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Abstract: Plant-based meat analogs have been shown to cause less harm for both human health and
the environment compared to real meat, especially processed meat. However, the intense pressure
to enhance the sensory qualities of plant-based meat alternatives has caused their nutritional and
safety aspects to be overlooked. This paper reviews our current understanding of the nutrition
and safety behind plant-based meat alternatives, proposing fermentation as a potential way of
overcoming limitations in these aspects. Plant protein blends, fortification, and preservatives have
been the main methods for enhancing the nutritional content and stability of plant-based meat
alternatives, but concerns that include safety, nutrient deficiencies, low digestibility, high allergenicity,
and high costs have been raised in their use. Fermentation with microorganisms such as Bacillus
subtilis, Lactiplantibacillus plantarum, Neurospora intermedia, and Rhizopus oryzae improves digestibility
and reduces allergenicity and antinutritive factors more effectively. At the same time, microbial
metabolites can boost the final product’s safety, nutrition, and sensory quality, although some
concerns regarding their toxicity remain. Designing a single starter culture or microbial consortium
for plant-based meat alternatives can be a novel solution for advancing the health benefits of the final
product while still fulfilling the demands of an expanding and sustainable economy.

Keywords: meat alternatives; anti-nutritive and digestibility; alternative proteins; starter
cultures; sustainable

1. Introduction

Meat and meat products represent an essential source of protein, with the global
market estimated at over USD 897 billion in 2021 [1,2]. By 2050, the global population is
projected to have grown to roughly 9 billion people, which will require at least twice as
much protein as is currently produced [3,4]. To meet this demand, meat production must
increase, but this increase is severely constrained by scarcity in water and land resources. In
addition, the negative effects of the meat industry on the environment and climate change,
the rising concern for animal welfare, and the growth of the halal and kosher markets all
point to the necessity of meat analogs (also known as meat replacers, meat substitutes, or
meat alternatives) for supporting this growing demand [5,6].

Cultured meat, edible insects, mycoprotein, and plant-based proteins are expected
to be the main protein sources for formulating meat analogs. Among them, plant-based
meat analogs are gaining popularity in the market and have been promoted as a healthy,
environmentally friendly, and ethical solution [7]. Plant-based diets are reported to have
lower adverse impacts on human health that include lowering blood pressure, and inci-
dences of cardiovascular diseases and diabetes [8–10]. Additionally, they are proven to be
more eco-friendly and produce less greenhouse gases [11,12]. Tempeh, tofu, and seitan
are the first generation of plant-based food products. These products are popular in Asian
countries but have lower consumer acceptability in the West [13]. A new generation of
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items made from plant ingredients that mimic real meat are already in the market and
called plant-based meat analogs [14,15]. Plant-based meat analogs are defined as plant
proteins that are structured and formulated to mimic the flavor, appearance, texture, and
nutritional profile of meat [16,17]. Such products are designed to appear and taste like meat,
contain a similar amount of protein, and are generally lower in fats and calories compared
to meat products [18,19]. Although considerable effort has been employed to improve
the appearance, flavor, and texture [7,20] of these meat analogs, little attention has been
given to enhancing their health benefits and improving their safety. Fortifications include
vitamins such as riboflavin, thiamine, niacin, cobalamin, and pyridoxin, and minerals such
as calcium, zinc, and iron, as well as fiber from vegetables, oat, bamboo, and pea, which are
common ingredients that have been used in plant-based meat alternatives. There is little
evidence to prove that these additives offer a significant health benefit [21–25]. Additionally,
plant-based meat analogs are ultra-processed foods and reported to have anti-nutrients
such as trypsin inhibitors, phytates, oligosaccharides, and allergens, which raise health
concerns [26–28]. This highlights the need for food industries to find solutions to these
challenges [7,29].

Fermentation is one of the oldest methods used to preserve perishable foods and
improve their safety, nutritional, and sensory quality in an economical and energy-efficient
way [30,31]. Fermentation improves the nutritional value by boosting the quantities of
vitamins, amino acids, fatty acids, and other bioactive components [32]. As such, fer-
mentation may be a good option for improving the nutritional value of plant-based meat
substitutes. Unlike conventional spontaneous fermentation, starter culture technology
uses formulators to exert control over fermentation processes and adjust the quality of the
final products [33–37]. A starter culture contains a wide range of active microorganisms,
including bacteria and fungi, that are added to initiate desirable changes during the product
manufacturing process. The use of fermented plant materials and starter culture technology
in the production of plant-based meat analogs has received little attention, despite its
potential in improving the nutritional value of meat alternatives. This review provides an
overview of the current state of scientific knowledge regarding the challenges to the safety
and nutritional aspects of plant-based meat analogs and introduces the use of fermentation
and starter culture technology as novel strategies for more sustainable and economical
ways of producing safe, nutritional plant-based meat analogs.

2. Plant-Based Meat Analogs Characterization and the Demand for New Approaches

Plant-based meat alternatives are a broad category of foods that are similar in texture,
appearance, flavor, and nutritional quality to real meat products in the human diet. For
the purpose of this review, real meats are defined as fresh uncooked whole muscle meat
such as boneless steaks, whole, cooked cuts such as beef roast, or fermented meats, such
as fermented sausages. Nutrition quality is considered a key driver for consumer accep-
tance of plant-based meat analogs [7,38]. Table 1 summarizes the nutritional content and
illustrates some selected advantages and disadvantages of real meat and plant-based meat
alternatives. Details regarding components, formulation, and structuring technologies
of plant-based meat analogs and their functions are outside the scope of this review and
have been reviewed in depth by other authors [7,39–42]. However, we briefly highlight
relevant points to explain the drawbacks of current processing methods and the need for a
novel approach.
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Table 1. Comparison of nutritional content, selected advantages and disadvantages of conventional meat and plant-based meat alternatives.

Food
Nutritional Content (%)

Advantages Disadvantages References
Protein Fat PDCAAS 1

Meat

High protein content and protein digestibility
High consumer acceptance and sensory quality

Good source of iron and vitamin B12

Resource-intensive production
Animal-welfare concerns

Red meat consumption linked to adverse health
effects (e.g., cancer and cardiovascular disease)

Chicken 22.3–22.7 0.9–2.1 0.95 [43–45]
Beef 20.6–22.5 4.3–6.8 0.92 [43,44,46]
Pork 21.8 4.0 - [44,47]
Mutton 20.2–21.6 4.6–8.0 0.99 [43,44]
Meat alternatives

Tempeh
(fermented whole
soybean)

61.9–56.9 8.4–23.9 0.92–0.99

Good source of protein, low in saturated fat
Good source of iron and fiber

Free of cholesterol
High digestibility

More resource-efficient production than meat
Low allergenicity, fermentation breaks down

allergenic proteins

Lack sulfur-containing amino acids, including
methionine and cysteine

Lack of vitamin B12, except if vitamin
B12-producing bacteria present during

fermentation
Low consumer acceptance

Sensory quality is different from meat

[48–50]

Tofu (made from
soymilk) 11.3 7.84 0.56–0.70

Rich in B vitamins, and low in sodium
Net protein utilization (NPU) is estimated to be
around 65%, making it comparable to chicken

meat in terms of assimilation and digestion
More resource efficient production than meat

Lack sulfur-containing amino acids
Lower digestibility than meat

Loss of nutritional and nutraceutical contents
during processing

Presence of anti-nutritive factors
Lack flavors causing a low consumer

acceptability

[51–54]

Seitan (made
from wheat
gluten)

34.3 0.78 0. 23

Consumption of 100 g provides 61.2–74.5% of
recommended daily protein Low in lysine

[53,55,56]
Its fibrous structure and high protein content

make it an excellent meat substitute Low digestibility

Its sensory properties can be easily modulated by
spices and flavors during manufacturing due to

its neutral taste and aroma

Sensory quality is closer to meat than tempeh
and tofu but still not a perfect real meat analogy

Quorn
(mycoprotein,
made from
Fusarium
venenatum)

9.4–11.5 2.6 0.91

High protein digestibility, low in saturated fat
Low antinutrient content

More resource-efficient production than meat
High fiber content

Texture more like meat compared to plant
proteins

Lower levels of iron and vitamin B12 than real
meat

May cause allergies and/or gastrointestinal
symptoms

Possible presence of mycotoxins after inoculating
F. venenatum into rice culture

[57–61]
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Table 1. Cont.

Food
Nutritional Content (%)

Advantages Disadvantages References
Protein Fat PDCAAS 1

Texturized
plant protein 2

Soybean isolates
Wheat gluten
Pea protein
concentrates

87.0

80.0
50.0–85.0

<0.1
-

<1

~1.0

0.26
0.73

High protein content, low in saturated fat, free
from cholesterol

Fibrous structure and texture like meat
Possible to blend protein sources to achieve a

more complete amino acid profile

Deficient in micronutrients that are common in
meat (e.g., vitamin B12 and iron)

Considered as ultra-processed foods associated
with adverse health effects

Usually not clean label as additives are added to
modulate the sensory properties (e.g., texture,

color, and flavor). These additives may not
diffuse in the product homogeneously, leading

the worse sensory quality than meat

[62–68]

1 PDCAAS = Protein Digestibility Corrected Amino Acid Score; 2 most common protein sources, which are used in plant-based meat analogs.
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Plant-based meat analogs contain protein, fiber, low levels of saturated fat, and no
cholesterol [39,69]. They are created from plant proteins and non-proteins mixed with other
additives and subjected to downstream processes to improve their texture, appearance,
flavor, and taste [14,15]. Such products are designed to appear and taste like conventional
meat-based products. They contain similar concentrations of proteins but are lower in
carbohydrates, fats, and calories compared to real meat products [18,19]. Soybeans are
the major source of plant protein used but other vegetable proteins such as peas, check
beans, cotton seeds, canola seeds, and rape seeds have also been used [14]. Vegetable
oils including coconut oil, avocado oil, cocoa butter, corn oil, soybean oil, and sunflower
oil are among the most common source of lipids used in meat alternatives [70]. Glucose,
fructose, starch, and methyl cellulose are commonly utilized as carbohydrates in meat
alternatives [71]. Furthermore, plant-based meat analogs are usually fortified with micronu-
trients like zinc, iron, folic acid, and vitamins B1, B2, B6, and B12 [72,73]. Encapsulation
techniques including emulsion and non-emulsion systems may be applied to improve the
delivery of sensitive functional ingredients that may be degraded during processing or
storage such as vitamins [74–76]. For the microbial safety and stability of the final product,
plant-based preservatives with antioxidant and antimicrobial functionalities are added
to the meat analogs [76]. For example, carotenoids, tocopherols, spices, and herbs are
used as antioxidants, and curcumin, essential oils, and polyphenols are used as antimi-
crobials [70,77]. Despite the apparent nutritional completeness of these meat alternatives,
recent concerns on their nutritional content and safety have been raised. These include the
presence of antinutritive factors, food pathogens, and genetically modified ingredients as
well as their low digestibility, high allergenicity, and nutrition deficiency. There is thus an
urgent need for further improvement in these meat alternatives, as discussed below.

2.1. Anti-Nutritional Factors

Many plant proteins contain anti-nutritional factors that can be heat-labile (such as
trypsin inhibitors and lectins) or heat-stable (e.g., saponins, phytates, condensed tannins,
and oligosaccharides such as raffinose and stachyose); these factors negatively impact
nutrient digestion and absorption [27,78]. The presence of these factors increases the
risk of malnutrition and indigestion. Hence, it is desirable to reduce the content of these
anti-nutritional factors via pretreatment before consumption [79]. Thermal treatment at
170–180 ◦C (e.g., by cooking or extrusion) can lower the levels of heat-labile anti-nutritional
factors. However, treatment at such high temperatures can also damage heat-labile nu-
trients such as vitamins [80–84]. Enzymatic hydrolysis can also effectively decrease the
amount of heat-stable anti-nutritional factors (e.g., phytic acid) present. However, excess
enzyme activity can lead to macromolecular degradation, compromising the texture and
integrity of the meat analog [85–88].

2.2. Protein Allergenicity and Ultra-Processed Food

Soy, wheat, and their derivatives have been identified as allergenic ingredients that
can trigger frequent and severe reactions in some individuals [89]. Levels of heat-labile
allergens can be reduced by thermal treatment. However, allergen degradation is rarely
complete, and in some circumstances, the ingredient’s allergenicity may even worsen with
treatment [89].

Plant proteins are globular and not fibrillar. Thus, processes and additives are applied
to create fibrous structures from plant proteins. Employing industrial processes such
as extruding, as well as molding, hydrolysis, hydrogenation, and reshaping or using
chemical additives makes food treated this way an ultra-processed food according to
the NOVA classification [90]. Generally, plant-based meat alternatives are considered
ultra-processed products, and ultra-processed products have been linked to an increased
incidence of obesity and cancer among consumers [91,92]. Furthermore, additives including
texturizing agents (e.g., transglutaminases that increase intestinal permeability), as well as
artificial colorants, and flavorings have been associated with celiac diseases and may be
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carcinogenic [93,94]. Due to these issues, there is a need to find safer alternative strategies
for producing plant-based meat alternatives [15,95–97].

2.3. Digestibility and Nutrient Deficiency

Plant-based meat analogs show lower digestibility compared to real meat. Plant
proteins often have a lower digestibility score (0.4–0.9) than animal proteins (more than
0.9) [72,73]. The bioaccessibility and bioavailability of plant ingredients, including starch,
protein, and lipids, are crucial factors during digestion, therefore modulation of the plant
nutrient microstructure might be essential [98]. Zhou et al. used an in vitro digestion
standardized model to examine the digestive characteristics of a plant-based meat analog
made from textured soy protein concentrate [99]. They concluded that two features were
largely responsible for the poor digestion of meat analogs: a larger particle size than that of
real meat, as well as the excessive usage of adhesive additives (mainly used to maintain
the shape of the plant-based meat analog). Both features made it difficult for the digestive
enzymes to contact the food ingredients, resulting in a lower digestibility. Furthermore,
differences in the impacts of plant-based meat analogs and real meat on gastrointestinal
functions in mice were demonstrated [100]. Mice (n = 16) were fed either plant-based meat
analog or real meat diets for 68 days. Both diets included the same amount of protein
content and numerous other nutrients, with the exception that the former contained more
sodium, fiber, and fat, which cannot be entirely balanced based on the protein content.
The study found that plant-based meat analogs had lower pepsin levels, associated with
the generation of less peptides after digestion than meat. They also lowered the number
of gastric parietal cells, as well as the levels of intracellular Ca2+, CAMK II, PKC, and
PKA, as well as extracellular gastrin/CCKBR and Ach/AchR, all of which decreased
gastric acid secretion capabilities. In the small intestine of plant-based meat analogs, there
was a decrease in duodenal villus height and the ratio of villus height to crypt depth.
Serum samples revealed lower levels of total amino acids, essential amino acids, and non-
essential amino acids in plant-based meat analog groups compared to meat, indicating that
plant-based meat analogs have poor in vivo absorption. The authors hypothesized that
because of protein denaturation and aggregation during heating in the presence of salt
and phosphate, a complex and rigid structure would form, resulting in a loss of protein
digestibility. Furthermore, the authors identified differences in gut microbiota between the
two diet types, which may also be connected with alterations in digestibility and absorption,
and they urged further research [100].

Many plant proteins, such as legumes, also contain suboptimal levels of essential
amino acids, particularly the sulfur-containing amino acids, including cysteine and me-
thionine [101]. A leading role is played by methionine in a number of cellular functions,
including the initiation of the translation of mRNA [102,103]. Besides being an essential
structural and functional component of proteins and enzymes, cysteine is also required by
other cell components containing reduced sulfur, such as methionine, homoglutathione,
glutathione, iron–sulfur clusters, and vitamin cofactors such as thiamin and biotin, as well
as multiple secondary metabolites [102–104]. Therefore, these two sulfur-containing amino
acids are essential for dietary intake by humans. Furthermore, a metabolomic study using
gas chromatography-mass spectrometry (GC-MS) analysis with electron impact ionization
(EI) found essential metabolites including creatinine (product of creatine), hydroxypro-
line, anserine, glucosamine, and cysteamine (an aminothiol) to be present in real meat
but not in plant-based meat analogs [105]. These nutrients have significant physiological,
immunomodulatory, and anti-inflammatory roles in the human body, and their absence
in the human diet has been associated with cardiovascular, retinal, neurological, and hep-
atic dysfunction [106,107]. Thus, fortifying plant-based meat alternatives with essential
amino acids that include methionine and cysteine, as well as blending with different cereal
proteins to avoid essential nutrients deficiencies, has been widely applied [108–110]. Iron
from plant foods tends to be less bioavailable than iron from real meat [111]. Fortification
remains the strategy of choice to overcome this decrease in iron bioavailability. However,
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its high cost and the presence of anti-nutritional factors in dietary components that inhibit
iron absorption (e.g., phytates) make fortification less effective [112]. Furthermore, most
of the plant-based meat alternative products available in the market contain less levels
of vitamin B12 and zinc compared to real meat products [113–117]. Additionally, plant
ingredients also tend to lack essential omega-3 fatty acids, especially the more bioavailable
omega-3 fatty acid forms like eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids.
These fatty acids play vital roles in health maintenance, such as for cardiovascular, neuro-
logic, and immune health [118,119]. To counter such deficiencies, some plant-based meat
products are supplemented with omega-3 fatty acids. In summary, the currently reported
nutrient deficiencies in plant ingredients constrain their application in meat analogs and
manufacturers circumvent these issues by applying additives, which may achieve the target
but increase the overall cost, and sometimes the health risks of consuming the product.

2.4. Food Spoilage and Pathogens

Food spoilage and the pathogens present in meat alternatives are considered health
hazards. Plant-based meat analogs contain high protein and moisture levels and have a
neutral pH value. These properties increase the proliferation of spoilage microorganisms
and food pathogens in meat analogs [120,121]. A microbial survey by Tóth et al. to
monitor the microbial quality of plant-based meat alternatives found the microbial load to
be low during production [89]. However, large quantities of Enterobacteriaceae and yeast
species were observed during storage in both refrigerated and unrefrigerated meat analogs.
These contaminations likely originate from raw materials or during post-processing. These
microbial species grew during storage, mainly at ambient temperature. As such, Tóth et al.
concluded that uncooked plant-based meat analogs have a higher food safety risk than
animal-based foods and additional precautions should be applied in their manufacture
and storage. Foodborne pathogens may also be present in the plant ingredients, but these
pathogens are mostly inactivated by exposure to heat during production (e.g., the extrusion
process). However, spore-forming bacteria, including Bacillus spp. and Clostridium spp.,
may survive the heating process or contaminate the products after processing [79,122,123].

2.5. Genetically Modified Foods

There has been concern about applying recombinant proteins in the alternative meat
industry. The recombinant proteins are foreign proteins created in prokaryotic and eukary-
otic expression hosts [90]. Advances have been reported in using recombinant proteins to
mimic the flavor and color of real meat in plant-based meat analogs [96]. However, the use
of recombinant proteins still raises concerns due to their potential health and environmental
risks [124]. Toxins, allergies, or genetic hazards are the main concerns regarding health risks
linked with genetically modified food [124]. For instance, bean plants that were genetically
altered to contain more cysteine and methionine were renounced when it was discovered
that the transgene produced extremely allergenic proteins [125]. Similarly, altered metabolic
pathways may result in the creation of toxins and other unidentified substances [125,126].
Table 2 shows a summary of the current major ingredients and techniques used in plant-
based meat analog production, their positive contributions, and limitations in safety and
nutrition of the final product.
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Table 2. Main approaches used in plant-based meat analog production to improve safety and nutrition
of the final products, their positive contribution, and current limitations.

Target Ingredients and
Processes Functions Limitation of the

Current Methods References

Enhance
product safety

Heat
Add ascorbic acid,

essential oils, curcumin,
polyphenols,

tocopherols, spices,
carotenoids, and herbs

Minimize product
contamination and

food poisoning
Improve product

shelf-life and health

Survival of food spoilage
and pathogens
Resistance of

anti-nutritional factors,
such as saponins, alkaloids,

phytates
Failure to completely

remove allergens such as
soybean protein and gluten

Some used additives are
correlated to human
diseases and public

concerns
Considered as

ultra-processed products
cause obesity and cancer

[70,77,89,91,92,112,122,127]

Improve
product
nutrition

Blend proteins,
carbohydrates, and oils

Fortification and
encapsulation for
micronutrients,

including minerals, and
vitamins

Qualify as good
sources of protein,
energy, and fiber

Increases the
concentration and
bioavailability of

essential nutrients
overcome their

deficiencies

The extensiveness of
processes and functional
ingredients and additives

make it an expensive
purchase

Damage heat-labile
nutrients during

processing
Presence of phytates

reduces bioavailability of
essential minerals

[74–76,112,119]

3. Fermentation and Plant-Based Meat Analogs’ Nutrition and Safety

Meat alternatives should match real meat products in terms of nutrition as well as
texture, flavor, and color to be widely accepted by consumers [128]. Recent studies highlight
the public concern about the multiplicity of processing steps and utilization of additives
in producing plant-based meat. Such approaches negatively impact the sustainability,
safety, and nutrition of the final product [109,129]. Thus, it is necessary to optimize the
quality of raw materials to reduce the number of additives and processing steps needed
in manufacture while maximizing the products’ nutritional content. Mayer Labba et al.
conducted a recent survey in Sweden to determine the nutritional content of 44 meat
substitutes available in the market [130]. They discovered plant-based meat analogs to
generally have a low iron content and high levels of phytate, highlighting the need to
further improve the nutritional quality of existing meat substitutes. In contrast, tempeh and
mycoprotein-based meat analogs (fermentation-based products) were found to be lower in
phytates and higher in bioavailable zinc [130]. These results support our hypothesis that
using fermented ingredients instead of raw or mechanically processed plant ingredients
can improve the nutritional value of plant-based meat analogs. In the next subsection,
we discuss how fermentation can alleviate the increasing health concerns associated with
consuming plant-based meat analogs.

3.1. Anti-Nutrients

Studies have shown that fermentation can be used to partially or fully degrade anti-
nutritional factors in food [131–133]. During fermentation, identified microorganisms
were shown to impact the levels of anti-nutritional factors. Bacillus subtilis was shown
to remove indigestible oligosaccharides from soybeans and improve soybean digestibil-
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ity [134–136]. Similarly, the concentration of trypsin inhibitors, phytates, tannins, and
oligosaccharides in fava beans and black beans significantly decreased after lactic acid
bacteria (LAB) fermentation with Weissella spp. and Leuconostoc spp., L. plantarum and L.
casei [137–140]. Yeasts such as Kluyveromyces marxianus [141] and Lindnera saturnus [142]
were shown to reduce levels of anti-nutritional factors such as phytic acid, and trypsin
inhibitors in soybean residues, in addition to removing the undesirable beany flavor. The
filamentous fungus Aspergillus oryzae was isolated from soybean fermentation and reported
to decrease the levels of trypsin inhibitors and phytic acids [16,143]. Furthermore, Rhizopus
spp. and Neurospora crassa decreased the levels of glycinin, β-conglycinin, trypsin inhibitors,
and oligosaccharides on food substrates [144,145]. Other legumes such as chickpeas and
cowpeas fermented with R. oligosporus showed lower levels of oligosaccharides, tannins,
and phytates in the fermented products [146,147]. Similar findings were achieved using
coculture techniques. For example, L. plantarum and L. acidophilus were inoculated into
cowpea and showed more effectiveness in degrading trypsin inhibitors than fermentation
with individual inocula [148]. A mixed culture of Bifidobacterium infantis and Streptococcus
thermophilus applied to soybeans significantly reduced the concentration of saponin and
phytic acid upon fermentation [111,148]. These reductions were correlated with the mi-
crobes’ increasing enzymatic activities (e.g., proteases, phytases, phenolic oxidases, and
glutathione reductases). For example, phytic acid complexes with numerous essential
minerals, including zinc, calcium, and iron, making them unavailable for absorption in
the body. Microbial enzymes, such as phytase, were found to degrade these complexes
and unfold the bonding between the mineral and phosphorus in the phytate, making the
minerals accessible in the body [149,150]. Similarly, proteinaceous antinutritional factors
such as lectins that contain disulfide bonds are susceptible to microbial proteases such as
glutathione reductase [151]. Lectin degradation during legume fermentation depends on
the catalyzation of glutathione through thiol exchange reactions. Microbial activities such
as organic acid creation and pH lowering by LAB can also promote anti-nutritional factor
breakdown. This acidification process may support the natural endogenous enzymes in the
beans that degrade these anti-nutritional factors [137,150–152]. It is worth mentioning that
fermentation has also been shown to improve product stability by inhibiting the growth
of spoilage microbes and food pathogens [153]. As an example, exopolysaccharides and
organic acids synthesized during fermentation help to resist the growth of undesirable
microbes and food pathogens. Such compounds also negate the effects of bacterial toxins,
increasing product stability and reducing food poisoning [154,155].

3.2. Allergenicity

Fermentation may also reduce allergenicity of foods. Microbial isolates such as Lac-
tobacillus helveticus, L. casei, Enterococcus feacalis, B. subtilis, and A. oryzae can degrade soy
and gluten proteins into low molecular weight polypeptides, reducing their allergenic-
ity [89,156–159]. Moreover, studies revealed that structurally altering allergen protein
conformations, including increasing surface hydrophobicity and β-strands, decreased the
allergenicity of soy protein by roughly 90% following fermentation by L. plantarum [160].
This conformation might be related to a decrease in pH, which leads to the disruption
of the soy protein structures and a loss of allergenicity. Sun et al. reported a significant
reduction in β-glycinin lgE reactivity after fermentation by L. plantarum, as a result of lactic
acid production during fermentation [161]. Particle size distribution analysis showed that
fermentation induced the formation of protein gel/aggregates into large particles at pH
4.5 and reduced band intensities of α-, α′-, and β-subunits from SDS-PAGE analysis, sug-
gesting a transformation of soluble to insoluble proteins. The β-subunit of β-glycinin was
reported to play an important role in immunoreactivity, as it contains many lgE-binding
epitopes [161]. Disruption of the protein subunits and aggregation of the protein units
during fermentation may have led to the burial of these epitopes located on the surface
of the β-subunit, resulting in a reduction in the lgE binding capacity and a reduction in
immunoreactivity [162]. However, the pH at the end point of fermentation also plays
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a crucial role in immunoreactivity reduction. At pH 4 and pH 3.5, an increase in band
intensities of the proteins was reported, suggesting a dissociation of the protein into smaller
particles and a disruption of the gel/aggregation matrix. This degradation of the matrix
due to a looser protein structure may have led to a release in the subunits and expositing
lgE binding epitopes, thereby increasing immunoreactivity [162]. Frias et al. also compared
the rate of immunoreactivity degradation in soybean flour and reported lactic acid bacteria
to result in a higher degradation rate as compared to fungi when used as starter cultures in
fermentation [163]. Peptide analysis revealed smaller particle size and the presence of less
intense immunoreactive peptides below 30 kDA, with reductions greater than 90% in fer-
mentation using L. plantarum as a starter culture [163]. Therefore, protein degradation and
conformation changes were responsible for the reduction of fermented protein allergenicity.

3.3. Digestability

Potential improvements in digestibility were observed in plant proteins fermented
with A. niger [164], Ligilactobacillus salivarius [165], and naturally [166,167]. As an example,
soybean fermented with N. crassa led to 10.5% protein hydrolysis and a 13-fold increase in
the levels of free amino acids that was associated with a 37.9% rise in the in vitro protein
digestibility [168]. Similarly, fermentation can break up complex polysaccharides and fat
present in plants and produce lower molecular weight compounds, as discussed above. As
an example, the in vitro starch digestibility of unfermented black gram (legume) was found
to be 35.7 mg maltose released/g [169]. Spontaneous fermentation improved the starch
digestibility to 59% in 18 h at 25 ◦C, which was further improved to 88% when fermentation
was conducted at 35 ◦C. This breakdown that occurred during fermentation was thought
to result from the activities of endogenous enzymes from either the endogenous microbiota
or the legume [169,170].

3.4. Improve Nutritional Components

Fermentation also improved the amino acid profiles of the plant-based substrates used
in meat alternatives [153]. For instance, L. plantarum, L. acidophilus, and Bifidobacterium
species were shown to increase the total protein concentration and the levels of methionine,
tryptophan, and lysine in fermented soy-based products [171–173]. This increase in the
total protein content and the changes in the amino acid profile observed in the fermented
sample may be correlated to the microbial inoculum itself, its growth, or its enzymatic
activities [174]. Microorganisms use carbohydrates as a carbon source and convert them
into microbial proteins through intermediary metabolism [141]. They also break down
the feed protein into short peptides and free amino acids, as mentioned above. These
activities illustrate the potential changes that may occur to the amino acid profile dur-
ing fermentation. Fermentation can increase the levels of bioactive compounds that are
beneficial to human health. High levels of phenolic, flavonoid, antioxidant, and antimi-
crobial compounds were detected in soybeans fermented with N. crassa [168], Monascus
purpureus, A. oryzae [175], B. subtilis [176], B. velezensis, and Pichia anomala [177]. Microor-
ganisms produce secondary metabolites during growth, including alkaloids, terpenoids,
phenols, steroids, peptides, flavonoids, polyketones, and quinols. These substances have
vital functions in microbial growth, such as adaptability, defense, and signaling during
environmental stresses or ecological interactions [178]. They are biosynthesized in microor-
ganisms largely by the shikimate and phenylpropanoid metabolic pathways [179]. These
compounds have physiological functions if consumed in sufficient amounts. Alkaloids, for
example, are biosynthesized from amino acids such as lysine, ornithine, aspartic acid, tyro-
sine, phenylalanine, and tryptophan and show anti-cancer effects [180]. Polyphenols have
been reported to have antioxidant, anti-carcinogenic, and anti-microbial activities [181].
Similarly, some steroids, peptides, polyketones, and quinols were reported to have essential
health benefits for humans [182]. Besides biosynthesis, microbial enzymes may also help
to increase the bioavailability of some of these compounds, if they occur naturally in the
plant matrix. For example, microbial enzymes including cellulase, amylase, xylanase, es-
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terase, and β-glucosidase have been reported to catalyze covalent bond hydrolysis between
lignocellulose and phenolics in the plant matrix, releasing phenolic compounds. These
results were observed during the fermentation of mulberry fruits and leaves by microor-
ganisms, including L. plantarum, Saccharomyces cerevisiae, M. purpureus, and R. oligosporus
in studies [183–185]. Similar results were reported for the biovailability of other nutrients.
As an example, the fermentation of soy curd using a mixture of the yeast S. boulardii and
LAB L. plantarum, was associated with significant increases in calcium and magnesium
bioavailability [148,186]. These results are associated with a reduction of the antinutrients,
mainly phytic acid, which correlate to increased mineral availability. Tangyu et al. found
the fermented product to contain lower levels of oligosaccharides (stachyose and raffinose)
and beany flavors [148]. Surprisingly, the degradation of phytates by phytase that can
occur during fermentation has been shown to produce metabolically active myo-inositol
phosphates with potential health benefits [187], with D-myo-inositol (1,3,4,5) tetrakispho-
sphate and D-myo-inositol (1,4,5) trisphosphate reported to have anti-inflammatory and
anti-tumor activities, as well as preventing diabetes complication and promoting heart
health [188,189]. As mentioned, many plant ingredients do not contain all the essential
amino acids or the omega-3 fatty acid DHA, necessitating the addition of these ingredients.
Using a specific microbial group, such as microalgae, may provide an alternative method
for plant-based meat substitutes. Microalgae proteins contain all the essential amino acids
and some microalgae, such as Schizochytrium spp., are considered a valuable source of the
omega-3 fatty acid DHA [111,190]. Additionally, microalgae such as Arthrospira platensis
have been reported to contain more calcium than raw milk (about 180% of raw milk),
making it a good source of calcium [191]. Xia et al. mixed the Haematococcus pluvialis
residue with traditional plant pea protein and found a significant improvement in the final
product appearance and texture to mimic the real meat [192]. Besides using microalgae as
ingredients, they can also be employed as a fermenting group. Several studies showed the
capability of various microalgae strains to be cultivated on different agricultural processed
residues including soybeans, pea seed, and corn seed [193–196]. Additionally, the devel-
opment of consortia of microalgae with bacterial or fungal species has recently widened
the microalgae applications [197]. Such characteristics might make microalgae a suitable
candidate either to be used as an additive in plant-based meat analogs or combined with
other microorganisms (consortia) during fermenting plant-based raw ingredients.

3.5. Others

Finally, applying probiotics to plant-based meat analogs can confer other health
benefits to plant-based meat analogs if minimal heat treatment is applied or selected ther-
motolerant strains are used to ensure probiotic livability. Fermentation using probiotic
species, such as L. acidophilus, L. delbrueckii, L. salivarius, Clostridium butyricum, and S.
boulardii were reported to confer health benefits related to probiotic consumption, including
enhanced intestinal health, improved immune response, reduced cholesterol level, and
cancer prevention [160–162]. Plant proteins have been shown to be efficient probiotic
carriers [198]. Probiotic LAB species including L. casei, L. fermentum, L. helveticus, L. reuteri,
L. rhamnosus, L. acidophilus, L. johnsonii, B. animalis ssp. lactis, E. faecium, and S. thermophilus
have been successfully applied in plant-based beverages, cheese alternatives, and yogurt
alternatives [199]. Soy protein isolate (SPI) was used to carry L. paracasei and showed
substantial protection in simulated gastrointestinal conditions (45 g/L bile salt, 8.5 g/L
NaCl, and 1 g/L pancreatin at pH 8) [200]. Here, Yan et al. combined a bacterial solu-
tion with an interpenetrating polymer network made of soy protein isolates and sugar
beet pectin (SBP). Different concentrations of laccase were added to the mixture, which
enhanced the formation of a hydrogel by creating a crosslinked network between the
protein and the pectin. This study demonstrated that the produced gel preserved over
96.7% of the bacterial viability when treated to stimulated gastric fluid, with no viable
cells observed in the free culture. Moreover, L. paracasei showed significant stability during
storage at 4 ◦C for 21 days, with maximum stability found at 3.5% SBP, 10% SPI, and
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10 U laccase, which correlates to a higher water holding capacity of the formed gel [200].
The presence of protein and pectin in plant ingredients, together with various microbial
enzymes created during fermentation, can make plant-based meat analogs an excellent
delivery system for probiotics and boost their nutritional quality. These features make
the use of microorganisms and fermentation techniques promising avenues for improving
plant-based meat alternative safety by reducing anti-nutritional factor levels, increasing
digestibility, providing probiotic health benefits, and including high-value nutrients such
as polyphenols, vitamins, minerals, essential amino acids, and omega-3 fatty acids.

3.6. Nutrition and Health Challenges

While fermented food is often considered a ‘super food’ that is rich in bioactive
compounds including vitamins, peptides, minerals, and organic acids, they may also be
associated with negative health impacts. Toxic metabolites such as biogenic amines (BA)
and mycotoxins have been reported with fermenting microorganisms that include bacteria
and fungi. Mycotoxins including aflatoxins, ochratoxins, and patulin have been reported
to be synthesized by many species of Aspergillus and Penicillium, while trichothecenes,
fumonisins, and zearalenone compounds may be produced by Fusarium species [201].
Some of these mycotoxins are known carcinogens, for instance, the ones synthesized by
A. parasiticus and A. flavus. Others produced by Fusarium spp. may increase the host’s
susceptibility to infectious diseases [201]. Several treatments have been proven to reduce
the level of mycotoxigenic fungi and mycotoxins before fermentation. Sorting, soaking,
washing, and cooking, as well as the addition of organic acids, bases, or oxidants dur-
ing the soaking, have all been shown to decrease their presence in soybeans [202,203].
Furthermore, adjusting the fermentation conditions may directly reduce the presence of
mycotoxigenic fungi and mycotoxin generation. More specifically, optimizing the tempera-
ture, pH, and water activity of the fermentation mass to levels that favor the growth of the
inoculum may enable them to lead the fermentation process and prevent the presence of
undesirable microorganisms, including filamentous fungi [203]. For the inoculum criteria,
selecting non-mycotoxin producing strains is essential to avoid the mycotoxin genera-
tion. Additionally, various microorganisms have been reported to suppress the growth of
mycotoxin-producing species or to degrade mycotoxins. For example, B. licheniformis was
shown to outcompete mycotoxigenic Aspergillus spp. [204], while B. albus was capable to
metabolize aflatoxin B1 and G1 and significantly decrease their concentrations [205]. Both
capabilities, the growth suppression of undesirable fungi and mycotoxin degradation, were
also observed with A. oryzae strains. These strains were isolated from fermented soybean
products and demonstrated the ability to suppress the growth of mycotoxigenic A. flavus,
as well as breakdown more than 90% of aflatoxin B1 present in culture broth [206].

Biogenic amines, such as histamine, tyramine, cadaverine, and putrescine, are low
molecular weight nitrogenous compounds produced by the decarboxylation of amino acids
including histidine, ornithine, and tyrosine [207]. They have been detected in microbial
isolates that include genera belonging to Enterobacteriaceae [208,209]. Heat treatment,
such as pasteurization, as well as the addition of protectors and oxygen scavengers are
the most common strategies to suppress the growth of Enterobacteriaceae isolates [210].
Some Bacillus strains such as B. subtilis and B. amyloliquefaciens have been reported to
produce putrescine and cadaverine during sausage fermentation [211]. Similarly, LAB
fermentation with the genera Lactobacillus, Enterococcus, Lactococcus, Leuconostoc, and Strep-
tococcus can also produce BA in fermented dairy products [210,212,213]. Different measures
have been applied to prevent or decrease the BA during sausages and dairy fermenta-
tion including heat treatment, improvements to the hygiene level during production, and
preservatives [211,214,215]. Additionally, fermentation of foods and beverages with non-BA
producing microorganisms or microorganisms that degrade BA are essential approaches to
reduce BA levels. For example, inoculating soybeans with B. subtilis T2 resulted in over
80% reduction in total BA content compared to spontaneous fermentation with the endoge-
nous species [216]. For the BA degradation, a number of microbial enzymes, including
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monoamine oxidases, diamine oxidases, and multicopper oxidases, have been reported to
degrade the BA [217]. Such enzymes were correlated to metabolize tyramine and putrescine
by L. casei and L. plantarum [218–220], as well as to degrade histamine by Debaryomyces
hansenii, during evaluation studies [221]. Consequently, choosing the right microorganism
and formulating strategies to improve safety is essential for increasing the reliability and
applicability of fermentation in plant-based meat analogs. A selection of nutritional and
safety characteristics of selected microorganisms is summarized in Table 3.

Table 3. Microorganisms’ contributions to the nutrition and safety of plant-based meat alternatives.

Fermentation by Contributions to References

Bacillus subtilis/Bacillus velezensis/
Ligilactobacillus salivarius/Weissella spp./Leuconostoc

spp./Lactiplantibacillus plantarum
Lactobacillus casei/

Pichia anomala/Saccharomyces cerevisiae/
Neurospora crassa/Monascus purpureus/Aspergillus

oryzae/
Rhizopus oligosporus

Improves digestibility (breakdown of
polysaccharides, proteins, and lipids) [134–136,164–167]

Weissella spp./Leuconostoc spp.
L. plantarum/

L. casei

Decreases trypsin inhibitors, phytates,
tannins, and convicine [137,139,140]

Kluyveromyces marxianus/
Lindnera saturnus Decreases phytic acid and trypsin inhibitors [141,142]

A. oryzae Reduces trypsin inhibitors and phytic acid [16,143]

Rhizopus spp./N. crassa Reduces glycinin, β-conglycinin, trypsin
inhibitors, and oligosaccharides [144,145]

L. casei/Lacticaseibacillus helveticus/
Enterococcus faecalis/
B. subtilis/A. oryzae

Reduces allergenicity [89,156–159]

Bifidobacterium species Increases protein concentration [171]

L. plantarum/
L. acidophilus

Increases the levels of methionine,
tryptophan, and lysine

Competes and reduces the growth of
spoilage and pathogenic microorganisms

[153,172,173]

B. subtilis/B. velezensis/L. plantarum/
P. anomala/S. cerevisiae/N. crassa/M. purpureus/A.

oryzae/R. oligosporus

Increases phenolics, flavonoids, antioxidants,
and antimicrobials

Enhances digestibility
Decreases allergenicity

[168,175–177]

L. acidophilus/L. delbrueckii/L. salivarius/C.
butyricum/S. boulardii Probiotics health benefits [222,223]

Aspergillus spp./Penicillium spp./Fusarium spp. Secretes mycotoxins (carcinogens)
Decreases immunity [201]

B. subtilis/B. amyloliquefaciens
Lactobacillus spp./Enterococcus spp./Lactococcus

spp./Leuconostoc spp./Streptococcus spp.
Forms biogenic amines [210,212,213]

4. Fermentation and Plant-Based Meat Analogs’ Sensory Quality

The main focus of this review is on plant-based meat analogs safety and nutritional
quality. However, in this part, we aim to shed light on the impact of fermentation on
sensory quality as a key characteristic of the meat analogs. As mentioned above, plant-
based meat analogs are largely influenced by their formulation and structuring technology.
The sensory characteristics of plant-based meat analogs have been reviewed in depth by
other authors [7,39–42,121]. Briefly, several key ingredients are used in the production of
plant-based meat analogs. These ingredients contribute to the color, flavor, and texture of
the product. The sensory quality of plant-based meat analogs can be improved, but there
are several drawbacks. Plant ingredients lack a perceptible meaty aroma and taste, as well
as having off flavors such as green, beany, astringent, bitter, and metallic tastes [224,225].
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There has been limited success reported with flavorings to mask off flavors or reproduce
meaty flavors, and some flavoring agents may be destroyed during cooking [226]. In
terms of texture, extrusion is the most common method used. Nevertheless, extrusion
presents challenges in producing cost-effective fibrous meat-like structures. In addition,
several parameters must be closely monitored, including barrel temperature, pressure, and
powder/water feed rates [40,227,228]. A similar constraint is color, since plant proteins
typically lack the red or brown color associated with raw or cooked meat. Heat-stable
coloring compounds such as annatto, caramel, and carotene are used to simulate the red
color of raw meat; however, they cannot replicate the color of cooked meat. In general,
existing techniques have had little success in reproducing the real meaty sensory qual-
ity [129,229–231]. The use of microbial fermentation may provide an alternative method of
replicating these characteristics.

The beany flavor of plant materials can be successfully minimized or eliminated
through the fermentation process. Researchers have demonstrated that soybean off-flavor
characteristics, such as the beany flavor, decreased or disappeared after fermentation using
different microorganisms, including Kluyveromyces marxianus, B. subtilis, and Weissella
confuse [134,141,232]. It is believed that these microorganisms are capable of degrading
lipoxygenases, which act on polyunsaturated fatty acids to produce off tastes such as beany
notes. Additionally, by generating pleasant microbial volatiles, they can also mask these
undesirable odors. In a similar manner, undesirable aldehydes can be transformed into
desired chemicals by microbes, such as Lindnera saturnus, through the metabolism of ester
compounds during fermentation [142]. An increase of 70 times in the concentration of
esters, ranging from 0.17 to 0.28 mg/g dry weight, as well as other important volatiles,
including ethyl heptanoate, hexyl acetate, 3-hexenyl acetate, octanoate, and 2-heptenyl
acetates, were detected. These findings demonstrate that microorganisms have the capacity
to reduce off-flavors by either denaturing the enzymes directly, degrading undesirable
aldehyde compounds or masking them through the generation of desirable metabolites.

Despite the fact that plant-based meat components are primarily composed of proteins,
polysaccharides, and lipids, they lack important intermediary substances like reducing
sugars, fatty acids, and amino acids that are necessary to produce distinct meat aromas and
flavors [233,234]. Many bacteria were found to have strong enzymatic activity, which may
aid in the breakdown of these complex molecules. For instance, several microorganisms,
such as B. subtilis, B. polyfermenticus, and B. amyloliquefaciens, demonstrated high protease
activity and produced significant quantities of peptides and amino acids in fermented
products [134,135,235–237]. At 35 ◦C and pH 7, R. oryzae and Mucor sp. have been shown
to produce a potent lipase activity that breaks down lipids into small peptides and fatty
acids [238,239]. The presence of these degraded compounds may increase the formation of
desired flavors and produce flavors during further processing (heating) [233,240].

As mentioned above, current texturing techniques have some difficulties in creating
the mouth feeling, a fibrous structure, and a meaty appearance. Microorganisms and fer-
mentation techniques can be used to overcome these limitations. For example, a B. subtilis
fermentation step during the production of a meat analogue results in a product with
desirable eating qualities, improved chewiness, integrity, and firmness, when compared to
a non-fermented product [241]. Similarly, the functional properties of various fermented
products are enhanced by filamentous strains such as A. oryzae, R. oryzae, Fusarium vene-
natum, and Neurospora intermedia [242–247]. Such filamentous species have high-quality
proteins, and their mycelia are rich in fiber and polyunsaturated fatty acids, which are
modified through controlled denaturation processes to give them a meaty texture [17,248].

Fermentation is shown to improve the organoleptic quality of the final products.
However, it is worth noting that excessive microbial activity during fermentation, mainly
enzymes and generating organic acids and microbial volatiles, can be associated with
unfavorable changes in product sensation and texture. For example, over-fermentation can
lead to the accumulation of flavor compounds such as esters, creating an overly fruity aroma.
It can also cause the production of other fermentation off flavors such as propionic acid,
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ferulic acid, and 2,3-pentanedione, which can adversely affect the organoleptic quality of
fermented products [249]. Similarly, microbial enzymes and frequent acidification processes
during fermentation may be associated with significant changes in product texture, and
their suitability for plant-based meat alternatives should be further investigated. For
example, cassava starch fermented with B. subtills, L. plantarum, and Candida krusei showed
lower water absorption, lower swelling capacity, lower adhesiveness, and lower viscosity
compared to non-fermented samples [250]. These findings highlight the importance of
considering and monitoring sensory effects in order to effectively utilize fermentation to
improve the safety and nutritional features of plant-based meat analogs.

5. Plant-Based Meat Analogs and Starter Culture Technology

Fermentation technology may be a good way to improve the quality and acceptability
of plant-based meat and starter cultures can be used to modulate fermentation outcomes.
So far, no starter cultures have been designed to fulfill these characteristics. The success
stories of developing new starter cultures for numerous foods gives us optimism about
its eventual adoption here. Starter cultures have been used to improve the texture, flavor,
appearance, and nutritional quality of tempeh, bread, cheese, yogurt, coffee, and sausage
to satisfy consumer preferences [37,78,251–255]. Given the crucial role of microorganisms
in improving the characteristics of plant ingredients, it is clear that starter cultures show
great potential in producing ingredients that better mimic the characteristics of real meat
and overcome the current disadvantages associated with the use of additives or extensive
processing steps. To choose the best starter cultures, it is important to assess the capacity
of the microorganisms to carry out the desired biotransformation and their potential for
commercial development (Figure 1). Laboratory assays have been used in the traditional
microbial screening process for these characteristics, and modern bioinformatics tools such
as the Kyoto Encyclopedia of Genes and Genomes (KEGG) database may also be used to
help scientists look for suitable microbial candidates [256–258]. The general recommenda-
tions for designing a starter culture to enhance safety and nutrition in plant-based meat
analogs are given below.
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• Based on the above discussion, most ingredients used for producing plant-based meat,
such as legumes, have significantly high protein, carbohydrate, and fat concentrations,
as well as anti-nutritional factors. Starter cultures with strong enzymatic activity,
including proteases, lipases, amylases, and phytases, are needed to transform these
components. Degradation of these substances improves the digestibility of the fi-
nal product, as well as reducing the allergenicity and anti-nutritional factor content
of plant-based meat, as mentioned above. Furthermore, attention should be given



Foods 2023, 12, 3222 16 of 27

to microorganisms known for producing desired volatile and non-volatile profiles.
Conventional and advanced methodologies that have been applied to measure these
microbial activities in other areas of study include plate assay, colorimetry, chromatog-
raphy, microcalorimetry, and sensory tests, all of which can be applied to microbial
screening [259–261].

• The fermentation of the plant ingredients used in meat analogs has been linked to
health benefits including an increase in the level of essential amino acids, omega-
3 fatty acids, bioactive compounds, probiotics, and an improvement in the meat
analog’s safety and stability. These features have potential physiological roles in the
human body and should be considered when screening for suitable starter cultures.
Selecting the right microorganisms with such characteristics as the main fermenting
microorganism or as the coculture may boost the acceptability of plant-based meat
analogs. Laboratory and clinical studies that have been widely applied to test the
safety and health benefits of fermented products may be employed in the microbial
screening process for plant-based meat analogs [258,262,263].

• Using the available microbial survey data of plant ingredients and meat analogs,
the selected strains should be examined for their ability to adapt, compete with
the natural microflora, as well as other microbial contaminates and food pathogens,
that may present in the raw ingredients during and after processing. An in-depth
investigation of microbial safety, and biodegradation capability to toxic compounds
include mycotoxins and biogenic amines, should be considered. This criterion can
be determined by exposing the selected strains to different stressors (such as high
temperature, high salt, pH, and other additives), as well as observing how they react
to microflora, foodborne pathogens, and toxic compounds that are frequently found
in raw ingredients and processed foods. Successful growth under such stressful
conditions is considered a potential indicator of high fermentation performance of the
selected isolates. Additionally, factors such as inoculum size, inoculation time, and
incubation parameters should be controlled to ensure successful fermentation with
desirable results. Similar approaches have been applied to develop starter cultures for
other food products [264–266].

• Additionally, for commercial applications, selected strains designed for starter culture
should be able to be cultivated on available and cheap substrates to lower production
costs. In addition, the strains should tolerate downstream processes such as air drying,
freeze drying, packaging, and rehydration to ensure stability during storage and
handling [267,268].

• With current advancements in molecular techniques, screening and gene editing may
be used to increase the capability of the selected isolates to desirably interact with
the food matrix. A similar approach was used to improve LAB strains in the meat
and dairy fermentation process, which involved no extra risk compared to the use of
wild strains [269–271]. Genome editing technologies, like CRISPR-Cas9, can be used
to eliminate specific DNA sequences from a microbial genome that control mycotoxin
or BA biosynthesis, or to add desired genes that biocontrol undesired microorganisms
and toxins. Despite the fact that these applications can reduce costs, and improve
strain capabilities, using genetically modified organisms (GMOs) in food may trigger
public concerns [206,272,273].

• Before starting the development of starter cultures and their commercialization, the
Nagoya protocol should be considered. Based on this protocol, prior informed consent
and mutually agreed terms must be built by the research provider describing access to
the resources and benefit shares [274].

6. Conclusions

Persuading the general population to adopt plant-based meat analogs as a protein
source has been challenging due to difficulties in mimicking the taste and texture of real
meat. Furthermore, the current approach of making plant-based meat alternatives by using
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different ingredients and heavy mechanical processes is costly and has health concerns.
Our survey of the literature indicates fermentation with different microorganisms to be an
efficient way of overcoming these drawbacks and reducing the need for excessive additives
and heavy processes. Fermentation additionally reduces the anti-nutritive levels and aller-
genicity, as well as increases digestibility and micronutrient bioavailability, and improves
safety and sensory quality. To support the market growth of plant-based meat alternatives,
additional studies are required to advance our understanding of how fermentation and
starter culture technology can improve the quality of plant-based meat alternatives, with
special consideration to the final product’s sensory quality.
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