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Abstract: This study examined the effect of beef fermentation with Lactiplantibacillus paraplantarum
(L) PTCC 1965, Lactiplantibacillus (L) plantarum subsp. plantarum PTCC 1745, and Lactiplantibacillus
(L) pentosus PTCC 1872 bacteria on the growth of pathogenic bacteria, including Salmonella (S) Typhi
PTCC 1609 and Staphylococcus (S) aureus PTCC 1826. The growth of lactic acid bacteria (LAB) and
the effect of fermentation on pathogenic bacteria were studied using Weibull: biphasic linear and
competitive models. The results showed that the rate of pH reduction was lower in the early stages
and increased as the microbial population grew. The α parameter was lower for L. plantarum subsp.
plantarum compared to L. paraplantarum and L. pentosus. The comparison of the α parameter for
bacterial growth and pH data showed that the time interval required to initiate the rapid growth
phase of the bacteria was much shorter than that for the rapid pH reduction phase. The pH value
had a 50% greater effect on the inactivation of S. Typhi when compared to the samples containing
L. plantarum subsp. plantarum and L. pentosus. The same parameter was reported to be 72% for the
inactivation of St. aureus. In general, during the fermentation process, LAB strains caused a decrease
in pH, and as a result, reduced the growth of pathogens, which improves consumer health and
increases the food safety of fermented meat.

Keywords: fermentation; meat; LAB strains; pathogens; mathematical modelling

1. Introduction

Fermentation of meat products results in favorable flavors and enhances the health
benefits of these products [1]. In addition, the fermentation process can be used as a very
suitable preservation method for these products, which may be superior to some preserva-
tion methods for meat products, as many people today are concerned about consuming
products containing nitrates because of the possibility of cancer [2–4]. Various fermented
meat products are manufactured in different countries and regions, including fermented
sausage and fermented meat sauce, whose production methods may be regionally specific.
Some traditional fermented meat products are sources of probiotics. The literature shows
that many studies have focused on fermented meat products containing starter cultures
with probiotic activity and potential health benefits [5]. The fermentation process of meat
products can be carried out using their natural microbiota or starter cultures, mainly lactic
acid bacteria (LAB). These lactic starters include Pediococcus acidilactici, Pediococcus pen-
tosaceus, lactobacilli, Enterococcus strains, and Leuconostoc strains [6]. The primary role of
these microorganisms is the production of large amounts of lactic acid and small amounts
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of acetic acid. These bacteria usually do not have strong proteolytic and lipolytic proper-
ties [7,8]. Yeasts are also involved in the fermentation of meat products; these yeasts include
Pichia, Debaryomyces, and Torulopsis [9]. LAB and yeasts use proteolytic enzymes such as
amino acid converting enzymes to create small peptides, free amino acids, and non-protein
nitrogen values that are effective in the aroma of fermented meats [10]. Although the rapid
production of acid by the starter reduces the microbial risk in fermented meat products,
it cannot completely eliminate this concern, especially in products where the fermenta-
tion process is slow [11,12]. While the presence of some microorganisms such as aerobic
spore formers and Pseudomonas strains is not usually a cause for concern, the presence of
pathogens such as Staphylococcus (S) aureus, Escherichia (E) coli, and Salmonella (S) may pose
a potential risk to the consumer. For example, in the early stages of the fermentation of
meat products, S. aureus can produce several enterotoxins and cause food poisoning under
the right conditions [13,14]. The outbreaks of verocytotoxigenic E. coli have appeared to
be associated with fermented meats [15]. Clostridium botulinum is one of the dangerous
pathogenic microorganisms in meat products that can grow if the pH is above 4.6 and
anaerobic conditions are provided. Since the pH is lower than this value in most fermented
products, there is no possibility of growth for this microorganism [16].

To better understand the behavior of microorganisms and to compare different mi-
croorganisms under different growth conditions, the use of mathematical models in the
growth and inactivation of microorganisms can help. By extracting different parameters
from the models, it is possible to predict how the microorganisms will behave more accu-
rately. It should be noted, of course, that not all models are suitable for all microorganisms
under all conditions, and a model should be chosen that is most appropriate to the behavior
of the microorganism [17,18]. A review of the literature shows that only a few studies have
been carried out to investigate mathematical models for the fermentation of meat products
and the inactivation of pathogens in these products [19,20]. Therefore, this study aims to
use L. paraplantarum PTCC 1965, L. pentosus PTCC 1872 and L. plantarum subsp. plantarum
PTCC 1745 in beef during fermentation and to investigate the inactivation of pathogens
including S. Typhi PTCC 1609 and S. aureus PTCC 1826. In addition, the population of
microorganisms and the pH produced by the LAB were modeled by mathematical models
such as Weibull, biphasic linear, and competitive models, and the process of the inactivation
of pathogens was expressed by the models.

2. Materials and Methods
2.1. Bacterial Strains

Lactiplantibacillus paraplantarum (L) PTCC 1965, Lactiplantibacillus (L) pentosus PTCC
1872, and Lactiplantibacillus (L) plantarum subsp. plantarum PTCC 1745 were purchased from
the collection center of industrial microorganisms (Tehran, Iran) in a lyophilized form and
then activated in 20 mL De Man, Rogosa, Sharpe (MRS) broth under anaerobic conditions
at 37 ◦C for 24 h. Pathogenic microorganisms S. Typhi PTCC 1609 and S. aureus PTCC
1826 were also purchased from the mentioned center and activated in Nutrient Broth (NB)
and Trypticase Soy Broth (TSB) for 24 h at 30–37 ◦C. Then, the activated cultures were
centrifuged at 3000× g for 10 min at 4 ◦C (Hettich, UNIVERSAL 320/320 R; Kirchlengern,
Germany), and the cells were precipitated individually. The sedimented cells were washed
using 0.85% sterile normal saline (NS; 50 mL) solution, and the initial number of colonies
was diluted to 107 cfu/mL with 0.85% sterile NS solution.

2.2. Fermented Meat Manufacture

Fresh beef was purchased from a store in Shiraz City (Fars Province; Iran) in a sterile
form and then cut into pieces (2 cm × 2 cm × 2 cm) under aseptic conditions. In the first
stage, parts of the pieces of meat were placed in sterile and closed glass containers, and
2% (w/w) of salt was added to them. Then, approximately 2% (v/w) of the LAB strains
were added separately to the containers. In the final stage, the remaining pieces of meat
were placed in the fermentation vessels, and approximately 2% (v/w) of both pathogens
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was added separately. The fermentation process was carried out at 37 ◦C for 48 h, and the
microbial count and pH were measured in meat samples every 8 h. Each sample and all
tests were performed three times.

2.3. Microbiological Test

For the microbial count, 25 g of each sample was homogenized with 225 mL of 0.1%
(w/v) sterile peptone water using a Stomacher (BagMixer 400W®; Interscience, Saint-Nom-
la-Bretèche, France). Serial dilutions were made from this homogenate, and further cultures
were made in appropriate culture media. LAB strains were cultured on acidified MRS agar
with acetic acid. S. Typhi and S. aureus were grown on MacConkey agar and Baird-Parker
agar (egg yolk and tellurite were added and confirmed with the coagulase test), respectively.
The incubation was 48 h at 35 ± 2 ◦C for LAB strains and 24 h at 37 ◦C for pathogens [21,22].

2.4. Determination of pH Value

A portable pH meter (Adwa AD130; Szeged, Romania) was used to measure the pH
of the samples.

2.5. Mathematical Modelling

Microbial inactivation and population growth, as well as the pH variation trend, were
simulated using various mathematical models such as:

(1) The Weibull model:

The Weibull model is introduced as an extension of the common linear model. It is
used to model the increasing or decreasing trends in microbial variability. This statistical
approach has two main parameters: the nominal time scale (α) and the shape factor (β). The
latter determines the rate of variation of the data (the slope of the line in the probability plot)
and how the model’s behavior changes over time as the nominal time scale is exceeded.
This model was modified to adapt to the current trial:

log
N
N0

= −
(

t
α

)β

(1)

where α and β refer to the nominal time scale and shape factor, respectively [23]. N0 and N
(CFU/g) are the population at baseline and after treatment time t, respectively.

The biphasic linear model is commonly used in cases where the observed variable
has two different behaviors as a function of the influence parameters. It simulates these
two trends by dividing the population into two groups with different rates of change [13],
with two different subgroups with varying rates of change, as follows [17]:

log
N
N0

= log
[
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, ϕ1 and ϕ2 represent the population splitting fraction and variational rate of the
subgroups, respectively.

(2) The competitive model:

The variations of S. Typhi and S. aureus through time were subject to two main factors,
namely the growth of the population of these microorganisms and the negative effect of pH.
To take into account the competitive impact of these two factors, a mathematical model has
to be implemented using the semi-empirical parameters obtained from the experimental
measurements. The Jameson effect [18] and the Huang model [19] were used for population
growth in the presence of LAB strains, while a direct reducing trend was included for the
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pH. For this, the population growth rate of S. Typhi and S. aureus was determined based on
the logistic model [24] using the ordinary differential equations (ODEs) as:

d[X]

dt
= µmax

(
1 − [X]

[X]max

)
[X]− kPH(7.0 − PH) (3)

where d[X]
dt is the rate of bacterial growth, [X] is the bacterial concentration at time t, µmax

is the maximum specific growth rate of the microorganism [1/h], [X]max is the maximum
population count (in log CFU/g) and kPH is the rate of decomposition due to pH reduction.

Thus, according to the model described, the effects of the initial population growth of
S. Typhi and S. aureus and their subsequent decline due to pH reduction are considered in
this model. It should be noted that Vrancken et al. [24] only used the first term on the right
side of Equation (3), and the second term is added in the present modelling to consider the
effect of pH as a linear correlation on the population change rate.

2.6. Mathematical Considerations

To assess the accuracy of the implemented models, the adjusted R2(Adj-R2) and the root
mean square error (RMSE) measures are implemented. The Adj-R2 criterion is formulated
as follows:

AdjustedR2 = 1 −
[
(m − j)

(
1 − R2)

m − o

]
(4)

where m is the number of measured data, o is the number of the parameter, and j is the
indicator variable with values 1 and 0, respectively, in the case of an intercept and other
cases [25].

Furthermore, the difference between the observation and prediction data is measured
by the RMSE as follows:

RMSE =

√
(observed − predicted)2

n − p
(5)

For statistical analysis, ANOVA and Duncan’s multiple range test were performed.
The p-value measure was used to determine the statistical significance of the coefficients in
the regression models. For all models, p < 0.05 was considered statistically significant. For
the competition model, the governing equation was solved using the 4th order Runge-Kutta
using MATLAB’s (version: 2013b v8.2) ode45 solver. To determine the unknown param-
eters, namely, µmax, [X]max and kPH , a nonlinear least-square optimization algorithm is
implemented. Nonlinear Least Squares, as an optimization technique, is used to develop re-
gression models related to data sets, including nonlinear features. Models for such data sets
are nonlinear in their coefficients. The parameters obtained were then adjusted iteratively
to reduce the deviation of the numerical results obtained from the experimental data.

3. Results and Discussion

The population growth of the lactobacilli strains is shown in Figure 1. The population
growth rate was lower in the first 9 h, followed by a linear increase with time up to
about 32 h and a lower growth rate in the final phase after 32 h. The highest and lowest
population increases were for L. plantarum subsp. plantarum and L. pentosus, respectively.
It was observed that the logarithmic population of L. paraplantarum, L. plantarum subsp.
Plantarum, and L. pentosus were increased by 3.5, 3.5, and 2.9 log, respectively, after 48 h.
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Figure 1. Population growth of L. paraplantarum, L. plantarum. subsp. Plantarum, and L. pentosus.

The growing lactobacilli strains caused the pH to drop (Figure 2). The rate of pH
reduction was lower in the early stages and tended to increase as the microbial population
increased. The highest and lowest pH decreases occurred in the presence of L. plantarum
subsp. plantarum and L. pentosus, respectively. Decreased pHs of approximately 1.5, 2.1,
and 2.4 were observed due to the population growth of L. pentosus, L. paraplantarum, and L.
plantarum subsp. plantarum, respectively.
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Figure 2. Reduction of pH in the presence of L. paraplantarum, L. plantarum subsp. Plantarum, and
L. pentosus as a function of time.

To examine the effect of the microbial population on the pH, the data obtained are
shown in Figure 3.

According to the results obtained, the dependence of the pH on the microbial popula-
tion was almost the same for all the bacteria studied. However, the pH reduction effect was
slightly stronger for L. plantarum subsp. plantarum than for L. paraplantarum and L. pentosus.
For example, at a population of 8 log CFU/g, the pH reduction was 0.5, 0.7, and 0.9 for
L. pentosus, L. paraplantarum, and L. plantarum subsp. plantarum, respectively. However, for
logarithmic populations of below 7 and above 9, all microorganisms had an identical effect
on pH (as the plots coincide at these intervals).
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Figure 3. Reduction in pH in the presence of L. paraplantarum, L. plantarum subsp. Plantarum, and
L. pentosus as a function of log population.

The effect of L. paraplantarum, L. plantarum subsp. Plantarum, and L. pentosus microor-
ganisms on the population of S. Typhi and S. aureus bacteria is shown in Figure 4a–c. As
can be observed, two consecutive phases can be observed in all the cases studied. Initially
the population of S. Typhi and S. aureus increased at a lower rate. In the second phase, by
increasing the competitive factors, namely the population of lactobacilli strains and the
lowering pH, a steep reduction trend occurred. Specifically, S. aureus was more sensitive
to the competitive factors, and its population growth trend stopped and reversed earlier
compared to S. Typhi.
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Figure 4. Effect of the presence of L. paraplantarum (a), L. plantarum subsp. plantarum (b), and
L. pentosus (c) on the population of S. Typhi and S. aureus.

The population of both pathogens were decreased after about 30 h of incubation time.
The population decrease beyond that instance is between 4.3 and 5 log for S. Typhi and
5.1 and 5.5 log for S. aureus.

The parameters of the Weibull model for the variation of L. paraplantarum, L. plantarum
subsp. Plantarum, and L. pentosus microorganisms and pH are presented in Tables 1 and 2.

Regarding the growth of bacterial numbers, it can be observed that the α parameter
(which indicates the nominal time scale) was lower for L. plantarum subsp. plantarum com-
pared to L. paraplantarum and L. pentosus. As α indicates the onset of the rapid population
growth, it can be concluded that L. plantarum subsp. plantarum is the first bacterium to
initiate the main growth phase, followed by L. paraplantarum and L. pentosus. It should
also be noted that parameter β is almost the same for all the lactobacilli strains studied.
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Regarding the size of the statistical evaluation parameters (i.e., Adj-R2 and RMSE), the
Weibull model is suitable for simulating the measured data.

Table 1. Parameters of the Weibull model for the variation of L. paraplantarum, L. plantarum subsp.
Plantarum, and L. pentosus microorganisms.

Model Parameters Bacterial Species

L. paraplantarum L. plantarum subsp.
plantarum L. pentosus

α 13.3 b 12.74 c 15.82 a

β 1.034 a 1.012 a 1.039 a

Statistical evaluation
parameters Values

Adj-R2 0.9567 0.9452 0.9404
RMSE 0.2988 0.3434 0.2989

All values are means of three determinations with coefficient of variations (CV = SD/mean × 100) <5%. For each
model parameter, means with the same lowercase letters are not significantly different at p < 0.05.

Table 2. Parameters of the Weibull model for pH variation.

Model Parameters Bacterial Species

L. paraplantarum L. plantarum subsp.
plantarum L. pentosus

α 29.35 b 25.61 c 36.49 a

β 1.523 a 1.4 a 1.53 a

Statistical evaluation
parameters Values

Adj-R2 0.9979 0.9921 0.9974
RMSE 0.03609 0.08032 0.02893

All values are means of three determinations with coefficient of variations (CV = SD/mean × 100) <5%. For each
model parameter, means with the same lowercase letters are not significantly different at p < 0.05.

Like the population growth, the same observation can be made for pH, except that the
nominal time scale is different. The comparison of the α parameter for population growth
and pH data showed that the time interval required to initiate the rapid growth phase of
the bacteria was considerably less than that for the rapid pH decrease phase. For example,
the α parameter for population growth L. plantarum subsp. plantarum was 12.74, which was
significantly lower than the 25.61 obtained for the pH variation.

The parameters of the biphasic model for the variation of pH as a function of microbial
population (namely, L. paraplantarum, L. plantarum subsp. Plantarum, and L. pentosus) are
presented in Table 3. It is evident that the biphasic model can be implemented to model pH
as a function of the microbial population with sufficient accuracy.

Table 3. The parameters of the biphasic model for pH variation as a function of L. paraplantarum,
L. plantarum subsp. Plantarum, and L. pentosus population.

Model Parameters Bacterial Species

L. paraplantarum L. plantarum subsp.
plantarum L. pentosus
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0.997 a 0.996 a 0.912 b

ϕ1 0.31 b 0.4452 a 0.2746 c

ϕ2 −0.881 c −2.381 c −1.943 b

Statistical evaluation
parameters Values

Adj-R2 0.9955 0.9924 0.9856
RMSE 0.05314 0.07912 0.06768

All values are means of three determinations with coefficient of variations (CV = SD/mean × 100) <5%. For each
model parameter, means with the same lowercase letters are not significantly different at p < 0.05.
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The parameters of the competitive model are listed in Tables 4 and 5 for S. Typhi and
S. aureus, respectively.

Table 4. Parameters of the S. Typhi in the presence of L. paraplantarum, L. plantarum subsp. Plantarum,
and L. pentosus.

Statistical
Parameters S. Typhi

L. paraplantarum L. plantarum subsp.
plantarum L. pentosus

µmax 0.0180 a 0.0140 b 0.0136 c

[X]max 11.3600 c 13.9000 b 15.7600 a

kPH 0.0046 b 0.0040 b 0.0060 a

All values are means of three determinations with coefficient of variations (CV = SD/mean × 100) <5%. For each
model parameter, means with the same lowercase letters are not significantly different at p < 0.05.

Table 5. The competitive model parameter for S. aureus in the presence of L. paraplantarum, L. plan-
tarum subsp. Plantarum, and L. pentosus microorganisms.

Statistical
Parameters S. aureus

L. paraplantarum L. plantarum subsp.
plantarum L. pentosus

µmax 0.0100 a 0.0056 b 0.0106 a

[X]max 11.1200 c 13.7000 a 12.6000 b

kPH 0.0044 b 0.0036 c 0.0062 a

All values are means of three determinations with coefficient of variations (CV = SD/mean × 100) <5%. For each
model parameter, means with the same lowercase letters are not significantly different at p < 0.05.

The physical interpretation of the listed parameters should be considered to extract
the appropriate information from the calculated data. kPH indicates the importance of pH
for the inactivation of S. Typhi and S. aureus.

According to the results, the magnitude of this parameter was higher for L. pentosus
compared to L. paraplantarum and L. plantarum subsp. plantarum for the inactivation of both
S. Typhi and S. aureus. Specifically, pH had a 50% greater effect on the S. Typhi inactivation
than the samples containing L. plantarum subsp. plantarum and L. pentosus. The same
parameter was reported to be 72% for S. aureus inactivation.

The µmax and [X]max parameters had a significant influence on the first phase of
S. Typhi and S. aureus population variation (i.e., growth phase), V. A higher µmax indicates
increased variation rates in the first phase, while a higher [X]max is a measure of the
overpopulation limit. As [X]max increased, the limit beyond which the negative effect of
the population on microbial growth rate occurs was raised.

For the inactivation of S. Typhi, the presence of L. paraplantarum causes the highest
growth rate in the first phase, while the overpopulation limit was the highest for the sample
containing L. pentosus. The maximum growth rate and overpopulation limit for S. aureus
belong to the samples containing L. pentosus and L. plantarum subsp. plantarum, respectively.

The logarithmic population of L. paraplantarum, L. plantarum subsp. Plantarum, and
L. pentosus were increased by 57.3, 56.4, and 46.7%, respectively, after 48 h. Based on the re-
sults obtained, a reduction in the pH of 1.5, 2.1, and 2.4 was observed due to the population
growth of L. pentosus, L. paraplantarum, and L. plantarum subsp. plantarum, respectively.

During the fermentation process, LAB strains can create unfavorable conditions for
the growth of pathogenic microorganisms, thus preventing their growth. LAB strains
affect the growth of pathogens by producing lactic acid and lowering the pH, bacteriocin,
and hydrogen peroxide. Of course, not all LAB strains produce all these compounds;
for example, they may only produce lactic acid and affect pathogen growth [26–28]. In
this research, it was observed that the production of acid decreased the pH of the growth
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environment of LAB strains, and as a result, it had a negative effect on the growth of
pathogens. Other inhibitory factors produced by LAB strains were not investigated in this
research. On the other hand, the growth of pathogens in fermented products, such as meat,
can be affected by factors such as salt, moisture content, and inhibitors such as nitrite, in
addition to starters [29], which were of course kept constant for all samples in this study.

The literature indicates that acid production is one of the main factors influencing
the inactivation of pathogens by LAB in fermented meat and meat products. In some
cases, mathematical models have been used in the studies. For example, Tabanelli et al.
(2016) [30] reported that pH decreases in Italian fermented sausages due to producing acids
such as lactic and acetic acid by starter LAB [30]. The inactivation of Salmonella spp. in
dry fermented sausages was studied using a Weibull model and a polynomial equation.
The authors observed that the acid production by the starter affected the time to first log
reduction (δ) but did not affect the overall shape (p parameter) of the inactivation [20].
Quinto et al. (2016) [19] investigated the effect of co-culturing Latilactobacillus sakei with
Listeria (L) monocytogenes in a model of meat gravy. The Verhulst logistic model was
modified; the model showed that the co-culture of L. monocytogenes with L. sakei in different
inoculations and temperatures reduced the growth of L. monocytogenes. The simple logistic
model also showed that the effect of L. sakei on L. monocytogenes was independent of
environmental conditions [19]. Huang et al. (2022) [31] investigated the competition
between lactic acid bacteria and L. monocytogenes during the simultaneous fermentation
and drying of meat sausages. The results showed that L. plantarum and Levilactobacillus
brevis strains could suppress the growth of L. monocytogenes. The interaction between LAB
strains and L. monocytogenes was described by a modified Lotka–Volterra equation [31]. In
another study, L. sakei CTC 494 and Latilactobacillus curvatus LTH 1174 reduced Lactobacillus
innocua LMG 13,568 by more than 3 log CFU/mL during two days of fermentation, which
was attributed to the production of bacteriocin by these microorganisms [32]. The effect of
Enterococcus (E) mundtii CRL35 on L. monocytogenes in meat fermentation was studied in a
meat model system. It was observed that E. mundtii can be used as a bioprotective agent
in fermented sausage by producing acid and bacteriocin [33]. Pragalaki et al. (2013) [34]
investigated the inactivation of L. monocytogenes and E. coli O157:H7 by L. sakei strains
during sausage fermentation. The results showed that the inactivation of L. monocytogenes
by L. sakei strains was significant compared to the control samples, and a 2.2 log reduction
was observed for E. coli O157:H7. Bacterial inactivation was modeled using a “shoulder
plus log-linear regression” [34].

4. Conclusions

In this study, lactobacilli strains were used for beef fermentation. Their inhibitory effect
on the growth of pathogenic bacteria, including S. Typhi and S. aureus, was investigated
using mathematical models, including Weibull, biphasic linear, and competitive models.
The pH reduction effect was slightly stronger for L. plantarum subsp. plantarum compared
to L. paraplantarum and L. pentosus. S. aureus was more sensitive to competitive factors,
and its population growth trend stopped and reversed earlier than the growth trend of
S. Typhi. For the inactivation of S. Typhi, the presence of L. paraplantarum caused the
highest growth rate in the first phase, while the overpopulation limit was the highest for
the sample containing L. pentosus. The maximum growth rate and overpopulation limit for
S. aureus belong to the samples containing L. pentosus and L. plantarum subsp. plantarum
microorganisms, respectively.

The products mentioned as examples may pose a potential risk to the consumer.
Therefore, preservation by inoculating an appropriate type and number of LAB cultures
is paramount to protecting product safety and consumer health. Further studies using
mathematical modelling are needed to investigate the effect of different parameters in
preventing pathogen growth during the fermentation process, especially in short-ripened
fermented meat products.
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