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Abstract: The milk fat globule membrane (MFGM) is a complex tri-layer membrane that wraps
droplets of lipids in milk. In recent years, it has attracted widespread attention due to its excellent
bioactive functions and nutritional value. MFGM contains a diverse array of bioactive lipids, including
cholesterol, phospholipids, and sphingolipids, which play pivotal roles in mediating the bioactivity
of the MFGM. We sequentially summarize the main lipid types in the MFGM in this comprehensive
review and outline the characterization methods used to employ them. In this comprehensive review,
we sequentially describe the types of major lipids found in the MFGM and outline the characterization
methods employed to study them. Additionally, we compare the structural disparities among
glycerophospholipids, sphingolipids, and gangliosides, while introducing the formation of lipid rafts
facilitated by cholesterol. The focus of this review revolves around an extensive evaluation of the
current research on lipid isolates from the MFGM, as well as products containing MFGM lipids, with
respect to their impact on human health. Notably, we emphasize the clinical trials encompassing a
large number of participants. The summarized bioactive functions of MFGM lipids encompass the
regulation of human growth and development, influence on intestinal health, inhibition of cholesterol
absorption, enhancement of exercise capacity, and anticancer effects. By offering a comprehensive
overview, the aim of this review is to provide valuable insights into the diverse biologically active
functions exhibited by lipids in the MFGM.

Keywords: milk fat globule membrane; phospholipids; ganglioside; cholesterol; bioactive function

1. Introduction

Milk fat, a highly regarded and widely consumed nutrient, not only serves as a vital
energy source for the human body, but also constitutes a significant reservoir of essential
fatty acids and vitamins. Approximately 98% of the fat in milk exists as milk fat globules,
which are mainly composed of triacylglycerols inside and surrounded by the milk fat
globule membrane (MFGM) [1,2]. After secretion from the endoplasmic reticulum, milk fat
globules are coated with a monolayer of phospholipids to form cytoplasmic lipid droplets
(CLDs), a membrane derived from the endoplasmic reticulum. Subsequently, during
secretion out of the cell, droplets bind to the apical plasma membrane, the outer bilayer
membrane of the MFGM that contains a variety of polar lipids and proteins [3,4]. MFGMs
with a thickness of 10–20 nm have a mass of 2–6% of the milk fat globules and act as a
natural emulsifier, preventing fat from coalescing in the presence of enzymes [5,6].

This three-layer membrane with biologically active functions is mainly composed of
proteins, enzymes, triacylglycerol, and polar lipids (cholesterol, sphingolipids, etc.) [7,8],
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and the composition of the MFGM in different species is different (Table 1). The nu-
trients in the MFGM, especially sphingolipids, phospholipids and proteins, make it an
excellent source for the development of nutraceuticals, especially infant-development sup-
plements [9,10]. The diverse bioactive functions of the MFGM have led to the emergence of
various MFGM-related industrial products. Examples include Lacprodan MFGM 10 and
Lacprodan PL 20, which serve as supplements for phospholipids [11]. The emulsifying
properties of the MFGM help enhance the texture and flavor in various food products. For
instance, the incorporation of MFGMs in the bread production process serves to retain
moisture in bread crumbs, thereby impeding bread aging and hardening. Adding 4%
MFGM-enrichment products combined with homogenization during the yogurt production
process can increase the interaction between the MFGM and protein during the production
process and improve the texture of yogurt [12].

Both fresh milk and by-products derived from dairy processing serve as effective sources
of MFGMs [13]. The process of isolating an MFGM from milk typically involves several steps:
the separation of milk fat globules, cream washing, MFGM release, and MFGM collection [6].
During the permeation process, the addition of reverse osmosis water helps maintain a con-
stant feed rate after filtration to eliminate whey and casein. Finally, acidification is employed
to isolate the MFGM [14]. MFGM separation can also be conducted by performing ceramic
dia-microfiltration with a pore size of 1.4 µm on preheated whole raw milk, which can achieve
the best results of a 2.5% low-fat penetration and 97% high protein penetration. Fractions of
buttermilk and butter serum are separated from the filtered material, the pH is adjusted to 4.8,
and an MFGM is obtained by centrifugation [15]. This method has simpler steps and better
industrial adaptability. Industrial processes typically utilize by-product milk (e.g., buttermilk,
cheese whey, etc.) to separate MFGMs. For instance, the removal of casein from buttermilk
can be achieved through rennet-induced coagulation, followed by filtration to eliminate whey
proteins. The MFGM is subsequently collected through diafiltration steps [16]. It must be
noted that these by-products often undergo high-temperature heat treatment, leading to
protein denaturation on the MFGM or reactions with whey protein or sugars, which can alter
the emulsifying properties of the MFGM [17].

Dietary supplementation with MFGM lipids has demonstrated numerous beneficial
bioactive functions. For instance, the addition of MFGM to milk powder has been found
to mitigate the impact of phytosterols on infant nutrition by competing with cholesterol for
absorption [18]. Furthermore, the intake of milk-derived phospholipids has been demon-
strated to suppress the endocrine stress response in individuals exposed to high-intensity
stress, with phospholipid-supplemented subjects exhibiting a faster recovery rate [19]. Fur-
thermore, in a mouse study, ganglioside-rich MFGM isolates showed the potential to reduce
carrageenan-induced paw edema, indicating their anti-inflammatory properties [20].

We used Google Scholar and Web of Science search engines to summarize reviews
and articles between 2003 and 2023, using phospholipids, sphingomyelin, gangliosides,
and MFGM as keywords. We chose to focus on the clinical trials focusing on the dietary
supplementation of MFGM-enriched or isolated lipids. The purpose of this review is to
offer an insightful understanding of the nutritional value of lipids in MFGMs, offering
valuable insights into both daily dietary considerations and production practices.

Table 1. Content of MFGM components in bovine milk [21–24].

Component MFGM Whole Milk

Protein 25–60% 1–4%
Cholesterol 2% 80%

PL 15–30% 60–70%
PC (% PL in MFGM) 27.4 32.7
PE (% PL in MFGM) 33.0 28.5

PS/PI (% PL in MFGM) 17.8 14.1
SM (% PL in MFGM) 18.8 23.0

PL: phospholipids; PC: phatidylcholine; PE: phosphatidylethanolamine; PS: phosphatidylserine; PI: phosphatidyli-
nositol; SM: sphingomyelin.
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2. Lipids in the MFGM
2.1. Composition and Distribution of Lipids in the MFGM

As the predominant components of monolayers, the primary lipids present in the
tri-layer membrane of milk fat globules include phosphatidylethanolamine (PE), phos-
phatidylcholine (PC), phosphatidylinositol (PI), phosphatidylserine (PS), sphingomyelin
(SM), cholesterol, and gangliosides [25–28]. The surface layer of the bilayer primarily
consists of glycolipids, cerebrosides, and gangliosides, while the inner layer of the bilayer
mainly contains PE, PI, and PS. Phospholipids are the predominant components of the
monolayers [29].

Structurally, SM consists of long chains of bases, such as sphingosine, which form the
backbone of the molecule [30]. On the other hand, glycerophospholipids are composed
of phosphoric acid, glycerol, fatty acids, hydroxyl compounds, and fatty acids [31]. The
presence of glycerophospholipids with relatively high unsaturation levels contributes to
the improved fluidity of MFGMs [32]. Gangliosides, on the other hand, are formed through
glycosidic linkages between ceramides and residues of sialic acid [33].

Cholesterol is found primarily in the outer bilayer of MFGMs and forms rigidly
ordered domains known as lipid rafts when it binds with SM [34,35] (Figure 1). In contrast,
the disordered phase of the membrane mainly consists of phospholipids. Lipid rafts have
the ability to bind to proteins and can induce signaling processes. The structural role of
lipids in MFGMs can be characterized by high-throughput synchrotron radiation X-ray
diffraction (SR-XRD) and differential scanning calorimetry (DSC) [36]. Previous research
has shown that the cholesterol enhances the order of the milk SM bilayer membrane,
with the ordered phase being achieved at a 33 mol% cholesterol content. The ratio of
cholesterol/SM can influence the interfacial properties of MFGMs, thereby impacting the
functional properties of milk fat globules and their digestion mechanisms [37]. For the
above-mentioned lipids, clinical trials have proven their beneficial effects on physical
function improvement, development, and anticancer roles (Table 2).
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Figure 1. Structure of lipid rafts of MFGMs on cholesterol. Cholesterol in the MFGM binds to sphin-
golipids in the outer bilayer to form rigidly ordered domains, i.e., lipid rafts, and the disordered phase
consists of phospholipids. The lipid rafts bind to proteins and can act as an induced signal [34,35].
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Table 2. Bioactive functions of lipids in the milk fat globule membrane.

Lipid Participants Dose Time Results Reference

Sphingomyelin Low-birth-weight
preterm babies

20% of total
phospholipids

in milk
18 months

Supplementation of sphingomyelin in
milk has a positive effect on the

neurobehavioral development of
low-birth-weight preterm infants.

[38]

Sphingomyelin Wistar rats 810 mg/100 g
Sphingomyelin/diet 28 days Sphingomyelin contributes to

myelination in developing rats. [39]

Sphingomyelin and
phosphatidylcholine Children aged 0–5 years 62 mg/L 85 mg/L 90 days

Sphingomyelin and
phosphatidylcholine have significant

effects on neural and
cognitive developments.

[40]

Phospholipids
Healthy preschool

children aged
2.5 to 6 years

250 mg/100 mL 6 months

High phospholipid concentration in
milk is beneficial to children’s behavior
regulation and the frequency of fever is

significantly reduced.

[41]

Phospholipids 75 chronically stressed
men aged 30 to 51 years

250 mL fat-reduced
cream powder

derived from bovine
milk with

0.5%, 1% PL/day

42 days
Supplementation of PL increases the
availability of cortisol in subjects and

attenuates memory decline.
[42]

Phospholipids and
gangliosides Piglets 0.8 or 2.5%

Lacprodan PL-20 26 days

Supplementation with gangliosides and
phospholipids improves spatial learning

in piglets and affects
brain development.

[43]

Phospholipids
and exercise Seniors aged 71–75 years

1 g tablet containing
16% of phospholipid

MFGMs per day
8 weeks

Participants taking globular membrane
tablets perform better in tapping

and stepping.
[44]

Phospholipids,
sphingolipids,
and exercise

15-week-old male SAMP1
and ICR rats

356 ± 9 mg/day diet
(contain 16.6%
phospholipids)

28 weeks MFGM combined with exercise can
improve muscle function deficits. [45]

Phospholipids
and exercise

Older women
aged 82–84 years

1 g milk fat globule
membrane tablet

per day
12 weeks

Exercise and phospholipid
supplementation may improve frailty

in older adults.
[46]

Phospholipids 30 fifteen-week-old
Wistar rats

0.5 g buttermilk
cookie/day 4 months

Buttermilk supplementation alters
synaptic membrane lipid composition
and delays cognitive decline with age.

[47]

Phospholipids twenty 3 × Tg-AD mice
and 10 wild-type mice

3.4 g whey protein
powder/kg/day 3 months

Supplementation of phospholipid-rich
protein powder in the diet can alleviate

AD symptoms.
[48]

Phospholipids Infants aged ≤14 days 647 mg/L 4 months

Diarrhea, vomiting, ear infections,
conjunctivitis, and eczema are

significantly reduced in infants fed the
milk fat globule membrane

phospholipid formula.

[49]

Sphingomyelin Male Sprague
Dawley rats 19.5 ± 1.4% dose 7 weeks

Compared with egg-origin
sphingomyelin, milk-origin

sphingomyelin has a stronger effect on
inhibiting the absorption of fat and
cholesterol in the rat intestinal tract.

[50]

Phospholipids

Men and women with
serum low-density

lipoprotein cholesterol
(LDL-C) <5.0 mmol/L

187.5 mg/day 8 weeks

The intake of phospholipids reduces
cholesterol levels in the body, mainly by
inhibiting the absorption of cholesterol

in the gut.

[51]

Phospholipids Overweight men
and women 40 g/day 8 weeks

Milk-derived phospholipids
significantly reduce fasting and
postprandial plasma cholesterol

concentrations. Milk fat enclosed by
MFGM does not impair

lipoprotein profiles.

[52]

Phospholipids Menopausal women 0.3, 0.5 g/day 4 weeks
Phospholipids may reduce specific
interactions involved in cholesterol

absorption in the gut.
[53]

Sphingomyelin Male Fischer-344 rats 0.11% w/w 13 weeks
Diets containing sphingomyelin are
protective against colon cancer in

Fischer-344 rats.
[54]
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Table 2. Cont.

Lipid Participants Dose Time Results Reference

Sphingomyelin and
phosphatidylserine

Healthy men with an
average age of 41.5 years 13.5 g/day 3 weeks

High doses of phospholipids can
dampen the activity and reactivity of the

hypothalamic–pituitary–adrenal axis
(HPAA) and produce in the subject a

blunted psychological stress response.

[19]

Ganglioside Wistar rats 0.2%, 1.0% CML 80 days Dietary gangliosides benefit cognitive
development in infants. [55]

Ganglioside Infants aged 2 to 8 weeks 11~12 µg/mL 16 weeks

Formula with increased ganglioside
content in the diet is beneficial for
cognitive development in healthy

infants aged 0–6 months.

[56]

2.2. Differences of Fatty Acid Composition in the Composition of Milk Fat Globules and MFGMs

The fatty acid compositions of MFGMs and MFGs (milk fat globules) were signifi-
cantly different (Table 3), which was due to the fact that the main lipids in the MFG were
triglycerides, cholesterol, and retinol esters [57,58], which led to the differences of their
bioactive functions. Saturated fatty acids accounted for 55.2–67.0% and unsaturated fatty
acids accounted for 33.0–44.8% in the MFGM; saturated fatty acids accounted for 66.3–73.0%
and unsaturated fatty acids accounted for 27.0–33.7% in the MFGM [59–61]. There are
many studies on the relative quantification of fatty acids in the MFGM. However, there are
currently few studies on the absolute quantification of all fatty acids in the MFGM. This is
because the fatty acid content in the MFGM is too low and requires higher throughput and
sensitive technology for detection.

Table 3. Differences in relative content fatty acid composition between the MFG and MFGM [27,59–63].

Fatty Acid MFG MFGM

Saturated fatty acids 66.3–73.0% 55.2–67.0%
Unsaturated fatty acids 27.0–33.7% 33.0–44.8%

Omega-6 unsaturated fatty acids

C18:2 c9, t11 (CLA) 0.42–0.92% 6.81–7.37%
C18:2 c9, c12 (n-6) 1.37–1.59% 4.13–5.11%

C20:3 c8, c11, c14 (n-6) 0.07–0.08% 0.38–0.57%
C20:4 c5, c8, c11, c14 (n-6) 0.09–0.10% <0.04%

Omega-3 unsaturated fatty acids

C18:3 c9, c12, c15 (n-3) 0.26–0.61% 0.43–1.65%
C20:3 c11, c14, c17 (n-3) 0.11–0.12% 0.47–0.56%

C20:5 c5, c8, c11, c14, c17 (n-3; EPA) 0.03–0.04% 0.13–0.86%
C22:5 c4, c7, c10, c13, c16, c19 (n-3; DPA) 0.06–0.10% 0.32–0.56%
C22:6 c4, c7, c10, c13, c16, c19 (n-3; DHA) 0.00% 0.01–0.48%

3. Characterization of Lipids in the MFGM

Liquid chromatography with an evaporative light-scattering detector (ELSD) is a
frequently employed method for quantifying and characterizing lipids [64]. In the study
by Zou et al., this technique was employed to determine the concentrations and relative
proportions of PC, PI, PS, PE, and SM in the MFGMs of colostrum, mature milk, and transi-
tional milk from cows. The findings indicated that the concentration of polar lipids in the
total lipids reached its peak during the transitional stage of lactation. The relative content
of the SM did not exhibit significant changes; however, the level of phosphatidylcholine
in mature milk was higher compared to the other two stages [65]. This study highlighted
that the level of polar lipids in mature milk was significantly higher than that in colostrum,
which was in accord with the previous research [66]. In a previous comparative analysis,
the lipid profile of the MFGM levels in buffalo and cow milk products were examined
using HPLC-ELSD [60]. The results indicated that the percentage of phosphatidylcholine
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in buffalo milk was higher than that in cow milk, while the percentage of SM was lower
when compared to cow milk.

Lipidomic, in combination with mass spectrometry, offers a powerful approach for
identifying various lipid species based on different phospholipid classes [67]. In the study
by George et al., the relationship between growth characteristics and lipids in the MFGM
was explored, and the concentration and intake of lipids from different MFGMs were
compared. Through LC-MS analysis, this research identified a total of 166 MFGM lipid
species originating from 10 fractions. The study further demonstrated that infants ex-
hibited variations in the content and intake of different lipids that existed in MFGMs,
and the intake of MFGM lipids was positively correlated with infant development [68].
Similarly, Brink et al. utilized UPLC-MS to identify 338 MFGM lipid species derived
from 10 fractions, thereby completing the lipid characterization of different commercial
MFGM materials. In a study by Ali et al., UPLC-ESI-Q-TOF-MS was employed to identify
100 MFGM lipids derived from 7 fractions [69,70]. With the development of lipid analysis
technology, MFGM lipid differences among different species have been widely character-
ized (Table 4), which is helpful for conducting better research on the nutritional value of
milk and dairy products [37,71–74].

Table 4. Relative proportion of lipids in MFGMs in different species [37,71–74].

Polar Lipids (%) Bovine Goat Human Sheep Yak

PI + PS 16.29–18.96 3.00–23.40 20.81–22.21 6.60–16.9 15.56
PC 25.74–33.12 27.00–32.00 24.39–25.08 24.50–30.50 23.18
PE 23.42–33.76 20.00–42.00 12.48–25.33 30.50–43.00 28.20
SM 24.87–25.40 16.00–30.00 29.28–40.18 22.30–28.20 33.06

4. Various Factors Alter the Lipid Composition of MFGMs

The size of the MFG can have a significant impact on the composition of the MFGM.
Due to the different surface areas of MFGs, the volume ratio changes, and therefore the
proportion of polar lipids also changes. Furthermore, diet and lactation change the size
of the MFG, which has a significant effect on the composition of MFGMs [59,75–77]. The
proportion of PI in small MFGs (3.32 ± 1.21 µm) is significantly lower than that in large
MFGs (7.61 ± 0.90 µm), while the proportion of PE is significantly greater than that in large
MFGs [78]. The size of the MFG at different positions in the cream fraction is classified. The
upper milk fat globule is named F1, which is the largest, and the lower milk fat globule
is the smallest, named F6. The results of the HPLC-ELSD analysis show that there are
significant differences in the ratios of PI and PC between F1 and F6 fractions with significant
differences in the MFG size, while there are no significant differences among F4, F5, and F6,
and the changed composition of protein and fat produce this result [79]. In these groups of
MFGs, the relative content of SM does not change significantly. For fat globule size-induced
changes in the MFGM composition, this may be due to the difference in the curvature
between MFGs of different sizes, resulting in different levels of dynamic processes at the
molecular level, or it may be due to the rearrangement of the apical plasma membrane
composition after secretion [80]. Changes in MFGM composition can affect its function
during processing or digestion [73]. Studying the relationship between MFG size and
MFGM composition contributes to further research on MFG secretion and allows for the
production of products with MFGM compositions designed to meet specific needs.

5. Separation of Lipids in MFGMs

Extracts containing MFGMs are mainly divided into MFGM-enriched ingredients
and phospholipid extracts. The former is widely used in nutrition, while the latter is
mainly used in beauty products [81]. The Folch and Mojonnier methods are general lipid-
extraction methods. The Folch method extracts lipids from milk using 20 volumes of 2:1
chloroform/methanol or 4 volumes of 1:1 chloroform/methanol, while the Mojonnier
method extracts lipids using a mixture of ethanol, diethyl ether, and petroleum ether. After
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the milk fat is separated, solid phase extraction is usually used for fractionation [82,83].
Similarly, phospholipids can be extracted from dairy by-products using switchable solvents.
Tertiary amines (CyNMe2) have been proven to extract PL from raw cream, buttermilk,
concentrated buttermilk, and beta-serum, and CyNMe2 can extract most of PLs (mainly
phosphatidylcholine and phosphatidylinositol) from buttermilk and beta-serum, which is
higher than the extraction performance of the Folch and Mojonnier methods [84,85]. The
combination of ultrafiltration and supercritical fluid extraction can obtain a fraction rich in
globular membrane phospholipids of milk fat [86]. Lactose and ash are removed from whey
buttermilk through a 10 kDa cutoff membrane. After spray drying, the powder is subjected
to supercritical fluid extraction (CO2, 350 bar, 50 ◦C). Finally, a powder containing 21%
lipid (61% PL) can be obtained. It is well known that lipid removal from milk is possible
using organic solvents. The use of ethanol can effectively extract phospholipids from the
by-product whey protein phospholipid concentrate. Using 70% aqueous ethanol at 70 ◦C
can obtain a lipid concentrate with a higher PL content, while using 70% aqueous ethanol
at 60 ◦C. Ethanol can obtain a lipid concentrate with a higher SM content [87]. The research
on phospholipid extraction methods is relatively mature, most methods rely on organic
solvents, and have high applicability; the extracted PL enrichment can be widely used in
food emulsifiers.

6. Phospholipids
6.1. The Promoting Effect of Phospholipid Supplementation on Development

The addition of MFGMs to infant formula has become a widespread practice due to its
role in promoting cognitive development [88]. The inclusion of sphingomyelin-enriched
milk in the diet of premature infants has been investigated for its impact on cognitive
development [89]. In a study involving 24 very-low-birth-weight babies, the infants were
separated into two groups. The trial group accepted sphingomyelin-enriched milk, where
sphingomyelin accounted for 20% of all phospholipids in the milk, while the control group
received milk with only a 13% sphingomyelin content [38]. At eighteen months old, the
babies in the group of sphingomyelin-enriched milk presented significantly higher scores in
various developmental assessments, including the behavior rating scale of the BSID-II test,
the Fagan test, visual evoked potentials (VEPs), and the sustained-attention test, compared
to the control group. These findings suggest that infants receiving sphingomyelin-enriched
milk exhibit improved neurobehavioral development.

Previous research examining the neurocognitive development and longitudinal tra-
jectories of the brain in children who were fed different formulas for at least 3 months
found significant developmental differences among the groups. Specifically, factors, such
as long-chain sphingomyelin, iron, fatty acids, folic acid, and choline, were closely asso-
ciated with early myelination trajectories [40]. Another study compared the impact of
formula and conventional milk products on the central nervous system of 182 preschool
children. The formula milk used in the trial group contained a 8–9-times-higher phospho-
lipid concentration compared to the non-formula milk. The trial group received 200 mL
of formula milk without phospholipids, while the control group received formula milk
containing 500 mg of phospholipids. The children were evaluated using the Achenbach
system of empirically based assessment. The results of the research indicate that formula
milk with a higher phospholipid concentration has a more pronounced effect on children’s
behavioral regulation [41]. These investigations emphasize the significance of specific
nutrients, particularly phospholipids, in formula milk for promoting healthy brain and
behavioral developments in children. The inclusion of appropriate levels of these nutrients
in formula milk can positively impact neurodevelopment. This positive effect can be at-
tributed to the role of sphingomyelin as an important component of the myelin sheath, as
indicated by the previous research [39]. As a merely structural component of myelin, sph-
ingomyelin promotes the proliferation, maturation, and differentiation of oligodendrocyte
precursor cells (OPCs), as well as increased axonal myelination [90,91]. This explains why
the dietary supplementation of MFGM-derived sphingolipids can increase cognitive and
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developmental functions in subjects. Considering the complexity of the nutritional needs
of infants during their development, simple formula milk powder can no longer meet the
market’s demands, and phospholipid supplementation is an effective means to enhance
product competitiveness.

6.2. The Promoting Effect of Phospholipid Supplementation on Memory

Indeed, the supplementation of PS and sphingomyelin has been shown to enhance
memory function [19]. In previous research involving 75 males aged 30 to 51 years old,
different test groups were given milk containing a placebo, 0.5%, and 1% phospholipids
(phospholipid content adjusted using Lacprodan PL 20) over a period of 42 days. The
stress-protective effects of the phospholipids were evaluated using the Trier social stress
test. It was concluded that high doses of phospholipids could inhibit the activity and
responsiveness of the hypothalamic–pituitary–adrenal axis (HPAA) and result in a blunted
psychological stress response. The age of the subjects and the duration of phospholipid
supplementation may influence these effects [42]. In a study involving piglets, Lacprodan
PL-20 (0%, 0.8%, 2.5% v/v) was added to the diets of three groups of piglets. The develop-
ment of the piglets was observed from days 2 to 28 postpartum. The piglets’ performance
in the T-maze was measured on day 14, and brain MRI data were obtained on day 28
postpartum. The piglets supplemented with 0.8% and 2.5% gangliosides showed better
performances in the maze, had higher brain weights, and exhibited more white and gray
matter. This suggests that gangliosides enhance spatial learning in newborn piglets and
influence brain development [43]. Similar findings were observed in mouse experiments,
where the supplementation of phospholipids from the MFGM improved the memory of
mice [92]. These investigations emphasize the potential cognitive benefits of phospholipid
supplementation, including an improved capacity to memorize and spatial learning, in
both human and animal testing methods. The specific effects may vary depending on
factors, such as dosage, duration of supplementation, and the age or developmental stage
of the subjects. A recent study demonstrated the promoting effect of sphingomyelin on
hippocampal development. Sphingomyelin can enter the nucleus of hippocampal cells,
causing it to overexpress the sphingomyelin phosphodiesterase 4 gene encoding a neu-
tral sphingomyelinase, thereby promoting changes in the soma of hippocampal cells and
the formation of synapses [93]. In addition, the dietary supplementation of MFGM can
also change the lipid abundance in the hippocampus without changing the lipidome of
other brain tissues [94], which may also be the reason why supplementation with MFGMs
improves memory, and the specific reason needs further research.

6.3. The Promoting Effect of Phospholipid Supplementation on Exercise Performance

The supplementation of dietary phospholipids, such as PC and PS, has been shown
to improve the exercise performance of humans [44,95]. The supplementation of phos-
pholipids and sphingolipids, in combination with exercise, has been investigated for its
potential to improve muscle movement and neuromuscular development, including the
formation of neuromuscular junctions. In Yoshinaka’s study, 71 subjects were divided into
two groups. One group ingested 1 g of MFGM placebo (167 mg/placebo), while the other
group received a placebo in the form of whole milk powder. Tablets containing MFGMs
were produced for the test group, and placebo tablets were composed of whole milk pow-
der. Both groups engaged in low-intensity exercise, and the trial lasted for eight weeks.
The test group demonstrated a better performance in foot tapping and opening and closing
steps, which could be attributed to the presence of sphingomyelin, one of the components
that promote the development of nerve and muscle fibers [45]. Kim’s research expanded
on this by including a placebo plus exercise group and an MFGM plus exercise group. This
design allowed for a more targeted study to determine whether supplementation with milk
fat globules or daily low-intensity exercise alone could improve frailty in the subjects [46].
These works suggest that dietary supplementation with phospholipid and sphingolipid
supplements, in conjunction with exercise, may have positive effects on neuromuscular
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development and muscle movement. The combination of the phospholipid supplementa-
tion of MFGM and exercise can promote the expression of docking protein-7 and myogenin
mRNA, thereby promoting the formation of neuromuscular junction synapses [11]. In ad-
dition, previous research points out that the improvement in exercise performance caused
by phospholipid supplementation is due to the fact that phospholipids stabilize the cell
membrane of red blood cells, thereby improving the oxygen transport capacity of red
blood cells [96].

6.4. MFGM Phospholipid Supplementation Helps Alleviate Alzheimer’s Disease

Alzheimer’s disease is a neurodegenerative disease caused by cognitive decline with
age, usually in patients over 65 years old [97]. As an important component of the cell
membrane, changes in phospholipids at the cellular level cause different pathogenic pro-
cesses, which can be improved by the dietary supplementation of PL [98,99]. Phospholipid
supplementation by the intake of MFGM-enriched substances can effectively improve
age-induced cognitive decline. A study on aged Wistar rats showed that dietary sup-
plementation with enriched MFGMs isolated from buttermilk enhanced the rat’s spatial
working memory. This was caused by changes in the lipid composition of the synaptic
membrane. The contents of PS, PE, and SM increased after supplementing phospholipids,
and these lipids were involved in the decline in cognitive function [47]. Recent studies indi-
cate that AD symptoms can be effectively alleviated by adding phospholipid-rich protein
powder (PP) to the diet of triple-transgenic AD (3 × Tg-AD) mice. This is because protein
powder avoids neuroinflammation through the peroxisome proliferator-activated receptor
γ (PPAR γ)–nuclear factor-κB signaling pathway [48].

6.5. Phospholipids Have a Regulating Effect on Gut Health

The dietary supplementation of phospholipids has an immunomodulatory role in
immune regulation, particularly in the regulation of gut microbial composition and inflam-
mation [100]. Compared to drugs, dietary modifications are often more cost-effective and
sustainable in preventing infant diseases [101,102]. An investigation involving 119 infants
aged ≤14 days old divided them into three groups: those receiving standard infant for-
mula, MFGM lipid-enriched formula (MFGM-L), and MFGM protein-enriched formula
(MFGM-P). The research aimed to assess the prevalence of adverse reactions in infants.
The data showed that infants fed with the MFGM-L formula had the lowest frequency of
diarrhea among the three groups [49]. This finding is likely attributable to the modification
of gut microbiome by phospholipids or to phospholipid-induced changes in the immune
system [103]. The beneficial effects of phospholipids on the gut were further reflected
in their interaction with microorganisms, such as Lactobacillus. The interaction between
phospholipids in the MFGM and Lactobacillus has been shown to significantly influence
Lactobacillus adhesion and enhance gut microbiota health [104]. MFGM phospholipids can
reduce the adhesion of Lactobacillus to Caco-2/goblet cell co-cultures. The electronegativity
of the bacterial cell surface can be increased by adsorption or incorporation, which further
causes changes in adhesion, leading to an increase in the adhesion process. MFGM phos-
pholipids can promote the function of probiotics, which can provide them with beneficial
prospects in the dairy industry. Moreover, phospholipids in the MFGM show the ability
to inhibit the growth of Helicobacter pylori and reduce the levels of E. coli and Salmonella
enteritidis [105].

6.6. Phospholipids Regulate Cholesterol Metabolism

Increased serum cholesterol is a major contributor to cardiovascular disease (CVD),
and supplementation with milk-derived lipids has been shown to modulate cholesterol
levels [106]. Lipids present in the MFGM, particularly sphingomyelin, have been found
to inhibit cholesterol absorption in the gut [107]. Dietary sphingomyelin has a substan-
tial impact on plasma and tissue cholesterol levels. As shown in Figure 2, milk-derived
sphingomyelin exhibits a stronger effect in inhibiting rat cholesterol absorption, and this
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can be attributed to the compatibility of sphingosine and N-acyl groups in the presence
of cholesterol, promoting their mutual attraction [50]. In a study involving 34 subjects
with low-density lipoprotein cholesterol (LDL-C) levels below 5.0 mmol/L, the effects of
dietary supplementation with chocolate-flavor buttermilk or placebo were investigated.
The placebo formulation matched the macro/micronutrient content of the buttermilk, ex-
cept for the nutrients from MFGMs. The research found that dietary supplementation
with buttermilk containing a high concentration of milk globular phospholipids effectively
inhibited cholesterol absorption [51]. The strong affinity of milk-derived sphingomyelin
for cholesterol can effectively lower the cholesterol thermodynamic activity and reduce
the monomer content between cholesterol micelles, thereby inhibiting cholesterol absorp-
tion [108]. These works indicate that supplementation with milk-derived lipids, particularly
sphingomyelin, can have a beneficial impact on cholesterol absorption and may help in
managing serum cholesterol levels.
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In a test performed by Rosqvist et al., a single-blind randomized controlled experiment
was conducted over eight weeks on 57 overweight participants. The test group was
supplemented with 40 g of whipping cream, which served as a source of MFGMs because
of its enriched phospholipid level and relatively complete MFGM structure. The dietary
phospholipid concentration in the experimental group was approximately 19-fold higher
than that in the control group. The results indicated that blood lipids and the LDL-C
of participants without the supplementation of MFGMs were significantly higher. The
ingestion of MFGMs did not increase the cholesterol concentrations, potentially due to the
influence of milk phospholipids on lipid metabolism and hepatic gene expression, affecting
intra- and inter-organ lipid distributions [52]. Phospholipids have the ability to interfere
with specific interactions in the gut, leading to the inhibition of cholesterol absorption
without interfering with the gut microbiota [53]. This suggests that the mechanism of
the phospholipid regulation of cholesterol absorption involves specific interactions in the
gastrointestinal tract, which effectively reduce the uptake of cholesterol without disrupting
the balance of gut microbial communities. The reason why phospholipid intake inhibits
cholesterol absorption may be that phospholipids inhibit the expression of transporters
related to cholesterol absorption, or reduce the solubility of cholesterol and increase the
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size of micelles and of bile acid binding capacity [109]. Many studies have proved the
inhibitory effect of phospholipids on cholesterol absorption; however, further research is
needed on the specific mechanism.

6.7. Anticancer Effects of Dietary Phospholipids

To assess the anticancer potential of sphingolipids, the AIN-76 feed was supplemented
with anhydrous milk fat (AMF) and a combination of AMF and MFGM (1:1). A microscopic
analysis revealed a significantly reduced number of colonic lesions in mice fed with MFGMs
compared to those fed AIN-76 or anhydrous fat. This work proved that the anticancer
function was attributed to sphingomyelin in MFGMs [54], which was supported by the
subsequent research [110]. Buttermilk, obtained by extracting lipid components using
food-grade solvents, has shown promising inhibitory effects on cancer cell activity. The
presence of phospholipids in the extracts appeared to play a crucial role [111]. In one
study, lipids from buttermilk powder were extracted by both food-grade ethanol and a
non-food-grade solvent, such as a dichloromethane–methanol solution. The extracts were
then fractionated using flash chromatography and the resulting solution’s inhibitory effects
on nine human cancer cell lines were evaluated using an absorbance microplate reader [112].
The aforementioned findings suggest that sphingolipids, particularly those derived from
MFGMs and buttermilk, can possess anticancer properties and exhibit inhibitory effects on
colon cancer development and progression. Further research is needed on the mechanism
by which phospholipids inhibit cancer. One review concludes that this may be because
phospholipids are involved in the Kennedy pathway, and perturbations regulated by this
pathway are related to a variety of diseases, including cancer [113].

7. Gangliosides
7.1. Gangliosides Promote Brain Development

The supplementation of gangliosides, a type of complex glycosphingolipids, has
been found to promote neurodevelopment and cognitive function, potentially due to
the presence of sialic acids in gangliosides, which play a role in synaptic growth and
memory formation. When infants were fed formula with an increased ganglioside content,
it was noted to have a favorable influence on their cognitive development [55]. In a study
involving 60 infants aged 2–8 weeks old, one group was fed standard formula milk powder
while the other group was fed formula milk powder enriched with compound milk fat to
adjust the ganglioside content to 9 mg/100 g [56]. The cognitive development of the infants
was assessed and the group receiving the ganglioside-enriched formula showed improved
outcomes. Moreover, the prenatal supplementation of gangliosides by pregnant women
was also found to promote brain development in their offspring [114]. This effect may
be attributed to ganglioside supplementation enhancing brain region-specific increases in
astrocytes, thereby increasing plasticity in the hippocampus, which is involved in learning
and memory functions [115]. The abovementioned research underlines the benefits of
ganglioside supplementation in promoting neurodevelopment, cognitive function, and
brain plasticity in infants and offspring. At present, as an important part of the neuronal
cell membrane, the supplementation of gangliosides promotes development to a certain
extent; however, the physical fitness of the subjects needs to be considered.

7.2. Inhibitory Effect of Gangliosides on Intestinal Pathogenic Microorganisms

Indeed, dietary sphingolipids have been shown to modulate intestinal inflammation
by influencing the gut microbiota [116]. Lee et al. studied the catabolism of gangliosides
from milk-derived gangliosides using nano-HPLC Chip Q-TOF MS. Bifidobacterium infantis
and B. bifidum significantly decreased the levels of degraded gangliosides GM3 and GD3,
while B. longum subsp. longum and B. animalis subsp. lactis did not [117]. The sialic acid
produced by the degradation of gangliosides leads to changes in glycolipid distribution in
the intestine and exerts a prebiotic effect on the intestine, which may explain the improve-
ment of intestinal health by gangliosides. In vitro experiments on Caco-2 cells show that
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gangliosides (GM3, GD3, and GM1) and sialic acid (Neu5Ac) can effectively prevent the
adhesion of diarrheal pathogens [118]. They compete with pathogens to adhere to cells
and can detach pathogens that adhere to cells. GM3 and GD3 are located on the apical
and basolateral membranes of the Caco-2 cells, which may facilitate further studies on
the competitive adhesion of gangliosides. MFGM gangliosides also protect tight-junction
proteins [119]. By supplementing gangliosides, the level of the anti-inflammatory cytokine
interleukin-10 can be increased, thereby preventing the decline in the level of intestinal
tight-junction proteins and ensuring the good health of the intestinal tract. Similarly, gan-
gliosides control the occurrence of necrotizing enterocolitis by regulating the levels of
vasoactive mediators and pro-inflammatory factors [120].

8. Conclusions

This article presented an overview of the types and characterization methods of the
main lipids from MFGMs. It also summarized the current works on the biological activities
and functions of these lipids, including study designs, experimental results, and functional
mechanisms. The supplementation of lipids derived from MFGMs in the diet was shown
to promote development and improve immunity, making it a potential bridge between
formula and breast milk products. The article emphasized the significance of studying
MFGM lipids in the context of food nutrition and clinical applications. While there is
existing research on the topic, the article suggests that there is still much to be explored,
indicating potential future research directions. It was noted that the composition of the
MFGM was influenced by external factors, such as processing methods and the stage of
lactation. Therefore, accurately separating and purifying the MFGM and lipids in it is
crucial for their commercial application. Overall, the article emphasizes the function of
lipids in the MFGM in various aspects of human health and nutrition. It calls for further
research to better understand their functions, explore their potential applications, and
develop effective methods for their utilization in the food industry.
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