
Citation: Zhang, F.; Huang, W.; Zhao,

L. Regulatory Effects of Ganoderma

lucidum, Grifola frondosa, and

American ginseng Extract Formulation

on Gut Microbiota and Fecal

Metabolomics in Mice. Foods 2023, 12,

3804. https://doi.org/10.3390/

foods12203804

Academic Editor: Ren-You Gan

Received: 11 September 2023

Revised: 12 October 2023

Accepted: 13 October 2023

Published: 17 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Article

Regulatory Effects of Ganoderma lucidum, Grifola frondosa, and
American ginseng Extract Formulation on Gut Microbiota and
Fecal Metabolomics in Mice
Fengli Zhang 1,2, Wenqi Huang 1,2 and Lina Zhao 1,*

1 National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University,
Fuzhou 350002, China; z17111314z@163.com (F.Z.); h17336122703@163.com (W.H.)

2 College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
* Correspondence: zln20002000@163.com; Tel.: +86-159-8066-4572

Abstract: The bioactivities of Ganoderma lucidum, Grifola frondosa, and American ginseng have been
extensively studied and documented. However, the effects of their complexes on the structural
properties of intestinal microbiota and fecal metabolism remain unclear. Therefore, this paper aims
to present a preliminary study to shed light on this aspect. In this study, an immunocompromised
mouse model was induced using cyclophosphamide, and Ganoderma lucidum, Grifola frondosa, and
American ginseng extract formulation (referred to as JGGA) were administered via gavage to investi-
gate their modulatory effects on gut microbiota and fecal metabolism in mice. The effects of JGGA on
immune enhancement were explored using serum test kits, hematoxylin–eosin staining, 16SrDNA
high-throughput sequencing, and UHPLC-QE-MS metabolomics. The findings revealed potential
mechanisms underlying the immune-enhancing effects of JGGA. Specifically, JGGA administration
resulted in an improved body weight, thymic index, splenic index, carbon scavenging ability, hyper-
sensitivity, and cellular inflammatory factor expression levels in mice. Further analysis demonstrated
that JGGA reduced the abundance of Firmicutes, Proteobacteria, and Actinobacteria, while increasing
the abundance of Bacteroidetes. Additionally, JGGA modulated the levels of 30 fecal metabolites.
These results suggest that the immune enhancement observed with JGGA may be attributed to the
targeted modulation of gut microbiota and fecal metabolism, thus promoting increased immunity in
the body.

Keywords: Ganoderma lucidum; immune activity; gut microbiota; fecal metabolism

1. Introduction

Ganoderma lucidum, a fungus cultivated from mycorrhizae, belongs to the Basidiomy-
cota and the Ganoderma family [1]. It is renowned for its multiple health benefits, including
its potential to replenish qi, promote relaxation, and alleviate symptoms of cough and
asthma. Ganoderma lucidum is a rich source of biologically active compounds, such as
polysaccharides, terpenoids, sterols, polysaccharide peptides, and ganoderic acid. These
compounds have been extensively studied and reported to possess various therapeutic
properties, including antitumor, immune-enhancing, and neuroprotective effects [2]. Re-
search has shown that the alcoholic extract of Ganoderma lucidum exhibits a protective
effect against oxidative stress and hepatic pathological processes, while also helping to
manage complications associated with metabolic syndrome [3]. In addition, Ganoderma
has been demonstrated to regulate the immune system, thus promoting overall health and
longevity [4]. Recent studies have shown that supplementing broilers with wall-broken
baozi powder derived from Ganoderma lucidum can enhance their growth performance,
antioxidant capacity, and immune functions. This is achieved by increasing the levels of
immune factors in the serum and improving the immune organ index [5]. Furthermore, the
addition of Ganoderma lucidum polysaccharides to fish feed has shown to improve the innate
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immune response and resistance in shrimp [6]. Moreover, Ganoderma lucidum polysaccha-
rides have demonstrated significant anti-inflammatory effects in rats by reducing the levels
of IL-2 and TNF-α. Additionally, they have the capability to elevate the serum levels of
IL-2, IL-4, and IL-10, consequently enhancing the immune response in rats [7].

Grifola frondosa is a medicinal and edible fungus known for its abundant nutrients [8]. It
possesses various pharmacological functions, including anti-tumor properties, immune en-
hancement, and the regulation of lipid metabolism, all of which contribute to overall health
benefits [9]. The extract of Grifola frondosa has been found to effectively enhance the killing
activity of NK cells, the phagocytosis of macrophages, and the cellular activity of B cells [10].
Additionally, Grifola frondosa polysaccharides have the ability to induce macrophage ac-
tivation, while its mycelium and fruiting bodies are rich in tumor suppressors, making
them valuable immunomodulators [11]. Furthermore, studies have demonstrated that the
combination of Grifola frondosa polysaccharides and vitamin C exhibits significant antitumor
effects, with a tumor suppression rate of up to 50% [12]. Another beneficial ingredient, the
Grifola frondosa polypeptide–iron complex, serves as a new iron supplement and immune
enhancer [13].

American ginseng (Panax quinquefolius L.) exhibits various pharmacological properties,
including antimicrobial, immunomodulatory, and antioxidant activities [14]. The health
benefits of American ginseng are primarily attributed to two classes of compounds: ginseno-
sides (triterpenoid saponins) and polysaccharides [15]. These compounds play a crucial
role in preventing a wide range of diseases, such as by improving cardiovascular and
cerebrovascular conditions and enhancing the immune system [16]. In addition, American
ginseng polysaccharides have been found to reduce allergic immune responses and airway
reactions in asthmatic mice, providing relief from symptoms [17].

Autoimmune diseases (ADs) comprise a group of at least 80 chronic diseases, affecting
not only young and middle-aged individuals but also demonstrating an increasing global
prevalence [18]. The development and maintenance of immunity play a crucial role in the
intricate relationship between the intestinal microbiota and the host organism. Notably,
the gut houses approximately 70% of the body’s immune system within its lymphoid
tissues [19]. Functioning as the largest digestive and absorptive organ in the body, the gut
serves as a vital defense barrier [20], and the integrity of the intestinal microbial barrier is
paramount for maintaining both the body’s physiological barrier and immune function [21].
In cases of gut dysbiosis, the abundance and composition of the intestinal flora exhibit sig-
nificant alterations, including a noteworthy increase in the firmicutes/bacteroidetes (F/B)
ratio [22]. Several studies have demonstrated the multifaceted properties of levamisole,
a derivative known for its anti-inflammatory, antioxidant, antitumor, and immunomodu-
latory effects. Levamisole hydrochloride, available on the market, is commonly used as
a form of levamisole. It functions by enhancing the immune function of T-cells, thereby
restoring damaged immune cells to their normal state [23]. Considering these benefits,
levamisole hydrochloride was selected as the positive control drug in this study. Reduced
immune function may trigger an imbalance in the intestinal flora, leading to metabolic
disorders. Therefore, it is of the utmost importance to explore natural ingredients that can
enhance the body’s immunity.

This study aims to reveal the potential mechanism of action of JGGA in immunomod-
ulation by examining the impact on intestinal microorganisms and fecal metabolism. To
investigate this, a cyclophosphamide-induced immunocompromised mouse model was utilized.

2. Materials and Methods
2.1. Materials and Reagents

The Juncao Ganoderma lucidum was obtained from the National Mycorrhizal Engineer-
ing and Technology Research Center (Fuzhou, China). American ginseng was purchased
from Fujian Life Element Technology Co., Ltd. (Quanzhou, China), while Grifola frondosa
was purchased from Qingyuan Hongyi Agricultural Development Co., Ltd. (Lishui, China).
Cyclophosphamide was provided by Shanghai Weihuan Biotechnology Co., Ltd. (Shanghai,
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China). Indian ink was purchased from Shanghai Yuanye Biotechnology Co., Ltd. (Shang-
hai, China). IgG, IgA, IgM, TNF-α, IL-10, and other kits were purchased from Wuhan
Purity Biotechnology Co., Ltd. (Wuhan, China). Qubit Fluorometric Quantification was
acquired from Thermo Fisher Scientific Inc. (Waltham, MA, USA), and the Agilent 5400
Bioanalyzer was obtained from Agilent Technologies, Inc. (Santa Clara, CA, USA). The
Novaseq 6000 Sequencer and Q Exactive™ HF-X Mass Spectrometer were purchased from
Illumina (San Diego, CA, USA) and Thermo Fisher Scientific Inc. (Waltham, MA, USA),
respectively. The Vanquish UHPLC Chromatograph was also acquired from Thermo Fisher
Scientific Inc. (Waltham, MA, USA).

2.2. Preparation of Mycorrhizal Ganoderma lucidum Complex Extracts

The fruiting bodies of Ganoderma lucidum, Grifola frondosa, and American ginseng were
ground into a fine powder. The weight of each ingredient was in accordance with the
proportions specified in the Chinese Pharmacopoeia and the Complete Compendium of
Chinese Herbal Medicines: Ganoderma lucidum: Grifola frondosa: American ginseng in a
ratio of 6:3:10, respectively. Then, with a material–liquid ratio of 1:20, 70% ethanol was
added to the powder. The mixture was subjected to extraction in a water bath at 75 ◦C for
1 h. After filtration, the filtrate was extracted again, and the two filtrates were combined.
The combined filtrates were then concentrated and subsequently freeze-dried to obtain
Ganoderma lucidum, Grifola frondosa, and American ginseng extract formulation powders.

2.3. Analysis of the Main Components of Ganoderma lucidum Complexes

The analytical instrument used for analyzing the ingredients of the Ganoderma lucidum
complex was an ACQUITY UPLC I-Class Plus ultra-high-performance liquid chromato-
graph (UPLC) coupled with a QE Plus high-resolution mass spectrometer (HRMS), forming
a liquid chromatography–mass spectrometry (LC/MS) system. The chromatographic condi-
tions were as follows: the column used was an ACQUITY UPLC HSS T3 (100 mm × 2.1 mm,
1.8 µm); the column temperature was set at 45 ◦C; the mobile phases consisted of A: water
(containing 0.1% formic acid) and B: acetonitrile (containing 0.1% formic acid); the flow rate
was 0.35 mL/min; the injection volume was 2 µL. The elution gradients were as follows:
0.01–2 min, 95% A; 2–4 min, 70% A; 4–8 min, 50% A; 8–10 min, 20% A; 10–14 min, 0% A;
14–15 min, 0% A; 15–15.1 min, 95% A; 15.1–16 min, 95% A. The mass spectrometry signals
of the samples were acquired in both positive and negative ion scanning modes. The
instrumental settings were as follows: ion source temperature, 350 ◦C; auxiliary gas heater
temperature, 350 ◦C; sheath gas flow rate, 35 Arb; auxiliary gas flow rate, 8 Arb; S-lens
RF level, 50; mass range (m/z), 100–1200; full MS mass range (m/z), 100–1200; full MS
resolution, 70,000; MS/MS resolution, 17,500; NCE/stepped NCE, 10, 20, 40; spray voltage
(V), 3800 or −3800.

2.4. Experimental Animals

SPF-grade male BALB/c mice, weighing 20 ± 2 g, were purchased from Shanghai
Slac Laboratory Animal Co., Ltd. (Shanghai, China) (License No. SCXK (Shanghai, China)
2017-0005). Compared to female mice, male mice exhibit more stable hormone levels and
enzyme activities, along with better overall health indicators. Therefore, we chose to utilize
male mice in our study. Animal experiments were conducted in accordance with the ethical
guidelines for animal experimentation and were approved by the Animal Center of Fujian
Agriculture and Forestry University. The mice were housed at a temperature of 22 ± 2 ◦C
with a humidity of 50 ± 2% during the acclimatization period. They had free access to
food and water throughout the study. After the acclimatization period, the mice were
randomly divided into four groups, each consisting of eight mice. The groups were as
follows: (1) JGGA: mice were orally administered JGGA at a dose of 100 mg/kg/day;
(2) NC and CTX: both the blank and model groups were orally administered distilled water
in the same volume as the JGGA group; (3) LH: mice were orally administered levamisole
hydrochloride (LH) at a dose of 40 mg/kg/day as a positive control group. As is shown
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in Figure 1, all mice were continuously gavaged for 30 days, and starting from day 26,
all groups except the NC group were injected with cyclophosphamide (80 mg/kg) for
5 consecutive days to induce immune suppression and create an immunocompromised
mouse model.

Foods 2023, 12, x FOR PEER REVIEW  4  of  22 
 

 

of Fujian Agriculture and Forestry University. The mice were housed at a temperature of 

22 ± 2 °C with a humidity of 50 ± 2% during  the acclimatization period. They had free 

access to food and water throughout the study. After the acclimatization period, the mice 

were randomly divided into four groups, each consisting of eight mice. The groups were 

as follows: (1) JGGA: mice were orally administered JGGA at a dose of 100 mg/kg/day; (2) 

NC and CTX: both the blank and model groups were orally administered distilled water 

in the same volume as the JGGA group; (3) LH: mice were orally administered levamisole 

hydrochloride (LH) at a dose of 40 mg/kg/day as a positive control group. As is shown in 

Figure 1, all mice were continuously gavaged for 30 days, and starting from day 26, all 

groups except the NC group were injected with cyclophosphamide (80 mg/kg) for 5 con‐

secutive days to induce immune suppression and create an immunocompromised mouse 

model. 

 

Figure 1. Animal experimental protocol of this study.   

2.5. Body Weight, Hypersensitivity, Carbon Scavenging Ability, and Organ Indices 

Mouse body weights were recorded weekly, starting from the first cycle of gavage. 

To  investigate  the delayed‐type  allergic  reaction  in mice  through  sensitization  experi‐

ments [24], 50 mg of 2‐nitrofluorobenzene was weighed and placed in a sterile bottle. A 

mixture of acetone and semen sesami nigrum (in a 1:1 ratio) was added (5 mL), and the 

bottle was sealed and thoroughly mixed. The solution was then drawn up with a syringe 

for injection. On the 25th day of the experiment, the mice were depilated on the abdomen 

using barium sulfide, resulting in a depilated area of approximately 3 cm × 3 cm. Subse‐

quently, 50 µL of the 2‐nitrofluorobenzene solution was applied to the depilated area and 

allowed to completely absorb. On the 31st day of the experiment, both sides of the right 

ears of the mice were re‐stimulated, and the cervical vertebrae were dislocated after 24 h. 

The right and left ears were removed, and 4 mm radius discs were removed with a hole 

punch, weighed, and the difference in weight between the right and left ears was calcu‐

lated. The carbon scavenging ability of the mice was assessed by injecting India ink into 

the tail vein. Following the experiment, the mice were euthanized, and the thymus, spleen, 
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2.5. Body Weight, Hypersensitivity, Carbon Scavenging Ability, and Organ Indices

Mouse body weights were recorded weekly, starting from the first cycle of gavage. To
investigate the delayed-type allergic reaction in mice through sensitization experiments [24],
50 mg of 2-nitrofluorobenzene was weighed and placed in a sterile bottle. A mixture of
acetone and semen sesami nigrum (in a 1:1 ratio) was added (5 mL), and the bottle was
sealed and thoroughly mixed. The solution was then drawn up with a syringe for injection.
On the 25th day of the experiment, the mice were depilated on the abdomen using barium
sulfide, resulting in a depilated area of approximately 3 cm × 3 cm. Subsequently, 50 µL
of the 2-nitrofluorobenzene solution was applied to the depilated area and allowed to
completely absorb. On the 31st day of the experiment, both sides of the right ears of the
mice were re-stimulated, and the cervical vertebrae were dislocated after 24 h. The right
and left ears were removed, and 4 mm radius discs were removed with a hole punch,
weighed, and the difference in weight between the right and left ears was calculated. The
carbon scavenging ability of the mice was assessed by injecting India ink into the tail vein.
Following the experiment, the mice were euthanized, and the thymus, spleen, liver, and
kidney were carefully removed. The body weight of each mouse was recorded, and the
organ indices were subsequently calculated [25].

2.6. Whole Blood Index Detection and Spleen Pathological Section

After a 12 h fasting period, 200 µL of whole blood was collected from the mice using
eyeball blood sampling. The collected blood was analyzed using a whole blood autoan-
alyzer to measure various indices, including white blood cells, red blood cells, platelets,
and others. Additionally, mouse spleen tissues were harvested and placed in EP tubes
containing 4% paraformaldehyde tissue fixative. The tissues were subsequently embedded
in paraffin, cut into 4 µm thick slices, stained with hematoxylin–eosin (H&E), treated with
xylene, and observed under a light microscope to assess morphological changes [26].
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2.7. Determination of Serum Index

The remaining blood was then subjected to centrifugation, and the serum was collected
for further analysis of indices such as immunoglobulin A (IgA), immunoglobulin M (IgM),
immunoglobulin G (IgG), tumor necrosis factor-α (TNF-α), interferon-γ(IFN-γ), interleukin-
10(IL-10), and interleukin-6(IL-6) using cytokine and immune factor detection kits.

2.8. Serum Indicator Detection

The contents of the mouse cecum were obtained for 16S rDNA high-throughput se-
quencing. The V3 + V4 variable region was amplified using 341F (5′-CCTAYGGGRBGCASCAG-
3′) and 806R (5′-GGACTACNNGGGGTATCTAAT-3′) as primers for PCR. The PCR products
were then mixed with an equal volume of 1XTAE buffer and subjected to electrophoresis on
2% agarose gel for detection. After that, the PCR products were combined in equidensity
ratios and purified using the Universal DNA purification kit (Tiangen biotech (Beijing,
China) Co., Ltd., Beijing, China). The sequencing libraries were prepared using the NEB
Next® Ultra DNA Library Prep Kit (New England Biolabs (NEB), Ipswich, MA, USA)
following the manufacturer’s recommendations, with index codes added. The quality
of the libraries was assessed using the Agilent 5400 Bioanalyzer (Agilent Technologies,
Inc., Santa Clara, CA, USA). Finally, the libraries were sequenced on an Illumina NovaSeq
platform, generating 250 bp paired-end reads.

2.9. Metabolomic Analysis of Mouse Fecal Untargeted LC–MS

Mouse fecal samples were collected for non-targeted LC–MS metabolomic assays
and analyzed using a Vanquish UHPLC system (Thermo Fisher Scientific Inc., Waltham,
MA, USA) coupled with an Orbitrap Q ExactiveTM HF-X mass spectrometer (Thermo
Fisher Scientific Inc., Waltham, MA, USA). The samples were injected onto a Hypesil Gold
column (100 × 2.1 mm, 1.9 µm) and subjected to a 12-min linear gradient at a flow rate
of 0.2 mL/min. In the positive polarity mode, eluent A (0.1% formic acid in water) and
eluent B (methanol) were used as the mobile phases. In the negative polarity mode, eluent
A (5 mM ammonium acetate, pH 9.0) and eluent B (methanol) were used. The solvent
gradient was set as follows: 2% B for 1.5 min, 2–85% B for 3 min, 85–100% B for 10 min,
100–2% B for 10.1 min, and 2% B for 12 min. The Q ExactiveTM HF-X mass spectrometer
was operated in a positive/negative polarity mode with a spray voltage of 3.5 kV, capillary
temperature of 320 ◦C, sheath gas flow rate of 35 psi, auxiliary gas flow rate of 10 L/min,
S-lens R level of 60, and auxiliary gas heater temperature of 350 ◦C.

2.10. Statistical Analyses

The experimental data were presented as the mean± standard deviation (SD). Physico-
chemical indicators were visualized and analyzed using GraphPad Prism (V8.3.0, GraphPad
Software, LLC, San Diego, CA, USA) analysis software, statistical significance was assessed
using IBM SPSS (V26, International Business Machines Corporation, New York, NY, USA)
software, and statistical significance was calculated using a one-way analysis of variance
(ANOVA) and least significant difference (LSD) test. Significance levels of p < 0.05 or p < 0.01
indicated statistically significant differences. The 16SrDNA sequences of all samples were
processed using the DADA2 method recommended by Qiime2 after quality control. OUT
representative sequences of OTUs were selected and compared against the Greengenes
Database for species annotation. Diverse matrices were calculated using the QIIME2 core
diversity plugin for alpha diversity indices at the sequence level. The relationship between
microbial communities and sample categories was visualized using the partial least squares
discriminant analysis (PLS-DA) implemented in the ‘mixOmics’ R package. Differences
in intestinal flora among groups were analyzed using the STAMP (V2.1.3, Stanford Uni-
versity, Stanford, CA, USA) software. Correlation heatmaps between intestinal flora and
physicochemical indicators in the mice were plotted using the ‘pheatmap’ package in R.
Cytoscape 3.8.0 was employed to visualize network interactions between the results of
mouse intestinal flora and mouse whole blood indicators and serum biochemistry. Raw
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mass spectrometry files (.raw) were imported into the Compound Discoverer 3.1 (V3.1,
Thermo Fisher Scientific, Seelze, Switzerland) software for data processing and database
searching to obtain qualitative and quantitative results of metabolites. The identification of
these metabolites was performed using the KEGG database, HMDB database, and LIPID
Maps database. PLSDA analysis, significance analysis of metabolites, and ploidy change
volcano plot analysis were conducted using the MetaboAnalystR package in R. Correlations
between intestinal flora and physicochemical indicators, differential metabolites and physic-
ochemical indicators, and intestinal flora and differential metabolites were determined
using a non-parametric Spearman’s test.

3. Analysis of Results
3.1. Analysis of the Main Components of Ganoderma lucidum Complexes

Table 1 presents the analytical results of representative ingredients found in the Gano-
derma lucidum complex. JGGA contains three major prenol lipids, namely Ginsenoside Re,
Ginsenoside Rf, and Ganoderenic acid C. Additionally, it includes two carboxylic acids and
derivatives (citric acid and L-leucine), along with organooxygen compounds, hydroxy acids
and derivatives, keto acids and derivatives, cinnamic acids and derivatives, and steroids
and steroid derivatives. Furthermore, a representative list of 10 compounds, mostly lipids,
was compiled based on the corresponding compounds reported in the literature.

Table 1. The major compounds in Ganoderma lucidum, Grifola frondosa, and American ginseng extract
formulation from LC–MS analysis and their qualitative result parameters.

No. Rt (min) Class Compound Name Formula Measure
[M-H]-(m/z)

Fragmentation
Score Reference

1 0.81 Organooxygen
compounds D-Maltose C12H22O11 387.11 87.10 [27]

2 0.89 Hydroxy acids and
derivatives Malic acid C4H6O5 133.01 91.30 [28]

3 0.91 Keto acids and
derivatives Oxoglutaric acid C5H6O5 191.02 71.00 [29]

4 1.20 Carboxylic acids and
derivatives Citric acid C6H8O7 191.02 82.90 [30]

5 1.28 Cinnamic acids and
derivatives

2-
Hydroxycinnamic

acid
C9H8O3 182.08 81.20 [31]

6 1.49 Carboxylic acids and
derivatives L-Leucine C6H13NO2 132.10 86.60 [32]

7 5.30 Prenol lipids Ginsenoside Re C48H82O18 991.55 74.20 [33]
8 5.34 Prenol lipids Ginsenoside Rf C42H72O14 845.49 91.70 [34]

9 7.43 Prenol lipids Ganoderenic acid
C C30H44O7 515.30 90.30 [35]

10 10.65 Steroids and steroid
derivatives Momordicin I C30H48O4 473.36 80.40 [36]

3.2. Analysis of Body Weight and Immune Indices in Mice

Figure 2A illustrates the changes in body weight among different groups of mice
throughout the experiment. As depicted, the overall body weight of mice showed an
increasing trend during the initial 0–3 weeks of drug administration. However, at week 4,
the body weight of mice in the CTX group significantly decreased (p < 0.01) compared to
the NC group. This dramatic decrease in body weight caused by cyclophosphamide had a
detrimental impact on the normal growth and development of mice. On the other hand, the
mice in the JGGA group exhibited a normal upward trend in body weight, indicating that
JGGA had a mitigating effect on the cyclophosphamide-induced impairment of growth
and development in mice. Within a short time, a specific range of particulate matter
injected intravenously into the tails of mice undergoes phagocytosis by endothelial cells in
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organs such as the liver and spleen. As a result, the concentration of particulate matter in
the plasma decreases. The phagocytic ability of mouse macrophages can be assessed by
calculating the carbon ion clearance rate, while the phagocytic capacity of mononuclear
macrophages reflects the body’s non-specific immune response. The rate at which carbon
particles are eliminated from the body displays an exponential relationship with the carbon
concentration in the blood. Moving on to Figure 2B, the phagocytic index of mice in the CTX
group displayed a significant reduction (p < 0.01) compared to the NC group, indicating a
poorer phagocytic ability of mononuclear macrophages in the CTX group. However, the
JGGA intervention significantly (p < 0.01) enhanced the phagocytic ability of mononuclear
macrophages in mice, bringing it closer to the levels observed in the normal group. This
suggests that JGGA could restore the impaired immune response of mice to near-normal
levels. Direct contact of external chemicals with the skin on the abdomen of mice leads
to the binding of these chemicals to skin proteins through the stratum corneum. This
process results in the formation of antigens that stimulate the rapid proliferation of T cells,
which subsequently transform into sensitized lymphocytes. On day 6, re-stimulation of
the skin on the ear triggered a delayed hypersensitivity reaction in that specific area. The
intensity of this skin hypersensitivity reaction serves as an indicator of the body’s immune
function and this was further assessed by measuring the swelling of the ear, which was
determined by calculating the weight difference 24 h after antigen stimulation. In Figure 2C,
the ear weight difference in mice in the CTX group was significantly decreased (p < 0.01)
compared to the NC group, reflecting severe damage to the organism’s immune system and
impaired cellular immune function caused by cyclophosphamide. Conversely, the mice
in the JGGA group exhibited a significant increase in ear weight difference (p < 0.01) and
enhanced hypersensitivity compared to the CTX group. Lastly, in Figure 2D–G, the thymus
and spleen indices of mice in the CTX group showed a significant decrease (p < 0.01),
indicating compromised thymus and spleen immune mechanisms in mice. JGGA treatment
significantly increased both the thymus and spleen indices of mice compared to the CTX
group (p < 0.01).
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profile index in different groups of mice after 4 weeks. (C) Results of hypersensitivity reaction in
different groups of mice after 4 weeks. (D) Results of thymus index in different groups of mice after
4 weeks. (E) Results of spleen index in different groups of mice after 4 weeks. (F) Results of liver
index in different groups of mice after 4 weeks. (G) Results of kidney index in different groups
of mice after 4 weeks. NC: normal group; CTX: immunocompromised group; JGGA: Ganoderma
lucidum, Grifola frondosa, and American ginseng extract formulation at a dosage of 100 mg/kg/day;
LH: levamisole hydrochloride at a dosage of 40 mg/kg/day. The data are presented as mean ± SD (n
= 8). * p < 0.05 and ** p < 0.01 vs. NC group; # p < 0.05 and ## p < 0.01 vs. CTX group.

3.3. Analysis of Whole Blood Indices and Pathologic Sections of the Spleen

Figure 3A–E presents the leukocyte concentration, erythrocyte concentration, hemoglobin
content, platelet content, and lymphocyte percentage in the whole blood of mice from dif-
ferent groups. Compared to the NC group, the CTX group exhibited a significantly lower
leukocyte concentration, erythrocyte concentration, hemoglobin content, platelet content,
and lymphocyte percentage (p < 0.01). These results indicate that the CTX intervention
caused severe cellular damage to the mice, resulting in reduced numbers of immune and
lymphocyte cells and lowered immunity. In contrast, the JGGA intervention significantly
increased the leukocyte concentration, erythrocyte concentration, hemoglobin content,
platelet content, and lymphocyte percentage (p < 0.01). This suggests that JGGA can al-
leviate cellular damage and improve the immune system. The whole blood indices, as
shown in Figure 3, demonstrate that JGGA can restore the whole blood indices of immuno-
compromised mice induced by cyclophosphamide to the normal range. This restoration
is conducive to the normal functioning of the organism, promotes improvement of the
immune system, and enhances overall immunity. Figure 3F–I displays the pathological
changes in the spleen of mice after different interventions. In the NC group, the spleen
exhibited an intact peritoneum, normal splenic trabeculae structure, and a clear demarca-
tion between red and white medullas. In the CTX group, the lymphatic sheath structure
was blurred, splenic cells were ruptured, and the boundary between the red and white
medullary regions was unclear. Additionally, the splenic trabeculae were broken, indicat-
ing pathological changes in splenic tissues due to cyclophosphamide treatment. Both the
JGGA and LH interventions mitigated spleen damage, indicating that JGGA can protect
the integrity of mouse spleen immune tissues and improve immunity.

3.4. Analysis of Serum Indicators

Figure 4 illustrates the results of the analysis conducted on the serum levels of various
components, including tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-6
(IL-6), interleukin-10 (IL-10), immunoglobulin G (IgG), immunoglobulin A (IgA), and
immunoglobulin M (IgM) in mice. Figure 4A–C represents the levels of inflammatory
factors TNF-α, INF-γ, and IL-6 in the serum of mice from different groups. In the CTX
group, the levels of TNF-α, INF-γ, and IL-6 were significantly elevated (p < 0.01), indicating
high inflammatory factor content and the occurrence of inflammation in the organism. After
the JGGA intervention, the levels of inflammatory factors decreased and the immunity of
the organism increased. Figure 4D–G depicts the levels of IL-10, IgG, IgA, and IgM in the
serum of mice from different groups. Compared to the NC group, the CTX group showed
significantly reduced levels of IL-10, IgG, IgA, and IgM (p < 0.01). This indicates that CTX
resulted in decreased immunoglobulin content and anti-inflammatory factors in the serum,
impairing the organism’s immune system. The JGGA intervention increased the content of
anti-inflammatory factors and immunoglobulins, thus improving organismal immunity.
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Figure 3. Whole blood index levels of each group of mice during the experimental period and
histopathological analysis of spleen slices (400×magnification) in different groups of mice. (A) white
blood cell content in whole blood of different groups of mice after 4 weeks. (B) Red blood cell content
in whole blood of different groups of mice after 4 weeks. (C) Hemoglobin content in whole blood
of different groups of mice after 4 weeks. (D) Platelet content in whole blood of different groups of
mice after 4 weeks. (E) Percentage of lymphocytes in whole blood of different groups of mice after
4 weeks. (F–I) Histopathological sections of thymus of different groups of mice after 4 weeks. NC:
normal group; CTX: immunocompromised group; JGGA: Ganoderma lucidum, Grifola frondosa, and
American ginseng extract formulation at a dosage of 100 mg/kg/day; LH: levamisole hydrochloride at
a dosage of 40 mg/kg/day. The data are presented as mean ± SD (n = 8). ** p < 0.01 vs. NC group; #
p < 0.05 and ## p < 0.01 vs. CTX group.
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Figure 4. Serum index levels of each group of mice during the experiment. (A) TNF-α content in
serum of different groups of mice after 4 weeks. (B) IFN-γ content in serum of different groups of mice
after 4 weeks. (C) IL-6 content in serum of different groups of mice after 4 weeks. (D) IL-10 content
in serum of different groups of mice after 4 weeks. (E) IgG content in serum of different groups of
mice after 4 weeks. (F) IgA levels in serum of different groups of mice after 4 weeks. (G) IgM levels
in serum of different groups of mice after 4 weeks. NC: normal group; CTX: immunocompromised
group; JGGA: Ganoderma lucidum, Grifola frondosa, and American ginseng extract formulation, dosage
100 mg/kg/day; LH: levamisole hydrochloride, dosage 40 mg/kg/day. The data are displayed as
mean ± standard deviation (n = 8). ** p < 0.01 vs. NC group; ## p < 0.01 vs. CTX group.

3.5. High-Throughput Sequencing of Microorganisms from Cecum Contents

The Alpha Diversity Index was used to analyze the diversity of intestinal flora in
different groups of mice, encompassing both the relative abundance and microbial com-
position diversity. The Shannon index was employed to assess the level of diversity in
the intestinal flora of mice. In Figure 5A, the CTX group exhibited a decrease in intestinal
microbial diversity, while the JGGA intervention led to increased abundance and diversity
of the intestinal flora, improving its diversity. Figure 5B illustrates the PLSDA plots of
different subgroups. It can be observed that the distance between the CTX group and the
NC and JGGA groups was more dispersed, indicating changes in the microbial structure of
different subgroups. The JGGA intervention improved the structure of the intestinal flora
and had a positive effect on stabilizing the internal environment of the mouse intestines.
As can be seen in Figure 5C, the analysis of species shared and endemic species among
different subgroups revealed that the NC, CTX, and JGGA subgroups had 529 shared
species. Specifically, the CTX subgroup had 1928 endemic species, the NC subgroup had
1559 endemic species, and the JGGA subgroup had 1158 endemic species. The 20 most
abundant species at the portal level in the intestinal flora of mice from different groups are
shown in Figure 5D, with Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria
being the major microbiota. Compared to the NC group, the CTX group exhibited an
increased abundance of Firmicutes and Proteobacteria, while the Bacteroidetes abundance
decreased. After the JGGA diet, the abundance of Firmicutes and Proteobacteria decreased,
as did the abundance of Bacteroidetes. Furthermore, the Firmicutes/Bacteroidetes ratio
decreased in the gut microbiota of mice. Figure 5E demonstrates that Staphylococcaceae,
Bifidobacterium, and Desulfovibrio were highly clustered in the CTX group, while the relative
abundance of Bacteroides, Prevotella, and Coprococcus decreased. Following the JGGA inter-
vention, the relative abundance of Bacteroides, Prevotella, and Oscillospira increased, while
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that of Staphylococcaceae, Lactobacillus, and Neisseria decreased in the mouse intestine.
To further investigate the relationship between intestinal flora and immunomodulation,
we applied the LDA (LEfSe) binding effect to determine characteristic OTUs among the
intestinal contents of different mouse groups. As is shown in Figure 5F, Paraprevotella,
Prevotella, Parabacteroides, and Bacteroides were associated with RBC and were positively
correlated with RBC, IgA, IgM, and PLT, while they were negatively correlated with TNF-α,
INF-γ, and IL-6. On the other hand, Corynebacterium, Staphylococcus, and Desulfovibrio were
positively correlated with TNF-α, INF-γ, and IL-6, and were positively correlated with IgM,
IgG, and IL-6; however, they were negatively correlated with anti-inflammatory factors
such as IgM, IgG, and IgA, as well as immunoglobulin-content-related indicators. Using
Cytoscape (V3.9.1, Cytoscape Consortium) software, we screened the gut microbiota (genus
level) for differences with an absolute value of R > 0.7 and significance of p < 0.05, and
visualized the network interactions between immune-regulation-related flora and related
physiological and biochemical indices. Figure 5G demonstrates that Corynebacterium and
Staphylococcaceae were positively correlated with IFN-γ and negatively correlated with IgM,
and IL-10; IL-6 was positively correlated with Sporosarcina, Jeotgalicoccus, and Staphylococ-
caceae, but negatively correlated with Bacteroides and Paraprevotella; IL-10 was positively
correlated with Bacteroides and Paraprevotella, but negatively correlated with Corynebacterium
and Staphylococcaceae; IgG was negatively correlated with Sporosarcina and Allobaculum,
while IgA was negatively correlated with Corynebacterium and Staphylococcaceae; PLT was
positively correlated with Bacteroides and Paraprevotella, but negatively correlated with
Corynebacterium and Staphylococcaceae. These findings suggest that alterations in the gut mi-
crobiota of mice are closely related to changes in serum and biochemical markers, playing
a significant role in regulating the immune function of the intestinal tract.
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Green: NC group; Purple: CTX group; Orange: JGGA group. (C) Venn diagram showing the cecal
microbiota at 4 weeks. Green: NC group; Purple: CTX group; Orange: JGGA group. (D) Bar chart
presenting the relative distribution at the gate level for the top 20 species with relative abundance,
color ordered according to the legend on the right. (E) Error diagram demonstrating the differential
expansion of microbiota in mouse intestinal contents. Green: NC group; Orange: CTX group; Purple:
JGGA group. (F) Spearman’s correlation analysis between cecal microbiota and physicochemical
parameters. The strength of the association between different cecum microbiota and immune-related
parameters is represented using shades of color. The color red indicates a positive correlation, while
the color blue indicates a negative correlation. * p < 0.01, ** p < 0.01, *** p < 0.001 (G) Network diagram
based on significant differences in cecum microbiota and immunophysico-chemical parameters. Each
node represents a genus of gut microbiota (green node) or a parameter related to immunological
indicators (orange node). The black solid line and gray dashed line represent positive and negative
correlations, respectively. Line width indicates the strength of the correlation. Network parameters
for Spearman’s correlation test (|r| > 0.7, FDR adjusted p < 0.05).

3.6. Metabolomic Analysis of Fecal Samples

To analyze the differences in fecal metabolites among the mouse groups, we utilized
partial least squares discriminant analysis, as shown in Figure 6A. The samples displayed
tighter clustering within each group and a larger dispersion among subgroups in the fig-
ure. The CTX group showed a greater distance from the NC group, while the NC group
appeared closer to the JGGA group. Figure 6B presents the importance plot of PLS-DA
metabolites. Metabolites such as 13,14-dihydro-15-keto prostaglandin A2, pregnanetriol,
alpha-farnesene, heptadecanoic acid, and stercobilin exhibited VIP values higher than
1 and significance at p < 0.05. These metabolites played a crucial role in discriminating
between different subgroups. The volcano plot of fold change in metabolites in the CTX
and JGGA groups is depicted in Figure 6C. By considering the fold change (FC) and p-value,
we identified metabolites of interest. Daidzein, 4-(pentyloxy) benzene-1-carbohydrazide
and 5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-chromen-4-one showed FC values higher than
2 and p < 0.05, indicating significant upregulation in the JGGA group. Conversely, celastrol,
stercobilin, monoolein, pilocarpine, and pregnanetriol exhibited FC values lower than
−2 and p < 0.05, indicating significant downregulation in the JGGA group. Figure 6D
showcases the correlation between metabolites and immune indicators. Estriol, normor-
phine, 8-hydroxyguanosine, stercobilin, carvone, pilocarpine, IL-6, IFN-γ, and TNF-α
showed positive correlations. On the other hand, daidzein, gentisic acid, sulfoacetic acid,
5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-chromen-4-one, PLT, spleen index, IL-10, weight,
thymus index, IgM, HGB, LYM, IgA, carbon profile clear index, RBC, liver index, and IgG
showed positive correlations.

3.7. Association Analysis of Gut Flora and Fecal Metabolome

Figure 7 presents the results of the Spearman’s correlation analysis conducted on the
intestinal flora and fecal metabolites in mice. The analysis demonstrates that intestinal
microorganisms play a regulatory role in fecal metabolites. Specifically, Desulfovibrio, Al-
lobaculum, Jeotgalicoccus, Bifidobacterium, and Staphylococcaceae were found to be positively
correlated with meperidine-d5, pilocarpine, stercobilin, 4-ethylbenzaldehyde, sedanolide,
carvone, and jervine. Conversely, these components were negatively correlated with
5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-chromen-4-one, heptadecanoic acid, daidzein, (R)-
equol, and gamma-glutamylmethionine, showing a strong correlation. This suggests that
Desulfovibrio, Allobaculum, Jeotgalicoccus, Bifidobacterium, and Staphylococcaceae in the intesti-
nal flora positively regulate the fecal metabolism of meperidine-d5, pilocarpine, stercobilin,
4-ethylbenzaldehyde, sedanolide, carvone, and jervine metabolites. In addition, we found
that Prevotella, Paraprevotella, Bacteroides, Mucispirillum, Helicobacter, and Parabacteroides in
the intestinal flora were associated with fecal metabolites of N1-[4-(cyanomethyl)phenyl]-4
-chlorobenzamide, 5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-chromen-4-one, heptadecanoic
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acid, daidzein, (R)-equol, and gamma-glutamylmethionine. Other metabolites were pos-
itively and negatively correlated with metabolites such as (9cis)-retinal, meperidine-d5,
LPG 20:4, pilocarpine, stercobilin, 4-ethylbenzaldehyde, sedanolide, carvone, and jervine.
The correlation was were strong, indicating that Prevotella, Paraprevotella, Bacteroides, Mu-
cispirillum, Helicobacter, and Parabacteroides in the intestinal flora can positively regulate
the fecal metabolism of N1-[4-(cyanomethyl)phenyl]-4 -chlorobenzamide, 5,7-dihydroxy-3-
(4-hydroxyphenyl)-4H-chromen-4-one, heptadecanoic acid, daidzein, (R)-equol, gamma-
glutamylmethionine and other metabolites.
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** p < 0.01, *** p < 0.001.
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4. Discussion

Maintaining good health requires a well-functioning immune system [37]. The im-
mune system serves as a self-defense mechanism that activates in response to external
stimuli, allowing the body to fight against microbial infections while minimizing damage
to its own tissues [38]. However, immune compromise can lead to immunodeficiency
disorders, which may manifest as dysplasia and generalized erythematous rashes [26]. This
poses a significant concern, particularly for immunocompromised individuals such as the
elderly and young patients [39].

Compound formulations, which consist of two or more ingredients, have the potential
to offer multiple targeting effects with a low incidence of side effects [40]. For instance,
Ganoderma lucidum mycelium has been found to regulate the intestinal flora, enhance
intestinal barrier function, and modulate both intestinal immune function and microbial
abundance in rats [41]. Grifola frondosa polysaccharide–protein complexes are known to
activate the immune system by increasing the levels of important cytokines such as TNF-α,
IFN-γ, IL-1β, and IL-2 [42]. Another example is American ginseng, which has demonstrated
significant anti-inflammatory effects by effectively reducing pro-inflammatory cytokines
(IL-1β, IL-6, and TNF-α) in the Raw264.7 cell model [43]. Ginsenosides and polysaccharides,
the main active components of ginseng, have shown the ability to modulate the immune
system through the activation of natural immunity [44]. Considering the limited research
investigating the combination of Ganoderma lucidum, Grifola frondose, and American ginseng,
their combined effects on immunomodulation warrant further investigation. As this study
examined the immunomodulatory effects of a combination of Ganoderma lucidum, Grifola
frondose, and American ginseng, it is important to acknowledge the limitation of not being
able to definitively pinpoint which specific ingredient plays the major modulating role.
This limitation highlights the need for further investigation in future studies.
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After cyclophosphamide intervention, mice experience weight loss, which can be
attributed to the negative effects of cyclophosphamide on the immune system. These effects
include discomfort, loss of appetite, and a reduced immune function [26]. However, after
dietary intervention with JGGA, the weight of the mice showed a normal upward trend.
There was no significant difference in weight between the mice in the NC group and those
in the JGGA group, indicating the safety and effectiveness of JGGA. The carbon contour-
ing capacity refers to the ability of the mouse immune system to eliminate activated or
exogenous carbon substances within the body. This capacity reflects the immune system’s
response against various pathogenic microorganisms and foreign substances. When a
specific range of carbon particulate matter is intravenously injected into the tail of mice, im-
mune cells such as macrophages, dendritic cells, and lymphocytes are activated in response
to the presence of carbon matter in the body. These immune cells carry out phagocytosis,
digestion, and decomposition to remove carbon, while simultaneously secreting various
immune factors to enhance its elimination. Carbon particles are rapidly phagocytosed
by endothelial cells in organs such as the liver and spleen, leading to a reduction in the
concentration of carbon particulate matter in the plasma. Additionally, the mouse immune
system produces specific antibodies to form antigen–antibody complexes, mobilizing other
immune cells to remove these complexes. The synergistic effects of these immune responses
facilitate the swift removal of carbon substances and the maintenance of immune homeosta-
sis. Carbon clearance is employed as a method to assess the phagocytic activity of immune
cells against pathogens, reflecting the strength of the immune system [45]. Therefore, in
this study, we utilized the carbon clearance ability as one of the indicators to evaluate
the strength of the body’s immune response. The swelling of the ear in hypersensitivity
reactions can be used as an indicator of the intensity of the skin hypersensitivity reaction,
which in turn, reflects the strength of the body’s immune function. Lymphocytes, derived
primarily from the thymus gland, play a crucial role in controlling and balancing the im-
mune system and overall immune function of the body [46]. Furthermore, when the body
is invaded by pathogens, an immune response is triggered in corresponding cells located
in the spleen. Therefore, the thymus and spleen indices serve as preliminary indicators for
assessing the body’s immune function [47]. It is worth noting that the thymus, spleen, liver,
and kidneys all possess immune functions. In the case of mice, a compromised immune
system is often characterized by reduced phagocytosis, diminished delayed anaphylactic
responses, and decreased organ indices [25]. However, after intervention with JGGA, the
mice exhibited increased phagocytosis, enhanced delayed metamorphic responses, and
a significant increase in organ indices. This indicates that JGGA possesses the ability to
improve the immunity of the organism. Additionally, TNF-α, IFN-γ, and IL-6 are all
important immune-mediated factors. TNF-α, predominantly secreted by macrophages, is a
cytokine with tumor necrotic activity [24]. In the case of cyclophosphamide intervention,
the leukocyte-to-erythrocyte ratio, hemoglobin content, platelet count, and lymphocyte
count in whole blood of mice were significantly reduced. On the other hand, the levels of
TNF-α, IFN-γ, and IL-6 in mouse serum were significantly increased, while the levels of
IL-10, IgG, IgA, and IgM were significantly reduced. These findings indicate that JGGA
can increase the content of immune factors and reduce the content of inflammatory factors
in mice. In the histopathological sections of the mouse spleen, following the JGGA diet,
the morphology and structure of splenic plasma and splenic vesicles were observed to
be compactly arranged and tightly organized [26]. The presence of normal splenic red
marrow and the dense distribution of lymphocytes in the splenic vesicles [25], as well as the
intact periosteum of the spleen and clear demarcation between the red and white medulla,
indicate that JGGA can alleviate cyclophosphamide-induced histopathological changes in
the spleen. Furthermore, it can protect the integrity of immune tissues in the spleens of
mice and improve the overall immune function of the organism.

The gut microbiota is a complex microbial ecosystem [48] that plays a crucial role
in maintaining the normal functioning of the body. It exerts a significant physiological
effect primarily by stimulating the innate immune response, metabolizing indigestible
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carbohydrates, promoting the growth of intestinal mucosal cells [49], and influencing the
overall immunity and health of the organism [3]. In this study, we investigated the impact
of CTX intervention on the diversity and structure of the gut microbiota in mice. The results
showed a reduction in microbial diversity following CTX intervention, as confirmed by the
principal component analysis. The Venn diagram analysis revealed an increase in the num-
ber of OTUs following the CTX intervention, suggesting a potential alteration in the colony
environment. Conversely, the JGGA intervention resulted in a decrease in the number of
OTUs, indicating a tendency towards stabilizing the colony environment. Specifically, the
phyla Anaplasma and Aeromonas showed a dominant presence in the gut, suggesting their
potential role in providing suitable polysaccharides for other bacteria and contributing to
the complex symbiotic intestinal community [48]. Intestinal dysbiosis, characterized by an
altered composition of gut microbiota, often leads to microbial disorders and an increased
Firmicutes/Bacteroidetes (F/B) ratio [22]. In our study, CTX intervention resulted in an
increased abundance of Firmicutes and a decreased abundance of Bacteroidetes. How-
ever, after the administration of the JGGA diet, the abundance of Firmicutes decreased,
while the abundance of Bacteroidetes increased. The F/B ratio, a potential biomarker for
intestinal dysfunction, decreased after the JGGA intervention, suggesting that JGGA plays
a significant role in improving the composition of intestinal microorganisms and maintain-
ing the stability of the internal environment. Furthermore, the presence of Desulfovibrio,
a harmful bacterium, was heavily clustered in the CTX group and was identified as an
important factor contributing to the imbalance in the gut microbiota. Correlation analysis
revealed that Corynebacterium, Staphylococcus, Allobaculum, and Desulfovibrio were positively
correlated with pro-inflammatory factors such as TNF-α, INF-γ, and IL-6. Corynebacterium,
known for causing diphtheria-like infections in humans, and Streptococcus, pathogenic
bacteria that can cause various infections and diseases, were among the identified bacterial
strains [50,51]. For instance, Staphylococcus capitis NRCS-A has been detected in NICUs
worldwide and is a leading cause of neonatal sepsis [52]. In summary, our findings indicate
that the structural disruption of the gut microbiota in mice can lead to dysregulation of
immune-related factors, resulting in decreased body immunity.

Metabolites are the end products of cellular metabolic activity, reflecting various feed-
back mechanisms and regulatory circuits [53]. The discriminant analysis results (Figure 6A)
showed changes in metabolite profiles after the CTX intervention in mice. Additionally, the
metabolite significance plot (Figure 6B) highlighted 13,14-dihydro-15-keto prostaglandin
A2, pregnanetriol, alpha-farnesene, heptadecanoic acid, L-adrenaline, α-lapachone, and
stercobilin as metabolites with VIP > 1 and p < 0.05. Notably, 13,14-Dihydro-15-keto
prostaglandin A2, which has high discriminatory power, is a potential biomarker for sepsis,
associated with increased morbidity and mortality risk [54]. Similarly, alpha-farnesene, the
main alarm pheromone, has potential applications as a protective agent in agriculture [55].
Stercobilin, found in the urine and feces of many mammals, including humans, serves as an
indicator of fecal contamination in environmental water [56]. Heptadecanoic acid, a recog-
nized biomarker of dairy fat intake, is derived from ruminant fat [57]. Pregnanetriol is an
important indicator for screening 21-hydroxylase deficiency [58]. In the fold-change volcano
plot (Figure 6C), daidzein, 4-(pentyloxy)benzene-1-carbohydrazide, and 5,7-dihydroxy-3-
(4-hydroxyphenyl)-4H-chromen-4-one were significantly up-regulated in the JGGA group.
Daidzein, a major isoflavonoid found in leguminous plants, exhibits numerous bioac-
tivities, including anti-inflammatory, antioxidant, anti-apoptotic, anticarcinogenic, and
cardiovascular and osteoporosis protection effects [59]. The metabolite–immunity metrics
correlation plot (Figure 6D) revealed positive correlations between estriol, normorphine,
8-hydroxyguanosine, and pilocarpine with inflammatory cytokines. Estriol concentration
assessment is important for monitoring estrogen levels, and the abuse of normorphine may
lead to severe psychological or physical dependence as opioid analgesics are commonly
used for managing severe pain [60]. Furthermore, 8-hydroxyguanosine is a marker of
oxidative RNA modification in the urine of rectal cancer patients, showing promise as an
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emerging biomarker for disease detection [61]. Increased levels of IL-6, IFN-γ, and TNF-α
are believed to contribute to altered fecal metabolite profiles in mice.

The heat map analysis (Figure 7) revealed correlations between the intestinal flora
and fecal metabolism. Desulfovibrio, Jeotgalicoccus, and Staphylococcaceae showed positive
correlations with pilocarpine and stercobilin, while exhibiting negative correlations with
5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-chromen-4-one and Daidzein, with significant and
strong magnitudes of correlation. Desulfovibrio, a major sulfate-reducing bacterium in
the human gut [62], is a Gram-negative, specialized anaerobic environmental bacterium
known to cause infections and diseases in humans [50]. Staphylococcaceae possess amino
acid decarboxylase and enterotoxin-producing activities, potentially affecting product
safety [63]. Pilocarpine, when metabolized, may lead to potential side effects related to the
cardiovascular system, such as increased heart rate and decreased blood pressure. On the
other hand, 5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-chromen-4-one is a flavonoid known
for its antioxidant, anti-inflammatory, and immune-enhancing properties. Daidzein is asso-
ciated with various pharmacological effects, including antioxidant properties and health
benefits, such as neuroprotection, nephroprotection, and cardiovascular protection [64].
Desulfovibrio, Jeotgalicoccus, and Staphylococcaceae were found to positively regulate the levels
of pilocarpine and stercobilin metabolites, while inhibiting the levels of 5,7-dihydroxy-3-(4-
hydroxyphenyl)-4H-chromen-4-one and daidzein metabolites. These findings suggest that
Desulfovibrio, Jeotgalicoccus, and Staphylococcaceae play a regulatory role in fecal metabolism.
Furthermore, our analysis revealed positive correlations between Bacteroides, Mucispirillum,
Helicobacter, and Parabacteroides with heptadecanoic acid and daidzein, showing strong
magnitudes of correlation. Bacteroides is known to be one of the most abundant genera
in the human intestinal tract and has been associated with multiple health benefits [65].
Mucispirillum schaedleri has been shown to antagonize Salmonella virulence and protect
mice from colitis [66]. Parabacteroides, as one of the 18 core members of the human intesti-
nal microbiota, plays a vital role in maintaining the host’s physiological functions [67].
Heptadecanoic acid, an essential fatty acid, serves as an important energy source for the
body. Our analysis revealed that Bacteroides, Mucispirillum, Helicobacter, and Parabacteroides
have the potential to positively regulate the levels of heptadecanoic acid and daidzein
metabolites in fecal metabolism. These findings suggest that the presence of Bacteroides,
Mucispirillum, Helicobacter, and Parabacteroides in the intestinal flora may contribute to the
regulation of heptadecanoic acid and daidzein metabolites in fecal metabolism.

5. Conclusions

In a mouse model of CTX-induced immune injury, the administration of JGGA showed
significant improvements in carbon scavenging ability and hypersensitive response. It
also increased the immune organ index, providing protection to the spleen and thymus
organs of mice. Furthermore, JGGA administration resulted in increased erythrocyte, leuko-
cyte, platelet, immunoglobulin, and lymphocyte contents. It elevated the serum levels
of anti-inflammatory cytokines and decreased the expression of inflammatory cytokines.
Additionally, JGGA played a role in regulating the structure and abundance of intestinal
flora in mice, thus safeguarding the stability of the intestinal internal environment and
improving fecal metabolism. Therefore, the administration of JGGA holds promise in
regulating the body’s immunity, offering a potential research direction for the develop-
ment of compound functional products derived from edible mushrooms. A limitation of
this study is the inability to determine the specific extract responsible for the observed
effects in the compound formula. This aspect warrants further investigation in future
experimental studies.
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