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Abstract: The use of the appropriate emulsifier is essential for forming a stable nanoemulsion delivery
system that can maintain the sustained release of its contents. Health concerns have prompted the
search for natural biopolymers to replace traditional synthetic substances as emulsifiers. In this study,
an oregano essential oil (OEO) nanoemulsion-embedding system was created using soybean protein
isolate (SPI), tea saponin (TS), and soy lecithin (SL) as natural emulsifiers and then compared to a
system created using a synthetic emulsifier (Tween 80). The results showed that 4% Tween 80, 1%
SPI, 2% TS, and 4% SL were the optimal conditions. Subsequently, the influence of emulsifier type on
nanoemulsion stability was evaluated. The results revealed that among all the nanoemulsions, the TS
nanoemulsion exhibited excellent centrifugal stability, storage stability, and oxidative stability and
maintained high stability and encapsulation efficiency, even under relatively extreme environmental
conditions. The good stability of the TS nanoemulsion may be due to the strong electrostatic repulsion
generated by TS molecules, which contain hydroxyl groups, sapogenins, and saccharides in their
structures. Overall, the natural emulsifiers used in our study can form homogeneous nanoemulsions,
but their effectiveness and stability differ considerably.

Keywords: nanoemulsion; natural emulsifier; stability; oregano essential oil; encapsulation efficiency

1. Introduction

Natural preservatives are now more widely used in the food industry because of rising
consumer health demands. In this regard, essential oils and their extracts, which are a type
of plant-derived natural preservative, are antimicrobial, antioxidant, and nontoxic [1]; thus,
they are considered alternatives to synthetic preservatives, such as nitrates, sorbates, and
sulfites. Oregano essential oil (OEO) has been considered as GRAS (generally recognized
as safe) according to the FDA (Food and Drug Administration), which is derived from
Origanum vulgare L., an endemic shrub of the Lamiaceae family. Carvacrol, p-cymene, and
c-terpinene, as main ingredients, give OEO relatively strong antimicrobial properties [2,3].
Dávila-Rodríguez et al. [4] reported that OEO exhibited the most effective antibacterial abil-
ity compared with cinnamon essential oil and rosemary essential oil. Similarly, Liu et al. [5]
concluded that oregano essential oil could inhibit biofilm formation at a lower concentration
than clove essential oil. In addition, numerous other studies have confirmed the excellent
antibacterial property of OEO [6,7]. On the other hand, OEO has certain advantages in
terms of cost among various essential oils [8]. However, OEO possesses limited applications
due to several factors, including high volatility, low water solubility, thermal instability,
strong aromatic smell, and sensitivity to environmental stress. Moreover, such unstable
agents are susceptible to protein, fat, and other components in food products, resulting in a
reduction in their antibacterial activities [9].
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To mitigate these limitations, encapsulation techniques have been extensively em-
ployed to enhance the benefits of hydrophobic essential oils. Oil-in-water (O/W) nanoemul-
sions serve as nanoscale encapsulation systems, consisting of two phases that are mutually
immiscible, with an average particle size ranging from 20 to 500 nm [10]. By facilitating
the interaction between essential oils and microorganisms, augmenting the solubility and
absorption of essential oils, and enhancing their release properties, the utilization of na-
noemulsions can effectively overcome the drawbacks associated with essential oils [11].
Nevertheless, nanoemulsions are thermodynamically unstable and typically exhibit the
phenomena of creaming, flocculation, aggregation, and Ostwald ripening over time [12].
To combat these undesirable phenomena, emulsifiers are constantly required to maintain
the stability and uniformity of the system [13]. Currently, most nanoemulsions in practical
production are stabilized with synthetic emulsifiers, such as polyoxyethylene sorbitan
esters (the Tween family). Tween 80 (T80), the most commonly used synthetic emulsifier,
has a hydrophilic–lipophilic balance of 15.0, which allows it to spread relatively easily at the
oil–water interface and demonstrate good emulsification effects [14]. However, synthetic
emulsifiers may pose a health risk; therefore, researchers are increasingly focusing on
natural emulsifiers that are both safe and harmless [15].

Generally, natural emulsifiers include proteins (soybean protein isolate (SPI), whey
protein isolate, zein protein, etc.), phospholipids (soy lecithin (SL), etc.), and saponins (tea
saponin (TS), quillaja saponin, etc.), all of which have been shown to have emulsifying
abilities [16–18]. There may be different mechanisms for forming nanoemulsions with
different emulsifier types. The appropriate emulsifier should be selected according to
specific conditions. Therefore, it is necessary to compare the characterization and stability
of nanoemulsions prepared with different emulsifiers under similar conditions. In this
study, each natural emulsifier (SPI, TS, or SL) was used to prepare nanoemulsions and was
compared to the synthetic emulsifier (T80).

SPI is a rigid globular protein that consists of glycinin and β-conglycinin and is one
of the most widely studied protein emulsifiers with high emulsifying activity and surface
properties. SPI can be quickly adsorbed onto oil droplet surfaces, reducing interfacial ten-
sion and forming a protective film around the droplets to prevent aggregation. Xu et al. [19]
confirmed that stable nanoemulsions with droplet sizes below 200 nm could be efficiently
stabilized by SPI, 7S, and 11S proteins. TS is a pentacyclic triterpenoid extracted from the
Camellia oleifera seed meal of camellia plants, and it has been proven to be safe, environmen-
tally friendly, and easily decomposed by microorganisms [20]. Additionally, TS is a type of
agricultural by-product that has a more sustainable source than other natural emulsifiers.
According to previous reports, the surface activity of TS is attributed to hydrophilic glyco-
syl and hydrophobic aglycons in its structure. Deng et al. [17] successfully encapsulated
silymarin with TS, and the mechanism of TS as an emulsifier may be due to the hydroxyl
groups, sapogenins, and saccharides in its structure. SL is a natural mixed emulsifier
derived from the cell membranes of soybeans, and it comprises phosphatidylcholine, phos-
phatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol,
and other phospholipid derivatives. SL can be used as a healthcare product because it can
regulate blood lipids, delay aging, etc. [21]. More importantly, SL contains hydrophobic
alkyl side chains and hydrophilic groups, which endow it with amphiphilicity and reduce
the interfacial tension between phases [22]. In recent years, SL has frequently been used as a
natural emulsifier to stabilize nanoemulsions, which exhibited good emulsifying properties,
according to Nash et al. [18], Mehmood et al. [23], and Sandoval et al. [24].

Based on the abovementioned implementability, we prepared nanoemulsions with
these four emulsifiers (three natural emulsifiers and one synthetic emulsifier) to investigate
the influence of emulsifier type and concentration on the characteristics of nanoemulsions.
Subsequently, specific concentrations of each emulsifier were screened to further evaluate
the effects of emulsifier types on the stability of nanoemulsions. Moreover, OEO was
encapsulated by the nanoemulsion carriers, and the influence of environmental conditions
(pH, ionic strength, and heat) on OEO nanoemulsions was evaluated to further verify
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whether the nanoemulsions encapsulated with OEO could still maintain a stable state
during actual processing. This study aims to compare the effects of different emulsifiers
on the formation and stability of nanoemulsions in order to provide a theoretical basis for
broadening the application of natural emulsifiers. This study also aims to provide new
ideas and solutions for the rational construction of nanoemulsion delivery systems.

2. Materials and Methods
2.1. Materials

T80 was purchased from the Solabio Corporation (Beijing, China). SPI, TS, SL, medium
chain triglyceride (MCT) oil, and OEO were obtained from Yuan Ye Biological Technology
Co., Ltd. (Shanghai, China). All other chemical reagents used in this study were of
analytical grade.

2.2. Nanoemulsion Preparation

O/W nanoemulsions were prepared by homogenizing a 5% (v/v) oil phase (MCT)
with a 95% (v/v) aqueous phase according to Zou et al. [25], with a slight modification. The
aqueous phases required for the formation of nanoemulsions were prepared by dispersing
various concentrations (0.5–8% w/v) of each emulsifier (T80, SPI, TS, and SL) in deionized
water. Thereafter, the mixture was stirred continuously at room temperature (~25 ◦C) for
2 h and then stored at 4 ◦C overnight to ensure complete hydration. To form a coarse
emulsion, the oil and aqueous phases were blended in a high-speed homogenizer (IKA,
Staufen, Germany) for 2 min at a speed of 14,000 rpm. Subsequently, the coarse emulsions
were passed through a high-pressure microfluidizer (AFM-3, ATS Engineering Limited,
Cambridge, Ontario, Canada) at 50 MPa for two cycles to obtain fine nanoemulsions.

2.3. Measurement of the Droplet Size, Polydispersity Index (PDI), and Zeta Potential

Based on the methodology of Lotfy et al. [26], the droplet size, PDI, and zeta poten-
tial of the nanoemulsions were measured using a dynamic light scattering instrument
(ZetasizerNano-ZS90, Malvern, UK). To avoid multiple scattering effects, each nanoemul-
sion sample was diluted 100-fold with deionized water. The refractive indices of the oil and
water were set at 1.47 and 1.33, respectively. Each measurement was conducted in triplicate
at 25 ± 2 ◦C.

2.4. Super-Resolution Micromorphology

Microstructural analysis was conducted using a Deltavision OMX SR super-resolution
microscope (GE Co., Boston, Massachusetts, USA) to elucidate the particle size and distribu-
tion of the nanoemulsions. Based on the work of Liu et al. [27], 1 mL of the nanoemulsions
was mixed with 20 µL of Nile red (0.1%, w/v) and then left in the dark for 30 min after
vortex mixing. The stained nanoemulsion samples (5 µL) were deposited on a concave
slide with a coverslip. The samples were stored at 4 ◦C for 12 h before observation.

2.5. Rheological Properties

The apparent viscosity of the nanoemulsions was determined at 25 ◦C using a HAAKE
MARS60 modular rotary rheometer (Thermo Fisher Scientific, Shanghai, China) according
to the method described by Wang et al. [28]. First, 3 mL of fresh nanoemulsions was loaded
on the steel parallel plate of the rheometer (geometry diameter: 40 mm; gap size: 1.0 mm).
Thereafter, the flow curves were obtained at a shear rate range of 0.1–100 s−1.

2.6. Nanoemulsion Stability
2.6.1. Centrifugal Stability

The centrifugal stability of the nanoemulsions was determined by measuring the
particle size and zeta potential before and after centrifugation (4500× g, 15 min) and then
measuring the centrifugal stability constant (Ke).
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To obtain the Ke values, the absorption values of the 100-fold-diluted nanoemulsion
were evaluated at 500 nm using a spectrometer according to the method reported by
Qi et al. [29], with minor modifications. These absorption values were denoted as A1.
Subsequently, each nanoemulsion sample was centrifuged at 4500× g for 15 min and then
collected to determine their absorbance at 500 nm, which was recorded as A2. Finally, Ke
was calculated using the following equation:

Ke (%) = (A1 − A2)/A1 × 100 (1)

A low Ke value indicates that the nanoemulsion is stable.

2.6.2. Storage Stability

The nanoemulsions prepared with different emulsifiers were stored at 4 ◦C and 25 ◦C
for 15 days. Changes in the particle size and zeta potential were assessed every three days
for 15 days (on days 0, 3, 6, 9, 12, and 15).

2.6.3. Oxidative Stability

To evaluate their oxidative stability, the nanoemulsions were placed in centrifuge tubes
and kept in a constant-temperature incubator at 50 ◦C for 7 days to accelerate oxidation. The
concentrations of primary oxidation products (hydroperoxides) and secondary oxidation
products (thiobarbituric acid-reactive substances (TBARS)) in the nanoemulsions were
determined using the methodology of Li et al. [30].

To measure the hydroperoxides, 1 mL of oxidated nanoemulsions was mixed with 3 mL
of isooctane/2-propanol (3:1, v/v), and the mixture was vortexed for 1 min. Subsequently,
the mixture was centrifuged at 2000 g for 5 min to collect the organic phase. The supernatant
(200 µL) was mixed with 2.8 mL of methanol/1-butanol (2:1, v/v), 50 µL of NH4SCN
(3.94 M), and 50 µL of 0.132 M BaCl2/0.144 M FeSO4 (1:1, v/v). After 20 min of reaction,
the absorbance of each mixture was determined at 510 nm using a spectrophotometer with
methanol/1-butanol as a blank. The hydroperoxide concentration was obtained using a
standard curve prepared with cumene hydroperoxide.

To measure TBARS, 1 mL of the nanoemulsions was mixed with 2 mL of a TBA
solution and vortexed for 1 min. Thereafter, the mixtures were placed in a boiling water
bath for 15 min, cooled to room temperature, and then mixed with 3 mL of chloroform
under stirring. Subsequently, the mixtures were centrifuged at 3000× g for 15 min, and then
the absorbance of the supernatant was determined at 532 nm using a spectrophotometer.

2.7. OEO-Nanoemulsion Preparation

OEO-nanoemulsions were prepared by homogenizing a 5% (v/v) oil phase with a 95%
(v/v) aqueous phase [25,31]. The aqueous phase was prepared using the same method
described in Section 2.2, but there were some differences in the composition of the oil
phase. Briefly, MCT and OEO were mixed in a ratio of 1:1 (v/v) and stirred overnight to
form the oil phase. Thereafter, the oil and aqueous phases were mixed in a high-speed
homogenizer for 2 min at a speed of 14,000 rpm to produce coarse emulsions. Finally,
the coarse emulsions were homogenized using a high-pressure microfluidizer at 50 MPa
for two cycles. The details of the composition of the nanoemulsion samples are exhibited
in Table 1.

Emulsifier concentration refers to the mass concentration in the aqueous phase. The
concentration of aqueous phase, MCT-oil, and OEO refer to the volume concentration in
nanoemulsions.

2.8. Encapsulation Efficiency

The encapsulation efficiency was assessed using the approach of Davila et al. [13] with
a slight modification. To determine the encapsulation efficiency, ethanol, n-hexane, and
the OEO-nanoemulsions were mixed in a ratio of 2:3:1 (v/v) with gentle hand-shaking.
Subsequently, the absorbance of free OEO dissolved in the supernatant was measured at
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255 nm using a UV–Vis spectrophotometer. Finally, the free OEO concentration was calcu-
lated using a standard curve constructed with a series of OEO solutions. The encapsulation
efficiency was then obtained using the following equation:

EE (%) = (Total OEO amount (g) − Free OEO amount(g))/Total OEO amount (g) × 100 (2)

Table 1. Details about composition of nanoemulsion samples.

Nanoemulsion
Samples

Nanoemulsions without OEO OEO-Nanoemulsions

Emulsifier
Concentration

(%, w/v)

Aqueous
Phase

(%, v/v)

MCT-Oil
(%, v/v)

Emulsifier
Concentration

(%, w/v)

Aqueous
Phase

(%, v/v)

MCT-Oil
(%, v/v)

OEO
(%, v/v)

T80

0.5–8

95 5 4 95 2.5 2.5
SPI 95 5 1 95 2.5 2.5
TS 95 5 2 95 2.5 2.5
SL 95 5

2.9. Environmental Stability of the OEO Nanoemulsion
2.9.1. pH Stability

To evaluate the effect of pH on the OEO-nanoemulsions stabilized with different
emulsifiers, 0.1 M HCl and 0.1 M NaOH were used to adjust the pH of the samples to
values ranging between 5 and 9. Thereafter, changes in the OEO-nanoemulsions were
examined by measuring their particle size, zeta potential, encapsulation efficiency, and
appearance. The fresh nanoemulsions after adjusting were stored at 4 ◦C for 12 h before
analysis. Each measurement was performed at 25 ± 2 ◦C.

2.9.2. Ionic Strength Stability

The ionic strength of the OEO-nanoemulsions was adjusted to 100–500 mM by adding
different quantities of NaCl powder. Thereafter, the adjusted nanoemulsions were stored at
4 ◦C for 12 h prior to particle size, zeta potential, encapsulation efficiency, and appearance
measurements. The test was conducted at 25 ± 2 ◦C.

2.9.3. Thermal Stability

To assess their thermal stability, the OEO-nanoemulsions were placed in water baths
at temperatures of 60–90 ◦C for 30 min before being cooled to room temperature. Finally,
their particle size, zeta potential, encapsulation efficiency, and appearance were measured.

2.10. Statistical Analyses

Three batches of nanoemulsions were prepared, and all measurements were con-
ducted in triplicate. The values were reported as mean ± standard deviation (SD) and
were analyzed using the general linear model procedure from the Statistix 8.1 software
package (Analytical Software, St. Paul, MN, USA). Analysis of variance (ANOVA) was used
with Tukey’s multiple comparison tests to determine the significance among the samples
(p < 0.05).

3. Results and Discussion
3.1. Droplet Size and PDI

Droplet size, which can also affect physicochemical stability, is the most basic character-
istic for describing nanoemulsions [32]. As shown in Table 2, the nanoemulsion droplet size
decreased rapidly as the T80, TS, and SL emulsifier concentrations increased from 0.5% to
4%, and then it decreased relatively slowly as the emulsifier concentrations increased from
4% to 8%. This phenomenon may be attributed to two stages of nanoemulsion formation.
Initially, low emulsifier concentrations (0.5–4%) made more emulsifier molecules available
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to cover the surfaces of newly created oil droplets, resulting in smaller droplets. However,
once the emulsifier concentrations exceeded 4%, there were sufficient emulsifier molecules
around the droplet surfaces. Thus, the droplet size maintained an almost constant value
even though the emulsifier concentration increased at this stage [33]. Similar findings were
reported by Arancibia et al. [34] and Zhu et al. [35], who concluded that the dependence of
nanoemulsion droplet size on emulsifier (T80, TS, and SL) levels can be divided into two
regimes: a “surfactant-limited” regime and a “surfactant-rich” regime.

Table 2. Droplet size, PDI, and zeta potential of the nanoemulsions stabilized with different emulsifier
types and concentrations.

Emulsifier Type Emulsifier Concentration (%, w/v) Droplet Size (nm) PDI Zeta Potential (mV)

T80

0.5 239.1 ± 4.15 a 0.18 ± 0.02 a −15.00 ± 0.36 a

1 205.5 ± 1.59 b 0.18 ± 0.01 a −16.83 ± 1.63 b

2 189.1 ± 3.47 c 0.19 ± 0.01 a −18.87 ± 1.00 c

4 181.9 ± 1.19 d 0.20 ± 0.01 a −17.37 ± 0.49 b

8 180.1 ± 3.44 d 0.20 ± 0.01 a −18.10 ± 0.10 c

SPI

0.5 324.2 ± 8.58 c 0.21 ± 0.01 a −34.60 ± 0.36 c

1 271.5 ± 3.84 d 0.21 ± 0.01 a −33.40 ± 0.15 c

2 308.2 ± 8.55 cd 0.17 ± 0.02 a −30.10 ± 0.66 b

4 352.8 ± 3.49 b 0.16 ± 0.02 a −28.67 ± 0.29 b

8 371.7 ± 8.53 a 0.20 ± 0.01 a −26.27 ± 0.59 a

TS

0.5 227.5 ± 4.69 a 0.17 ± 0.01 a −40.23 ± 0.42 a

1 213.9 ± 4.77 b 0.16 ± 0.01 a −40.97 ± 3.07 a

2 206.1 ± 0.92 bc 0.19 ± 0.01 a −42.57 ± 1.30 a

4 199.3 ± 2.10 c 0.19 ± 0.01 a −44.50 ± 0.44 a

8 197.2 ± 5.16 c 0.19 ± 0.01 a −43.20 ± 0.52 a

SL

0.5 301.8 ± 7.06 a 0.20 ± 0.01 a −25.37 ± 0.06 a

1 266.2 ± 2.52 b 0.17 ± 0.02 a −26.50 ± 0.26 a

2 226.6 ± 2.45 c 0.16 ± 0.01 a −25.27 ± 0.21 a

4 184.9 ± 1.33 d 0.18 ± 0.01 a −28.70 ± 0.17 b

8 178.5 ± 2.62 d 0.21 ± 0.01 a −29.67 ± 0.08 b

Values expressed as mean± standard deviation. a–d mean the significant differences (p < 0.05) between samples
with the same emulsifier type of different concentration.

The droplet size of the SPI nanoemulsion exhibited a different trend from those of the
above three nanoemulsions. Overall, it first decreased and then rapidly increased as the
SPI concentration increased, as shown in Table 2. The droplet size of the SPI nanoemulsion
decreased significantly (p < 0.05) as the SPI concentration increased from 0.5% to 1%.
This is because a low SPI concentration is insufficient to completely cover the entire oil
droplet surfaces. When the SPI concentration was increased, the SPI molecules could be
adsorbed at the oil−water interface, thereby decreasing the droplet size. However, the
droplet size increased significantly (p < 0.05) as the SPI concentration increased from 1% to
8%. This phenomenon may be because the excessive free proteins in the aqueous phase
aggregate with each other to form submicelles, which could increase the oil droplet size
and compromise the stability of the nanoemulsions [36].

Table 2 shows that there was no significant difference in the PDI (p > 0.05) as each
emulsifier concentration increased. Additionally, the PDI values of each nanoemulsion
ranged from 0.16 to 0.21. Generally, it is considered that nanoemulsions with PDI values
below 0.25 can exhibit a uniform droplet-size distribution and thus good physical stabil-
ity [37]. Consequently, it could be concluded that a relatively fine nanoemulsion would be
formed with the entire concentration range (0.5–8%) of T80, SPI, TS, and SL. However, there
are certain differences in the particle size of emulsions stabilized with different emulsifiers.
These differences may be due to several factors, including how quickly the emulsifiers
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attach to the oil droplet surfaces, their ability to reduce interfacial tension, and their effects
on interfacial rheology [35].

3.2. Zeta Potential

The zeta potential is a measure of the surface charge density of nanoemulsion droplets [38],
and it was evaluated in this study to further explore the properties of the interfaces formed
by the four emulsifiers. Table 2 presents the zeta potential values. All the nanoemulsions
exhibited a negative electrical charge, which may be due to the electrical charge of the
emulsifier molecules. Although T80 is a nonionic surfactant, the zeta potential of the T80
nanoemulsion was a negative charge. This may be attributed to the presence of free fatty
acid impurities in the surfactant or the ability of hydroxyl ions to be adsorbed from water
to the oil droplet surfaces [39]. SPI nanoemulsions have a negative electrical charge be-
cause of the negatively charged amino acid residues on the protein surfaces [40]. Similarly,
TS nanoemulsion droplets have a negative surface potential because of the presence of
carboxylic acid groups on the absorbed saponin molecules [35]. Phosphatidylcholine, the
main component of SL, would impart a negative charge to nanoemulsion droplets because
it is a zwitterionic lipid [41].

Furthermore, as depicted in Table 2, the change in the absolute zeta-potential value
corresponds to the abovementioned trend in droplet size in that the nanoemulsions with
relatively small droplet sizes had relatively high net charges. Similar findings were re-
ported by Hu et al. [36]. However, this correspondence was not noticeable in the T80
nanoemulsions. This could be because T80 nanoemulsions are mainly stabilized by steric
hindrance [39], while SPI, TS, and SL nanoemulsions prevent aggregation through elec-
trostatic repulsion [42]. Generally, it is considered that absolute zeta potential values of
>30 mV could ensure nanoemulsion stability against aggregation and coalescence [43].
In this case, nanoemulsions stabilized with SPI and TS would therefore be highly stable
because of the strong electrostatic repulsion between the droplets.

3.3. Super-Resolution Microscopy

Super-resolution microscope imaging was conducted to observe the influence of
emulsifier type and concentration on the droplet distribution and morphology of the
nanoemulsions. Figure 1 shows that the green oil droplets have spherical shapes, implying
that the oil droplets were completely encapsulated inside the nanoemulsions [30].

When the emulsifier concentration was 0.5%, the T80, TS, and SL nanoemulsions
contained numerous large particles and had a relatively nonuniform droplet distributions.
When the emulsifier concentration exceeded 0.5%, the droplet size reduced significantly,
and the distribution became more uniform. When the emulsifier concentration exceeded 4%,
the oil droplets were almost invisible through the super-resolution microscope. Contrarily,
the smallest oil droplets and the most uniform droplet distribution were observed in the
sample prepared with 1% SPI. However, as the SPI concentration further increased from
1% to 8%, the droplet size gradually increased, and at high SPI concentrations (4%–8%),
the droplets exhibited merging behavior. These results are consistent with the change
in droplet size, further illustrating that different emulsifiers have different effects on the
formation of nanoemulsions.

3.4. Rheological Properties

Rheology plays an important role in the characterization of interfacial films, which are
related to the stability of nanoemulsions [44]. As displayed in Figure 2, all the investigated
nanoemulsions exhibited a gradual decrease in viscosity within the shear rate range of
0.1–100 s−1, demonstrating shear-thinning behavior, a common feature of conventional
emulsions. At low shear rates (0.1–20 s−1), the viscosity of all the samples decreased
sharply, which may be due to the deflocculation of the oil droplets and the deformation of
the flocs under the shear field. Conversely, at high shear rates (20–100 s−1), the viscosity
did not change significantly, demonstrating the properties of pseudoplastic fluids. This can
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be attributed to the flocs splitting into single droplets and then maintaining a relatively
stable state [45].
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Furthermore, Figure 2 clearly shows that the viscosity of the nanoemulsions increased
as the emulsifier concentration increased, particularly for the SPI-stabilized emulsions.
This dose-dependent relationship may be due to two factors: (1) the thickening effects of
emulsifiers cause excessive emulsifier molecules to migrate into the aqueous phase, thereby
increasing the viscosity of the nanoemulsions, and (2) apparent viscosity is related to the
droplet size of nanoemulsions (that is, the smaller the droplet size, the larger the specific
surface area of the nanoemulsions, and the easier the interaction between oil droplets,
which ultimately increases the apparent viscosity) [46]. Interestingly, the viscosity of the
SPI nanoemulsion increased by nearly two orders of magnitude when the SPI concentration
increased to 8% (Figure 2B). Such a large increase in viscosity may be attributed to the gel
network formed by unabsorbed proteins in the continuous phase, which decreased the
fluidity of the nanoemulsions. Similar findings were reported by Kadiya et al. [47], who
revealed that the significant increase in the apparent viscosity of nanoemulsions stabilized
with whey protein isolate and pectin was mainly due to the excessive emulsifiers in the
aqueous phase.

The T80-stabilized nanoemulsions maintained a low apparent viscosity throughout the
concentration range, unlike the other nanoemulsions (Figure 2A). This may be attributed
to the thin interfacial film produced by T80. As the shear rate increased, the internal
structure of the nanoemulsion system was easily destroyed, resulting in a decrease in
viscosity. According to Stoke’s law, a high viscosity could generally retard the migration
rate of oil droplets, thereby improving the stability of nanoemulsions [48]. Therefore, it
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could be inferred that the SPI, TS, and SL nanoemulsions were more stable than the T80
nanoemulsions. Other factors, however, such as droplet size and certain environmental
conditions, can also influence the stability of nanoemulsions.
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Figure 2. Apparent viscosities of the nanoemulsions stabilized with (A) T80, (B) SPI, (C) TS, and
(D) SL.

3.5. Nanoemulsion Stability

Based on the aforementioned results, 4% T80, 1% SPI, 2% TS, and 4% SL were chosen to
form nanoemulsions in order to analyze the stability of the nanoemulsions under different
conditions.

3.5.1. Centrifugal Stability

As shown in Figure 3A, the bottom of each centrifuge tube became clearer after
centrifugation because the oil droplets floated during the high-speed centrifugation. To
obtain a more specific description of how the nanoemulsions changed under this extreme
condition, the Ke value, which could quantify the intuitive appearance, was used to
determine the turbidity of the nanoemulsions before and after centrifugation. Generally,
when the Ke value is low, the nanoemulsion is considered to be relatively stable [29].
Figure 3B shows that the TS nanoemulsion exhibited the lowest Ke value among the tested
samples because of the strong electrostatic repulsion between its oil droplets (Figure 3C),
which made it able to resist the centrifugal force. As shown in Figs. 3B and 3C, the droplet
size and zeta potential of the TS nanoemulsion did not exhibit significant changes before
and after centrifugation (p > 0.05). Conversely, the SPI nanoemulsion had the highest Ke
value and the most noticeable changes in droplet size and zeta potential. This may be
attributed to the high gravitational migration ability of large droplets [49].



Foods 2023, 12, 3183 10 of 19

Foods 2023, 12, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 3. (A) Appearance, (B) droplet size, centrifugal stability constant (Ke), and (C) zeta potential 
of the nanoemulsions prepared with different emulsifiers (T80, SPI, TS, and SL) before and after 
centrifugation. The letters a–b indicate significant differences between the same nanoemulsion be-
fore and after centrifugation (p < 0.05). 

3.5.2. Storage Stability 
The storage stability of nanoemulsions is an essential indicator of the shelf life of 

products in practical applications [51]. Figure 4 shows the droplet size, zeta potential, and 
appearance of the different stabilized nanoemulsions stored at 4 °C and 25 °C for 15 days. 

The T80, TS, and SL nanoemulsions were discovered to exhibit no significant differ-
ence in zeta potential and only a slight increase in droplet size during the 15-day storage 
at 4 °C (Figure 4A). Moreover, there was no noticeable change in appearance, as shown in 
Figure 4C. However, the SPI nanoemulsion eventually exhibited a different phenomenon, 
with a sharp increase in droplet size and zeta potential from the ninth day at 4 °C. Specif-
ically, after 15 days, the droplet size of the SPI nanoemulsion was threefold larger than 
that of the fresh nanoemulsion, and its zeta potential decreased nearly twofold. This in-
stability may be ascribed to the aging of austenite and the variations in protein confor-
mation, which cause the formation of intermolecular hydrogen and hydrophobic bonds, 
inducing oil droplet aggregation [30,52]. Compared to the SPI molecules, the T80, TS, and 
SL molecules were more fairly efficient at preventing droplet flocculation or aggregation. 
This is because T80, TS, and SL were able to produce smaller oil droplets (Figure 1), which 
could help to decrease the rate of gravitational separation [33]. 

As shown in Figure 4B, when the nanoemulsions were stored at 25 °C, there were 
noticeable variations in their droplet sizes and zeta potentials. Additionally, when the ap-
pearance of the SPI nanoemulsion was observed, some instability phenomena, including 
flocculation, creaming, and phase separation, were discovered. Accordingly, it was con-
firmed that the nanoemulsions were more stable at 4 °C than at 25 °C. This may be ex-
plained by the fact that the droplet collision rate and frequency were relatively high at 25 
°C, which may have caused an increase in droplet size [53]. These findings are similar to 
those of Tian et al. [54], who concluded that the higher the storage temperature, the longer 
the storage time, and the larger the particle size. 

Figure 3. (A) Appearance, (B) droplet size, centrifugal stability constant (Ke), and (C) zeta potential
of the nanoemulsions prepared with different emulsifiers (T80, SPI, TS, and SL) before and after
centrifugation. The letters a–b indicate significant differences between the same nanoemulsion before
and after centrifugation (p < 0.05).

Generally, the application of centrifugal force to nanoemulsions results in instability
phenomena, such as precipitation, phase separation, and creaming, as well as a sharp
increase in the droplet size of the nanoemulsion to the micron level [50]. In this study, the
nanoemulsions prepared with different emulsifiers did not exhibit these phenomena after
the application of a strong centrifugal force, proving that the investigated nanoemulsions,
particularly the TS nanoemulsion, had good physical stability.

3.5.2. Storage Stability

The storage stability of nanoemulsions is an essential indicator of the shelf life of
products in practical applications [51]. Figure 4 shows the droplet size, zeta potential, and
appearance of the different stabilized nanoemulsions stored at 4 ◦C and 25 ◦C for 15 days.

The T80, TS, and SL nanoemulsions were discovered to exhibit no significant difference
in zeta potential and only a slight increase in droplet size during the 15-day storage at 4 ◦C
(Figure 4A). Moreover, there was no noticeable change in appearance, as shown in Figure 4C.
However, the SPI nanoemulsion eventually exhibited a different phenomenon, with a sharp
increase in droplet size and zeta potential from the ninth day at 4 ◦C. Specifically, after
15 days, the droplet size of the SPI nanoemulsion was threefold larger than that of the fresh
nanoemulsion, and its zeta potential decreased nearly twofold. This instability may be
ascribed to the aging of austenite and the variations in protein conformation, which cause
the formation of intermolecular hydrogen and hydrophobic bonds, inducing oil droplet
aggregation [30,52]. Compared to the SPI molecules, the T80, TS, and SL molecules were
more fairly efficient at preventing droplet flocculation or aggregation. This is because
T80, TS, and SL were able to produce smaller oil droplets (Figure 1), which could help to
decrease the rate of gravitational separation [33].
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at 4 ◦C and 25 ◦C. The letters a–d indicate the significant differences for the same nanoemulsion at
different storage times (p < 0.05).

As shown in Figure 4B, when the nanoemulsions were stored at 25 ◦C, there were
noticeable variations in their droplet sizes and zeta potentials. Additionally, when the
appearance of the SPI nanoemulsion was observed, some instability phenomena, includ-
ing flocculation, creaming, and phase separation, were discovered. Accordingly, it was
confirmed that the nanoemulsions were more stable at 4 ◦C than at 25 ◦C. This may be
explained by the fact that the droplet collision rate and frequency were relatively high at
25 ◦C, which may have caused an increase in droplet size [53]. These findings are similar to
those of Tian et al. [54], who concluded that the higher the storage temperature, the longer
the storage time, and the larger the particle size.

3.5.3. Oxidative Stability

Oxidative stability was determined by monitoring the formation of primary (hydroper-
oxides) and secondary (TBARS) reaction products throughout the storage process [55]. The
primary and secondary products in all the nanoemulsion samples gradually increased with
prolonged storage time, indicating that lipid oxidation occurred (Figure 5). Figure 5A the
SL nanoemulsion had a significantly higher increase in hydroperoxide content than the
other nanoemulsions. A significant change in hydroperoxide content appeared in the T80
and SPI nanoemulsions from the fourth day of storage. However, there was no significant
change in the hydroperoxide content in the TS nanoemulsion (p > 0.05). Moreover, the
trends of the TBARS content in the nanoemulsions were remarkably similar to those of
the hydroperoxide content. The content and formation rate of TBARS in the different
samples decreased in the following manner: SL nanoemulsion > T80 nanoemulsion > SPI
nanoemulsion > TS nanoemulsion.
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Figure 5. Formation of (A) lipid hydroperoxides and (B) thiobarbituric acid-reactive substances
(TBARS) in the nanoemulsions stabilized with different emulsifiers (T80, SPI, TS, and SL) at 50 ◦C
for 7 days. The letters a–d indicate the significant differences for the same nanoemulsion at various
storage times (p < 0.05).

This difference is related to the nature of the emulsifiers. The SL nanoemulsion de-
picted the worst oxidative stability because SL is susceptible to lipid oxidation, autoxidation,
and photosensitized lipid oxidation in nanoemulsions, according to Arancibia et al. [35].
Furthermore, the SL amount was relatively high, which increased the oxidation level. For
the T80 nanoemulsion, the high content of oxidation products may be due to the polyether-
based hydrophilic head group, which could be easily oxidized. Additionally, as the main
prooxidants, the transition metals present in the aqueous phase could initially promote
the decomposition of lipid hydroperoxides on the oil droplet surfaces into free radicals
and then promote the lipid oxidation process [54]. In contrast, proteins and saponins have
been confirmed to effectively inhibit lipid oxidation in nanoemulsions. Zhang et al. [56]
reported that unabsorbed proteins can scavenge free radicals and chelate metal ions. Thus,
these prooxidants can be prevented from being absorbed onto the oil droplets’ surfaces. TS
protects against oxidation mainly by scavenging free radicals, which may be because of
the hydroxyl group in its molecular structure [17]. These results demonstrate that TS is the
most effective emulsifier for enhancing the oxidative stability of nanoemulsions.

3.6. Environmental Stability of OEO Nanoemulsions

Based on these results, we attempted to evaluate the stability of the nanoemulsions
under different environmental conditions after encapsulating OEO in order to further
compare the effectiveness of the different emulsifiers. When SL was used as an emulsifier
to encapsulate OEO, no uniform nanoemulsion was formed. We speculated that this
anomaly was due to the reaction between the SL molecules and OEO, which diminished
the emulsification ability of SL. Therefore, T80, SPI, and TS were chosen to prepare OEO-
nanoemulsions in the next study.

3.6.1. pH Stability

It is essential to evaluate the effect of pH on nanoemulsions since different pH values
have been frequently found in commercial foods in practical applications. The T80 OEO-
nanoemulsion exhibited high stability without significant changes in droplet size, zeta
potential, and appearance from pH 5 to 9 (Figure 6B–D). This suggests that the T80-coated
droplets were primarily stabilized by steric hindrance. Consequently, the influence of pH on
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the T80 OEO-nanoemulsion was extremely minor. Interestingly, the encapsulation efficiency
of the T80 OEO-nanoemulsion slightly improved when the pH value increased to 8 and 9
(Figure 6A). Actually, every droplet in the OEO-nanoemulsion could be considered as a
“core-shell” structure. The OEO in nanoemulsion systems was divided into two parts. One
part of the OEO was encapsulated in this “core-shell” structure, while the other was free
in the aqueous phase. When pH value reached 8–9, hydroxyl ions were adsorbing on the
oil–water interface. This may cause an increase in the emulsifying ability of T80, which may
allow more OEO to be encapsulated inside the “core-shell” structure, and therefore resulted
in efficient OEO encapsulation [57]. A different phenomenon occurred in the SPI and TS
nanoemulsions, which were mainly stabilized via electrostatic repulsion. Figure 6 shows
that the SPI OEO-nanoemulsion was stable at pH values of 7–9. However, the evidence of
instability appeared in the droplet size and appearance of SPI OEO-nanoemulsion at low
pH values of 5 and 6. Additionally, the encapsulation efficiency decreased to 60.47% when
the pH value was 5 (Figure 6A). The TS OEO-nanoemulsion exhibited greater pH stability
than the SPI OEO-nanoemulsion. There was a slight increase in the droplet size of the TS
OEO-nanoemulsion at pH 5, but there were no significant variations in the appearance and
encapsulation efficiency of the TS OEO-nanoemulsion.
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The letters a–d indicate the significant differences for the same nanoemulsion at different pH levels
(p < 0.05).

The influence of pH on zeta potential was evaluated to identify the mechanism un-
derlying the instability of the SPI and TS OEO-nanoemulsions in low-pH settings. As
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displayed in Figure 6D, the absolute zeta potential value of the SPI OEO-nanoemulsion
decreased significantly as the pH decreased (p < 0.05). This result could be explained by the
following reasoning. The larger the absolute zeta potential value, the stronger the mutual
repulsion between the nanoemulsion droplets, and the more stable the nanoemulsion.
However, when the pH value is close to the isoelectric point of SPI, the electrostatic repul-
sion is insufficient to overcome attractive forces, and then the droplets tend to aggregate
through hydrophobic attraction and van der Waals interaction, resulting in large particles
and affecting OEO encapsulation [58]. Similarly, the absolute zeta potential value of the TS
OEO-nanoemulsion also decreased significantly as the pH value decreased (p < 0.05). This
may be due to the protonation of carboxylic acid groups around and below the pKa value
of TS [38]. Similar results can be found in a previous study conducted by Yang et al. [59],
who evaluated the pH stability of quillaja saponin emulsions. Nevertheless, the lowest
absolute zeta potential value of the TS OEO-nanoemulsion was still above 30 mV, implying
that TS OEO-nanoemulsions have good pH stability.

3.6.2. Ionic Strength Stability

Investigating the effects of ionic strength on nanoemulsions is also important be-
cause commercial foods usually contain different salt levels. Therefore, we added NaCl
(100–500 mM) to the nanoemulsions to investigate their stability against ionic strength.

The droplet size and zeta-potential of the T80 OEO-nanoemulsion did not vary signifi-
cantly as the ionic strength increased (p > 0.05). Additionally, no signs of instability were
found through visual observation (Figure 7C). This result may be due to the polyether-
based hydrophilic head group of T80, which provided strong steric hindrance. As depicted
in Figure 7D, the zeta potential of the SPI OEO-nanoemulsion decreased significantly when
more NaCl was added (p < 0.05), indicating that ions destroyed the electric double layer
of the protein molecules and led to the destruction of the interface layer. This caused the
nanoemulsion droplets to aggregate and become unstable, thereby affecting the encapsula-
tion efficiency. Furthermore, an appearance analysis revealed that the SPI nanoemulsion
exhibited a stratification phenomenon as the NaCl amount increased (Figure 7C). Similar
results were reported by Teo et al. [58], who discovered that whey-protein-isolate-stabilized
nanoemulsions became unstable at high salt levels. The variation trend of the TS OEO-
nanoemulsion was similar to that of the SPI OEO-nanoemulsion but to a milder degree.
Figure 7B–D show that the droplet size, zeta potential, and appearance of the TS nanoemul-
sion changed slightly at low ionic concentrations (100–200 mM). However, when the salt
concentration exceeded 300 mM, the droplet size and zeta potential increased rapidly, and
the TS OEO-nanoemulsion formed a white cream layer on top. Additionally, the encap-
sulation efficiency decreased continuously as the ionic strength increased (p < 0.05). This
could be attributed to the accumulation of counterions around the charged surface groups,
a phenomenon defined as an electrostatic screening effect. At low ionic concentrations,
the electrostatic repulsion between the droplets was sufficient to resist aggregation and
flocculation. Conversely, at high ionic concentrations, this force could not overcome the
van der Waals attraction, resulting in the instability of the TS OEO-nanoemulsion [60].

3.6.3. Thermal Stability

Figure 8B,D show that the T80-stabilized OEO-nanoemulsion could remain stable at
60–80 ◦C. However, when the temperature increased to 90 ◦C, the droplet size increased
steeply, and the absolute zeta potential value slightly decreased. This effect is caused by
the temperature being close to the phase inversion temperature of this nonionic surfac-
tant, thereby accelerating the coalescence of the oil droplets [61]. Therefore, owing to the
impaired emulsifying ability, the encapsulation efficiency of T80 decreased gradually as
the temperature increased. It was discovered that heat treatment did not affect the appear-
ance (Figure 8C) and encapsulation efficiency (Figure 8A) of the SPI OEO-nanoemulsion.
Meanwhile, it was observed that as the temperature increased, the droplet size of the SPI
OEO-nanoemulsion decreased gradually, and the absolute zeta-potential value increased
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gradually (Figure 8B,D). As previously reported, SPI can be partially denatured at 90 ◦C
to generate soluble aggregates with a high surface hydrophobicity, which is conducive to
its adsorption at the oil–water interface [62]. Similar results were observed in the whey
protein isolate nanoemulsions prepared by Teo et al. [58]. The TS OEO-nanoemulsion dis-
played greater thermal stability than the above two nanoemulsions. Overall, heat treatment
had no significant effect on the droplet size, zeta potential, encapsulation efficiency, and
appearance of the TS-stabilized OEO-nanoemulsions. This may have been because there
was a powerful electrostatic repulsion between the nanoemulsion droplets over the entire
temperature range, which is attributed to the carboxylic acid groups in the TS chemical
structure. This result agrees with the results reported by Li et al. [63], who confirmed
that no signs of destabilization were observed in the quillaja saponin nanoemulsion after
temperature treatment.
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(T80, SPI, and TS). The letters a–d indicate the significant differences for the same nanoemulsion after
different ionic strength treatments (p < 0.05).
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Figure 8. Effects of temperature (60–90 ◦C) on the (A) encapsulation efficiency, (B) droplet size,
(C) appearance, and (D) zeta potential of the OEO-nanoemulsions prepared with different emulsifiers
(T80, SPI, and TS). The letters a–c indicate the significant differences for the same nanoemulsion after
different heat treatments (p < 0.05).

4. Conclusions

In this study, nanoemulsions were prepared with different concentrations of T80, SPI,
TS, and SL emulsifiers. The results revealed that these nanoemulsions exhibited optimal
behavior when 4% T80, 1% SPI, 2% TS, and 4% SL were used, respectively. Subsequently,
we evaluated the stability of the different nanoemulsions. The TS nanoemulsion was
found to exhibit the best centrifugal stability and oxidative stability. Additionally, the TS
nanoemulsion could maintain good stability after 15 days of storage at 4 ◦C and 25 ◦C
because of its powerful electrostatic repulsion between droplets. Under different environ-
mental conditions, the TS nanoemulsion also maintained better dispersion and higher OEO
encapsulation efficiency than the other nanoemulsions, although it was affected by salt
treatment to a certain extent. In summary, TS has a good application prospect as a natural
emulsifier for encapsulating bioactive components in the food industry.
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