy 3 1 (33.3)

Lizard fish 4 1 (25.0)

Belt fish 2 1 (50.0)

Moon tail 2 1 (50.0)

Mackerel 2 1 (50.0)

Gizzard 3 1 (33.3.0)

Pomfret 2 1 (50.0)

Shrimp 5 1 (20.0)

Shrimp 3 1 (33.3.0)

Clam 3 1 (33.3.0)

Squid 2 0

Original article
[23] 2015/2018 Germany

Bangladesh
(14), Denmark
(14),
Ecuador (12),
France (7),
Germany (8),
India (10),
Ireland (12),
Italy (17),
Netherlands
(12), Spain (1),
Vietnam (4),
Unknown (49)

Shrimp,
mussel, clam,
cockle

160 31 (19.4)

Original article
[24] 2013/2017 India Unknown (19) Undefined

seafood 19 19 (100.0)

Original article
[25] 2018/2019 Korea Korea (275) Mussel 275 32 (11.6)

Original article
[26] 2016/2019 Nigeria Unknown

(1440) Shrimp 1440 0

Original article
[27] 2012/2016 Saudi Arabia

Thailand (260),
India (75),
Vietnam (35),
Myanmar (35)

Catfish 65 32 (49.2)

Tilapia 60 18 (30.0)

Carfoo 50 2 (4.0)

Tilapia 75 28 (37.3)

Mirgal 45 3 (6.7)

Rohu 40 5 (12.5)

Milkfish 35 19 (54.3)

Rohu 35 0

Original article
[28] 2018/2019 Korea Korea (120) Cockle 120 32 (26.7)

Original article
[29] 2018/2019 Korea Korea (120) Cockle 120 32 (26.7)
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Table 1. Cont.

Study Type
[Reference]

Data Collec-
tion/Publication Year Study Country

Seafood
Origin (N
Samples)

Seafood
Type(s)
(N Samples)

Sample Size
(N Samples)

ESBL
Prevalence
(%)

Original article
[30] 2012/2016 Vietnam Vietnam (154)

Undefined
seafood 101 1 (1.0)

Shrimp 53 0

Surveillance
report [31] 2017/2018 Netherlands Asia (56) Undefined

seafood 56 7 (12.5)

Surveillance
report [32] 2018/2019 Netherlands Asia (304) Undefined

seafood 304 5 (1.7)

Surveillance
report [33] 2019/2020 Netherlands Asia (304) Undefined

seafood 304 3 (1.0)

Surveillance
report [34] 2017/2018 Denmark Asia (300) Undefined

seafood 300 1 (0.3)

Original article
[35] 2019/2020 Brazil Brazil (1) Catfish 1 1 (100)

Original article
[36] 2016/2018 Cambodia Unknown (60) Undefined

seafood 60 10 (16.7)

Original article
[37] 2018/2020 China China (200) Seafood 200 27 (13.5)

Original article
[38] 2015/2016 Vietnam Vietnam (82) Seafood 82 24 (29.3)

Original article
[39] 2017/2020 Egypt Egypt (100) Tilapia 100 29 (29.0)

Original article
[40] 2019/2022 Vietnam Unknown (103) Undefined

seafood 103 10 (9.7)

Original article
[41] 2018/2019 Korea Korea (120) Clam 120 27 (22.5)

Original article
[42] 2018/2020 Vietnam Unknown (40) Shrimp 40 24 (60.0)

Original article
[30] 2012/2016 Vietnam Vietnam (82) Undefined

seafood 82 37 (45.1)

Original article
[43] 2015/2018 Algeria Algeria (14)

Sardines 10 4 (40.0)

Shrimp 4 0

Original article
[44]

2017/2019 Portugal Unknown (150)

Tuna (sushi) 30 1 (3.3)

Seabass
(sushi) 30 1 (3.3)

Salmon
(sushi) 30 1 (3.3)

Snapper
(sushi) 30 0

Bramble
shark (sushi) 30 0

Original article
[45] 2019/2021 Egypt Egypt (200)

Tilapia 100 14 (14)

Mullet 100 5 (5.0)

Original article
[46] 2019/2020 India Unknown (79)

Piranha,
Catfish,
shrimp, carp,
Snakehead,
Eel, Puria,
Barb, Potasi,
Loach, perch,
Bulla machi,
Karkaria,
featherback,
Narva

79 65 (82.3)
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Table 1. Cont.

Study Type
[Reference]

Data Collec-
tion/Publication Year Study Country

Seafood
Origin (N
Samples)

Seafood
Type(s)
(N Samples)

Sample Size
(N Samples)

ESBL
Prevalence
(%)

Original article
[47] 2016/2018 Spain Unknown (97) Undefined

seafood 97 16 (16.5)

Original article
[48] 2015/2016 Tanzania Tanzania (196) Tilapia 196 26 (13.3)

Original article
[49]

2014/2015 Vietnam Unknown (124)
Shrimp 60 45 (75.0)

Undefined
seafood 64 40 (62.5)

Original article
[50] 2018/2020 China China (411)

Snakehead 213 2 (1.0)

Carp 198 1 (0.5)

Original article
[51] 2016/2022 Tunisia Tunisia (1716)

Sea bream 485 8 (1.7)

Sea Bass 156 1 (0.7)

Clam 1075 18 (1.7)

Original article
[52] 2021/2023 India India (17) Undefined

seafood 17 7 (41.2)

Original article
[53] 2022/2023 Vietnam Unknown (80)

Snakehead,
tilapia, carp,
catfish,
anabas

80 3 (3.8)

Original article
[54] 2019/2019 Thailand Thailand (120) Shrimp 120 N/A

Original article
[55] 2004/2011 Korea Unknown

(N/A)
Undefined
seafood N/A N/A

Table 2. Methods used to isolate and characterize ESBL-producing bacteria in the 42 selected studies.

Reference Bacterial Isolation Detection of
Presumptive ESBL

ESBL Confirmation
and Typing

[15] Sample homogenate enriched in peptone broth and
plated onto Aeromonas base (RYAN) agar Double-disk synergy test PCR at class level

[16] Sample homogenate enriched in peptone broth and
plated onto Aeromonas base (RYAN) agar Double-disk synergy test PCR at class level

[17]
Sample homogenate enriched in peptone broth and
plated onto thiosulphate citrate bile salts sucrose
(TCBS) agar

Double-disk synergy test PCR at class level

[18]
Sample homogenate enriched in peptone broth and
plated onto tryptone bile X-glucuronide (TBX) agar
containing 2 µg/mL of cefotaxime

Double-disk synergy test PCR at group level

[19]
Sample homogenate enriched in peptone broth and
plated onto thiosulphate citrate bile salts sucrose
(TCBS) agar

Double-disk synergy test PCR at class level

[20]
Sample homogenate enriched in peptone broth and
plated onto chromogenic ECC (CHROMagar) agar
containing 0.25 µg/mL meropenem

Double-disk synergy test WGS

[21] Sample homogenate enriched in peptone broth and
plated onto violet-red bile glucose (VRBG) agar Double-disk synergy test PCR at class level

[22] Sample homogenate enriched in tryptone broth and
plated onto MacConkey agar Double-disk synergy test PCR at class level
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Table 2. Cont.

Reference Bacterial Isolation Detection of
Presumptive ESBL

ESBL Confirmation
and Typing

[23]
Non-homogenized sample enriched in peptone broth
and plated onto MacConkey agar containing 1 µg/mL
cefotaxime

Double-disk synergy test PCR at group level and
WGS

[24] Sample enriched in enterobacteria enrichment (EE)
broth and plated onto MacConkey agar Double-disk synergy test PCR at class level

[25]
Sample homogenate enriched in peptone broth and
plated onto thiosulphate citrate bile salts sucrose
(TCBS) agar

Double-disk synergy test PCR at class level

[26]
Sample homogenate enriched in tryptone soy broth
(TSB) and plated onto xylose lysine deoxycholate
(XLD) agar and hektoen enteric agar

Double-disk synergy test PCR at class level

[27] Sample homogenate enriched in EC broth and plated
onto ESBL chromogenic (CHROMagar) agar Double-disk synergy test PCR at class level

[28] Sample homogenate enriched in peptone broth and
plated onto Aeromonas base (RYAN) agar Double-disk synergy test PCR at class level

[29]
Sample homogenate enriched in peptone broth and
plated onto thiosulphate citrate bile salts sucrose
(TCBS) agar

Double-disk synergy test PCR at class level

[30]
Sample homogenate enriched in peptone broth and
plated onto xylose lysine deoxycholate agar (XLD) and
CHROMagar Salmonella (CHROMagar)

Double-disk synergy test PCR at group level

[31] Unspecified MIC determination using
broth microdilution PCR at variant level

[32] Unspecified MIC determination using
broth microdilution PCR at variant level

[33] Unspecified MIC determination using
broth microdilution PCR at variant level

[34] Unspecified MIC determination using
broth microdilution WGS

[35]
Sample rinsed in MacConkey broth and rinse directly
plated onto MacConkey agar containing 2 µg/mL
cefotaxime

Double-disk synergy test WGS

[36]
Sample homogenate enriched in peptone broth and
plated onto xylose lysine deoxycholate (XLD) agar
containing 2 µg/mL cefotaxime

Double-disk synergy test PCR at variant level

[37] Sample streaked onto thiosulphate citrate bile salts
sucrose (TCBS) agar Double-disk synergy test PCR at class level

[38] Sample homogenate enriched in peptone broth and
plated onto chromogenic ECC (CHROMagar) agar Double-disk synergy test PCR at class level

[39] Sample streaked onto Columbia Blood (CBA) Agar Double-disk synergy test PCR at variant level

[40] Sample homogenate enriched in peptone broth and
plated onto chromogenic ECC (CHROMagar) agar Double-disk synergy test PCR at group level

[41]
Sample homogenate enriched in peptone broth and
plated onto chromogenic Rambach agar
(CHROMagar)

Double-disk synergy test PCR at class level
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Table 2. Cont.

Reference Bacterial Isolation Detection of
Presumptive ESBL

ESBL Confirmation
and Typing

[42]
Sample homogenate enriched in peptone broth and
plated onto thiosulphate citrate bile salts sucrose
(TCBS) agar

Double-disk synergy test PCR at group level

[30]
Sample homogenate enriched in peptone broth and
plated onto chromogenic ECC (CHROMagar) agar
containing 1 µg/mL cefotaxime

Double-disk synergy test PCR at class level

[43] Sample homogenate enriched in peptone broth and
plated onto xylose lysine deoxycholate (XLD) agar Double-disk synergy test PCR at variant level

[44]
Sample homogenate enriched in peptone broth and
plated onto Levine (EMB) agar with and without
cefotaxime (2 µg/mL)

Double-disk synergy test PCR at class level

[45] Sample homogenate enriched in peptone broth and
plated onto xylose lysine deoxycholate (XLD) agar Double-disk synergy test PCR at variant level

[46]
Sample homogenate enriched in Brilliant Green Bile
Lactose (BGBLB) Broth and plated onto MacConkey
agar containing 1 µg/mL cefotaxime

Double-disk synergy test PCR at variant level

[47]
Sample homogenate enriched in peptone Broth and
plated onto chromogenic ESBL (ChromID) agar
containing 1 µg/mL cefotaxime

MIC determination using
broth microdilution PCR at variant level

[48] Sample homogenized in 0.9% saline before plating
onto MacConkey agar containing 2 µg/mL cefotaxime Double-disk synergy test WGS

[49]
Sample homogenate enriched in peptone broth and
plated onto chromogenic ECC (CHROMagar) agar
containing 1 µg/mL cefotaxime

Double-disk synergy test PCR at group level

[50] Sample homogenized in saline before plating onto
chromogenic ESBL (ChromID) agar Double-disk synergy test PCR at group level

[51] Sample enriched in peptone broth and plated onto
MacConkey agar containing 2 µg/mL cefotaxime Double-disk synergy test WGS

[52]
Sample homogenate enriched in EC broth and plated
onto sorbitol (MUG) agar with tellurite-cefixime
supplement

Double-disk synergy test PCR at class level

[53] Sample homogenate enriched in peptone broth and
plated onto CHROMagar Salmonella (CHROMagar) Double-disk synergy test PCR at class level

[54] Sample streaked onto blood, MacConkey, and
chocolate agar Double-disk synergy test PCR at class level

[55] Unspecified Double-disk synergy test PCR at class level

3.2. Prevalence of ESBL-Contaminated Products

Overall, the median prevalence of products being ESBL-contaminated was 19.4 (Q1
(25th percentile) = 0.6% and Q3 (75th percentile) = 33.3%). The highest prevalence of ESBL-
contaminated samples was reported in Thailand (88.6%, 95% CI: 78.0–99.1%), followed by
India (64.9%, 95% CI: 57.6–72.1%), Algeria (28.6%, 95% CI: 4.9–52.2%), Vietnam (26.9%, 95%
CI: 23.7–30.1%), Saudi Arabia (26.4%, 95% CI: 22.1–30.7%), South Korea (21.6%, 95% CI:
19.1–24.1%), Germany (19.4%, 95% CI: 13.3–25.5%), Cambodia (16.7%, 95% CI: 7.2–26.1%),
Spain (16.5%, 95% CI: 9.1–23.9%), Egypt (16%, 95% CI: 11.8–20.2%), Tanzania (13.3%, 95%
CI: 8.5–18.0%), Myanmar (9.5%, 95% CI: 0.0–22.1%), China (4.9%, 95% CI: 3.2–6.6%), Nigeria
(4.2%, 95% CI: 3.4–4.9%), the Netherlands (2.3%, 95% CI: 1.1–3.4%), Tunisia (1.6%, 95% CI:
1.0–2.2%) Portugal (2%, 95% CI: 0.0–3.2%), and Denmark (0.3%, 95% CI: 0.0–1%).
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On a regional level, statically significant differences were observed between Asia
and Europe (p = 0.006) and between Asia and Africa (p = 0.004) (Figure 2). In both cases,
Asia was associated with a significantly higher prevalence of ESBL-contaminated products
compared to the other continents. There was no statistical difference between Africa and
Europe (p ≥ 0.05). The median prevalence of ESBL-contaminated products was 1.1% in
Africa (Q1 = 0.0%; Q3 = 25.3%), 3.3% in Europe (Q1 = 0.8% and Q3 = 12.2%), and 26.7% in
Asia (Q1 = 12.5%; Q3 = 50.0%).
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Figure 2. Box-and-Whisker Plot of the recorded ESBL prevalence (%) stratified by region from the
39 studies considered in the statical analysis. The thick line in the Box-and-Whisker Plot represents
the median value i.e. 50% of the data are covered. The lower edge of the box represents the 1st
quartile i.e. 25% of the data are covered and the upper edge of the box represents the 3rd quartile i.e.
75% of the data are covered. The lowest line outside of the box shows the minimum value and the
highest line outside of the box shows the maximum value. The single points outside of the box show
the outliers.

No significant differences were observed between different seafood product types
(Figure 3). The prevalence was 8.3% in crustaceans (Q1 = 0.0%; Q3 = 19.7%), 9.6% in
freshwater fish (Q1 = 3.3%; Q3 = 29.8%), 24.2% in mollusks (Q1 = 15.8%; Q3 = 26.7%), and
33.3% in saltwater fish (Q1 = 0.6%; Q3 = 50.0%).
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3.3. Distribution of ESBL Types across Bacterial Hosts, Continents, and Seafood Types

The 42 selected studies reported data on the occurrence of ESBL in 2053 Gram-negative
bacterial isolates belonging to E. coli, Klebsiella, Salmonella, Citrobacter, Enterobacter, Proteus,
Providencia, Shigella, Aeromonas, Vibrio, Serratia, Acinetobacter, Pseudomonas, Edwardsiella,
Erwinia, Hafnia, and Yersinia. Amongst them, 920 isolates (44.8%, 95% CI: 42.7–47%) were
reported to harbor ESBL (Table 3). Enterobacterales accounted for the largest bacterial
group (n = 1448). Most ESBL-producing isolates within this order belonged to E. coli (73.5%,
95% CI: 70.2–76.3%). The highest prevalence of ESBL-positive isolates was found in Enter-
obacterales (49%, 95% CI: 46.4–51.5%), followed by Vibrio spp. (34.2%, 95% CI: 29.4–38.6%)
and Aeromonas spp. (25.2%, 95% CI 95% CI: 16.9–33.6%). Within Enterobacterales, the pro-
portion of ESBL-positive isolates varied depending on the species (Table 3). For example,
it was higher in Klebsiella oxytoca (100.0%) and Klebsiella pneumoniae (73.5%) than in E. coli
(59.5%) and Salmonella enterica (18.1%).

CTX-M was by far the most prevalent ESBL type in all bacterial genera isolated from
retail seafood (Table 3), accounting for 92.1% (95% CI: 90.3–93.8%) of the ESBL-positive
isolates. TEM (6.7%, 95% CI: 5.0–8.3%) and SHV (5.0%, 95% CI: 3.6–6.4%) were observed at
a lower prevalence. The co-carriage of CTX-M with SHV and TEM was reported in 0.5%
(95% CI: 0.0–0.9%) and 0.8% (95% CI: 0.2–1.3%) of ESBL-positive isolates. CTX-M was also
the most common ESBL type regardless of the continent of origin (98.5% in Africa, 92.3%
in Asia, and 75.6% in Europe) or seafood type (100% in saltwater fish, 99.3% in mollusks,
97.8% in freshwater fish, 93.1% in crustaceans, and 84.8% in undefined seafood products).

Among 847 CTX-M-positive isolates, 44.0% (95% CI: 40.7–47.4%) were typed to group
level, 18.5% (95% CI: 15.9–21.2%) to gene level, and 42.6% were not further typed (95%
CI: 38.8–46.4%). Among CTX-M-positive Enterobacterales characterized at the group or
gene level, the most frequent groups were 1 (41.8%, 95% CI: 35.9–47.6%) and 9 (58.4%, 95%
CI: 52.4–64.1%), and the most frequent gene was CTX-M-15 (79.2%, 95% CI: 71.2–84.2%),
followed by CTX-M-55 (9.7%, 95% CI: 5.0–14.2%), CTX-M-3 (0.7%, 95% CI: 0.0–1.9%), and
CTX-M-130 (0.7%, 95% CI: 0.0–1.9%). CTX-M was the only ESBL type reported in Vibrio
spp, which displayed a higher frequency of CTX-M group 9 (60.0%, 95% CI: 45.7–74.3%)
compared to group 1 (40.0%, 95% CI: 25.7–54.3%). No data at the group or gene level were
available for Aeromonas spp. (Table 3).
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Table 3. Pooled proportions of ESBL types in ESBL-positive isolates from seafood belonging to different bacterial genera.

Bacteria
isolated

No.
ESBL-
Positive
Isolates

CTX-M
Total

Undefined
CTX-M
Class

CTX-M-1 Group CTX-M-9 Group
CTX-M
Group 2 SHV TEMUndefined

CTX-M-1
Group

CTX-M-
15

CTX-M-
55 CTX-M-3 CTX-M-

130
Undefined
CTX-M-9
Group

CTX-M-
14

CTX-M-
27

CTX-M-
32

E. coli 521 (59.5) 481 (92.3) 174 (33.4) 79 (15.2) 81 (15.5) 11 (2.1) 0 0 126 (24.2) 6 (1.2) 3 (0.6) 1 (0.2) 0 10 (1.9) 36 (6.9)

Salmonella
spp. 5 (4.2) 5 (100) 1 (20) 0 0 4 (80) 0 0 0 0 0 0 0 0 0

S. enterica 24 (16.7) 23 (95.8) 1 (4.2) 3 (12.5) 11 (45.8) 0 1 (4.2) 1 (4.2) 3 (12.5) 3 (12.5) 0 0 0 3 (12.5) 0

Klebsiella spp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

K. pneumoniae 57 (76) 50 (87.7) 19 (33.3) 1 (1.8) 26 (45.6) 0 0 0 3 (5.3) 1 (1.8) 0 0 0 9 (15.8) 4 (7)

K. oxytoca 41 (100) 35 (85.4) 35 (85.4) 0 0 0 0 0 0 0 0 0 0 6 (14.6) 13 (31.7)

Enterobacter
spp. 5 (11.4) 4 (80) 3 (60) 0 0 0 0 0 0 0 1 (20) 0 0 1 (20) 0

E. cloacae 7 (31.8) 2 (28.6) 0 0 2 (28.6) 0 0 0 0 0 0 0 0 5 (71.4) 0

Citrobacter
spp. 21 (48.8) 17 (81) 15 (71.4) 0 2 (9.5) 0 0 0 0 0 0 0 0 3 (14.3) 4 (19)

Proteus spp. 18 (64.3) 18 (100) 18 (100) 0 0 0 0 0 0 0 0 0 0 0 0

Providencia
spp. 8 (38.1) 6 (75) 6 (75) 0 0 0 0 0 0 0 0 0 0 1 (12.5) 2 (25)

Shigella sonnie 2 (100) 2 (100) 2 (100) 0 0 0 0 0 0 0 0 0 0 0 0

Enterobacterales
total 709 (49) 643 (90.7) 274 (38.6) 83 (11.7) 122 (17.2) 15 (2.1) 1 (0.1) 1 (0.1) 132 (18.6) 10 (1.4) 4 (0.6) 1 (0.1) 0 38 (5.4) 59 (8.3)

Vibrio spp. 151 (34.2) 151 (100) 106 (70.2) 18 (11.9) 0 0 0 0 27 (17.9) 0 0 0 0 0 0

Aeromonas
spp. 26 (25.2) 26 (100) 26 (100) 0 0 0 0 0 0 0 0 0 0 0 0

Other spp. a 34 (56.7) 27 (79.4) 8 (23.5) 13 (38.2) 0 0 3 (8.8) 0 0 0 0 0 3 (8.8) 7 (20.6) 1 (2.9)

Total Isolates 920 (44.8) 847 (92.1) 414 (45) 114 (12.4) 122 (13.3) 15 (1.6) 4 (0.4) 1 (0.1) 159 (17.3) 10 (1.1) 4 (0.4) 1 (0.1) 3 (0.3) 45 (4.9) 60 (6.5)
a Includes species of genera: Serratia, Acinetobacter, Pseudomonas, Edwardsiella, Erwinia, Hafnia, and Yersinia.
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4. Discussion

We investigated the prevalence and types of ESBL-producing bacteria in retail seafood
products through a systematic analysis of point prevalence studies available in the scientific
literature. Most of the studies included in the review (27/42) originated from Asia. This
result may reflect the fact that most of the world’s supply of seafood products originates
from this continent [56]. Other regions, including some of the major importing countries
such as the United States, Japan, and most European countries, are significantly underrep-
resented in this review. This observation underlines the inappropriateness of generalizing
the results of the review.

Our review reveals that the median prevalence of retail seafood products being con-
taminated with ESBL-producing bacteria is 19.4% (Q1 = 0.6% and Q3 = 33.3%) globally,
meaning that approximately one in five products is contaminated. This result suggests a rel-
atively high risk of exposure to ESBL-producing bacteria among seafood consumers, which,
according to a recent survey, represents approximately 64% of the EU population [57].
The annual global consumption of seafood products per capita has more than doubled
from almost 9 kg in 1961 to over 20.5 kg in 2018 [58]. The risk of foodborne exposure to
ESBL-producing bacteria depends on how seafood products are handled and consumed.
Obviously, raw and undercooked seafood poses a higher risk to human exposure [59].
Global data on consumption of raw seafood are lacking, but over the last decade there has
been a rise in the popularity of raw or undercooked food, including seafood. According
to a recent survey in Portugal, the consumption of raw fish amounts to 6.3 kg per person
annually [60]. Altogether, these data suggest that the consumption of raw or undercooked
seafood may be an important epidemiological route for the spread of ESBL-producing
bacteria in the human population. Indeed, a recent source attribution study in the Nether-
lands identified seafood as the most common non-human source contributing to carriage
of ESBL-producing E. coli in the community [12].

The prevalence of ESBL-contaminated seafood products was higher in Asian studies
compared to European and African studies. It should be noted that a large proportion of the
studies included in the review (n = 20/42) did not provide data on the country of origin of
the seafood under study. In the European studies indicating the origin, most products were
imported from Asia (Table 1). Thus, it appears that the prevalence of ESBL-contaminated
products is higher in Asian seafood products that are marketed locally compared to those
that are exported to Europe. This difference could be due to the quality standards imposed
by the European Union for imported products.

It has been estimated that global antimicrobial consumption in aquaculture is higher
than consumption in humans and terrestrial food-producing animals, with the Asia–Pacific
region representing the largest share (93.8%) of global consumption [61]. However, factors
other than antimicrobial consumption in aquaculture may influence the high prevalence
of ESBL-contaminated seafood observed in Asian products, since only 25% of all seafood
consumed comes from aquaculture, according to a recent EU survey [57]. It should be
noted that approximately 77% of ESBL-producing bacteria reported in seafood belonged to
Enterobacterales, which have their natural habitat in the intestinal tract and are generally
regarded as indicators of fecal contamination. As the community prevalence of ESBL-
producing Enterobacterales is significantly higher in Asia than in Europe [62], this result
could simply reflect the widespread occurrence of these bacteria in the local population
and be the consequence of pre-harvest fecal contamination of the aquatic environment from
which seafood originated or post-harvest human contamination during processing [63]. In
support of this notion, it has been hypothesized that the ESBL contamination of seafood
is likely part of a larger human meta-cycle, whereby ESBL-producing Enterobacterales of
human origin are spread in the community via environmental contamination [12]. Another
less plausible explanation for the higher ESBL prevalence in Asian seafood products is the
exposure to warmer environmental temperatures, which have been recently associated with
increased levels of AMR in terrestrial animals, humans, and the marine environment [64].
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Most ESBL types found in seafood isolates belong to CTX-M, which is the most
pervasive ESBL type in community and clinical settings [65], with CTX-M-15 being the
most common and clinically relevant variant [66]. Unfortunately, 12 out of 42 studies (28.6%)
included within this review identified ESBL-producing isolates at the class level only (i.e.,
CTX-M, TEM, or SHV) without defining ESBL determinants at group or gene level. This
additional information could only be retrieved from 30 (71.4%) studies, which unanimously
reported high isolation rates for CTX-M group 1 and the pandemic variant CTX-M-15.
CTX-M group 9 (mainly CTX-M-14 and CTX-M-27) was the second most common group
observed in Enterobacterales and the most common group found among Vibrio spp. There
is a known variation in the distribution of ESBL genes across different host species. It
has recently been shown that the most common ESBL types in livestock (mainly SHV
and CTX-M-1) are distinct from those circulating within the human community (mainly
CTX-M-15) [67]. Thus, the observed high prevalence of CTX-M-15 is another example of
indirect evidence that ESBL-producing Enterobacterales in retail seafood may originate
from humans.

This review has limitations which could impart bias to the study conclusions. The
review cannot be defined as “systematic” since it was conducted by a single reviewer,
whereas at least two reviewers are required for systematic reviews [68]. A main issue when
comparing AMR data generated from different studies is the use of different laboratory
methods for ESBL detection, including genotypic and phenotypic methods, which limits
adequate comparison between studies [69]. Comparison was further limited by the frequent
lack of access to raw data, which made meta-analysis impossible. This highlights the
importance of applying FAIR principles in future studies to make scientific data “findable,
accessible, interoperable and reusable”, thus maximizing their usefulness and enabling the
entire research community to benefit from them [70].

5. Conclusions

The current literature indicates that on a global scale, approximately one out of five
retail seafood products is contaminated with ESBL-producing bacteria, mainly E. coli
and other Enterobacterales producing CTX-M. The prevalence of ESBL-contaminated
retail seafood products appears to be higher in Asia compared to Europe. Since seafood
is often consumed raw or undercooked, this high prevalence of ESBL in retail seafood
can be regarded as a risk to human health. Our findings highlight an urgent need for
standardized methods of the surveillance of ESBL-producing Enterobacterales in seafood
products to enhance understanding of the actual contribution of the seafood industry to
the dissemination of ESBL in the human community.
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