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Abstract: This study aimed to assess the hypoglycemic efficacy of low molecular weight polysaccha-
rides fractions obtained from Laminaria japonica (LJOO) in a model of type 2 diabetes mellitus (T2DM)
constructed using mice. Biochemical parameters were measured after 4 weeks of continuous gavage,
and fasting blood glucose (FBG) concentrations were analyzed. Pathological changes in tissues were
assessed. The intestinal contents were obtained for 16S rDNA high-throughput sequencing analysis
and detection of short-chain fatty acids (SCFAs). LJOO lowered FBG and insulin concentrations. It
altered the gut microbiota composition, as evidenced by enriched probiotic bacteria, along with an
increase in the Bacteroidetes/Firmicutes ratio and a decrease in the population of harmful bacteria.
LJOO stimulated the growth of SCFA—producing bacteria, thereby increasing cecal SCFAs levels.
LJOO can potentially aid in alleviating T2DM and related gut microbiota dysbiosis. LJOO may be
used as a food supplement for patients with T2DM.

Keywords: low molecular weight; Laminaria japonica polysaccharide; type 2 diabetes; gut microbiota

1. Introduction

Among its prevalent forms, type 2 diabetes mellitus (T2DM), poses a risk to human
health globally. Its characteristics include insulin resistance and hyperglycemia, and T2DM
is associated with complications due to dysfunctional insulin secretion and impaired beta
cell function [1]. Numerous studies have indicated a strong link between modifications
of the gut microbiota and T2DM’s incidence [2]. Typical observations suggest that the
Firmicutes-to-Bacteroidetes ratio (F/B) correlates positively with blood glucose concentra-
tions, and is strongly associated with liver damage and insulin resistance, among other
symptoms. Studies have also demonstrated that Roseburia, Bifidobacterium, Akkermansia,
Bacteroides, and Faecalibacterium are negatively correlated with T2DM, whereas Ruminococ-
cus and Fusobacterium show a positive correlation [3]. Mechanisms by which intestinal
flora affect T2DM include facilitating intestinal appetite and inflammatory responses, with
short-chain fatty acids (SCFAs) as mediators [4]. SCFAs support the proper functioning
of the intestines, safeguard the structural integrity of colonic epithelial cells, regulate
inflammation, and control the processes of digestion and absorption.
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Some scholars have recently proposed and demonstrated that phytochemicals ef-
fectively improve intestinal flora balance to regulate immune and metabolic-related dis-
eases. Polysaccharides exert hypolipidemic and hypoglycemic effects and mitigate lipid
metabolism disorder. A significant correlation between the molecular weight of polysac-
charides and their biological activity has been demonstrated [5]. Enteromorpha prolifera
oligosaccharide can modify the diversity and composition of mouse gut microbiota, regu-
late blood glucose metabolism, and protect against aging [6]. Laminaria japonica is a widely
cultivated marine macroalgae species found along coastlines and is used as both a food
source and for its medicinal properties [7]. Laminaria japonica polysaccharides (LJOO) can
restore blood sugar balance and improve lipid profile by altering the composition of in-
testinal flora [8]. Immune-active LJOO has a molecular weight ranging from 6 to 8 kDa [9].
Low molecular weight polysaccharide fractions show notable hypoglycemic effectiveness
in mice with high glucose-induced insulin resistance [10].

However, the impacts and underlying mechanisms of low molecular weight polysac-
charide action sourced from Laminaria japonica in mouse model remain undetermined. We
employed a mouse model of T2DM to evaluate the effects of LJOO. The mechanisms of
action of LJOO were investigated through biochemical and 16S rRNA gene sequencing
analyses. The purpose of this work is to provide updated evidence and insights into the
regulation of T2DM utilizing LJOO to offer potential avenues for future investigations and
the development of therapeutic strategies to prevent and alleviate T2DM.

2. Materials and Methods
2.1. Reagents

The L. japonica variety, “Huangguan No. 1” (Lianjiang, China) was used. Indicated
enzyme-linked immune sorbent assay (ELISA) kits (Wuhan Chundu Biotechnology Co., Ltd.,
Wuhan, China) were used to determine the concentrations of fasting insulin (FINS), in-
terleukin (IL)-6, tumor necrosis factor α (TNF-α), nuclear factor-κ-gene binding (NF-κB),
IL-10, and glucagon-likepeptide-1 (GLP-1). Corresponding standard assay kits (Jiancheng,
Nanjing, China) were used for determining glycosylated serum protein (GSP), triglyceride
(TG), high/low-density lipoprotein-cholesterol (HDL-C and LDL-C, respectively), and total
cholesterol (TC) concentrations.

2.2. Preparation and Analysis of LJOO

First, dried L. japonica powder was dissolved twice in ultrapure water in 1:40 (w/v)
ratio for 0.5 h. Next, the volume of the combined supernatant was made up to 75–80%
(v/v) by ethanol addition. The crude polysaccharide was collected and further treated with
2% neutral protease to remove proteins. Subsequently, the supernatant containing crude
polysaccharides was dialyzed for 48 h using an 8–14 kDa dialysis bag, and the dialyzed
solution was treated with sulfuric acid (18.4 mol/L) and neutralized with sodium hydroxide
(1 mol/L). The supernatant was subjected to concentration. After two days of dialysis
using 1- and 5-kDa-cutoff membranes, the deproteinized supernatant was lyophilized and
LJOO was consequently obtained. The powders of LJOO were individually combined
with KBr in a ratio of 1:100 (w/w) and compressed to form a 1 mm thin layer, which
was subjected to Fourier Transform Infrared Spectroscopy analysis (FT-IR, NEXUS-670,
Nicolet, Madison, WI, USA). The monosaccharide composition of LJOO was evaluated
using Ion Chromatography (ICS5000, Thermo Fisher, Waltham, MA, USA). A MALLS
system together with a refractive index detector (Wyatt Technology, Santa Barbara, CA,
USA) and gel permeation chromatography (GPC) (Agilent, Santa Clara, CA, USA) were
used to determine the molecular weight of LJOO.

2.3. Animals and the Design of Experiments

ICR mice (male; 18–22 g) were kept in a clean, hygienic environment, with unrestricted
access to water and normal feed. The mice were procured from Wu’s Laboratory Animal
Co., Ltd., Fuzhou, China. The Academic Committee of Fujian Agriculture and Forestry
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University (PZCASFAFU21026) approved all experimental protocols. After adaptive feed-
ing for one week, for construction of the T2DM model through the injection of streptozocin,
32 mice were used, and eight animals were chosen randomly as the normal control (NC)
group and fed a standard chow diet [11]. The remaining mice were divided into three
groups, with eight animals each as follows: Model, MET (treatment of diabetic mice with
100 mg/kg metformin), and LJOO treatment (treatment of diabetic mice either with 100 or
200 mg/kg LJOO, as indicated). Gavage was administered for 28 days. Water was provided
daily to the animals in the NC and Model groups.

2.4. Sample Collection and Biochemical Assays

Fasting blood glucose (FBG) was determined using tail vein-collected blood after
12 h of fasting at weeks 0, 2, and 4 of gavage administration, as indicated. An oral glucose
tolerance test (OGTT) was conducted by first measuring FBG, followed by 2 g/kg gavage of
glucose solution, determining the blood glucose values after 30, 60, and 120 min of glucose
gavage, and finally calculating the area under curve (AUC) for glucose tolerance. The
animals were euthanized by cervical dislocation following blood collection from eyeballs.
The cecal contents of the mice were collected and stored at −80 ◦C to subsequently analyze
SCFAs and composition of intestinal microflora. Homeostasis model assessment insulin
resistance index (HOMA-IRI) was estimated following the standard protocol. The formula
for calculating HOMA-IRI using the serum insulin values is as follows: HOMA-IRI: FIN
(mU/L) × FBG (mmol/L)/22.5. Standard assay kits were used to detect several biological
indicators including GSP, GLP-1, IL-6, and TNF-α in the sera. Similarly, LDL-C, TC, HDL-C,
and TG levels in the liver were determined.

2.5. Histopathological Analysis

Liver, cecal, and pancreatic tissues were fixed in 4% paraformaldehyde. Subsequently,
fixed tissues were embedded in paraffin blocks and cut into 4 µm thick sections using a
sectioning machine, followed by staining with hematoxylin-eosin (H&E) and treatment
with xylene to obtain transparent sections. These sections were imaged under an optical
microscope (Nikon, Tokyo, Japan).

2.6. Quantification of SCFAs

Cecal contents (100 mg) were diluted in 2 mL of distilled water to obtain a slurry, and
0.5 mL of H3PO4 and 1 mL of diethyl ether were added to it. The slurry was centrifuged at
4 ◦C and 7000 rpm for 10 min after vortexing for 4 min. A 0.22 µm microporous membrane
was used to filter the organic phase. Gas chromatography (GC–MS; Agilent-8860, Santa
Clara, CA, USA) was used to synthesize and determine concentrations of various SCFAs in
organic fractions.

2.7. Sequencing of Cecal Microflora

The bacterial 16S rRNA was amplified using the universal primer pairs for the V3–V4
region, 806R and 341F, using the bacterial genomic DNA extracted from cecal contents. The
Illumina TruSeq DNA PCR-Free Sample Preparation Kit was used to construct bacterial
16S rRNA gene sequencing libraries. Novogene Co., Ltd., Beijing, China performed high-
throughput sequencing on the Illumina NovaSeq PE250 platform. The parameters were
determined using the Qiime software (ver. 1.9.1); alpha diversity (Shannon, Simpson
indexes) was estimated, and the “ggplot2” package was utilized to draw a cumulative box
chart of species. LDA Effect Size (LEfSe) analysis was performed to estimate the relative
abundances of gut microbiota between groups (p < 0.05, LDA > 3.0) and identify statistically
significant microbiota genera for subsequent correlation analysis.
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2.8. Statistical Analysis

One-way analysis of variance with Tukey’s correction was performed. Mean and
standard deviation (SD) are presented for all experiments. p < 0.05 was defined as a
statistically significant difference.

3. Results and Discussion
3.1. Characterization of LJOO Polysaccharides

The FT-IR spectra recorded at 4000–500 cm−1 were used to determine the structure
of LJOO (Figure 1A). A strong absorption peak at 3424.79 cm−1 can be attributed to the
O–H stretching of the sugar residues. The absorption peak at 2931.47 cm−1 (within the
range of 3000–2800 cm−1) indicates the stretching of the methyl or methylene C–H bonds
of the sugar residues. Similarly, the absorption peak at 1641.70 cm−1 indicates the stretch-
ing vibrations of deprotonated carboxyl groups (COO–) and C–H bonds. The absorption
peak at 1148.92 cm−1 is indicative of the stretching of C–H bonds, a distinguishing finger-
print of oligosaccharides. Absorption peaks resulting from the stretching of S–O–S and
C–O–S are at 620.83 cm−1 and 977.46 cm−1, respectively. Taken together, LJOO mainly
comprises fucoidan, glucosamine hydrochloride, rhamnose, glucose, xylose, mannose,
and mannuronic acid, in a molar ratio of 0.730:0.014:0.157:0.022:0.017:0.019:0.042. The
functional activity of polysaccharides depends on their structural characteristics, such as
the sulfation degree, types of monosaccharides, glycosidic branching, and distribution of
molecular weights (Figure 1B) [5]. In this study, the molecular weights of LJOO fractions
were determined using the GPC-RI-MALLS technique, and the average molecular weight
(Mw) of LJOO was found to be 6.366 kDa (Figure 1C,D).

3.2. LJOO Polysaccharides’ Effects on the Glucose Metabolism of T2DM Mice

The characteristics of T2DM include disrupted insulin and glucose metabolism, lead-
ing to insulin resistance and hyperglycemia, respectively [12]. Measurement of FBG is a
strong and intuitive indicator for assessing the control of blood glucose concentrations
by LJOO in diabetic mice. FBG levels in the diabetic group at week 0 were significantly
higher than those in the NC group (p < 0.01), with concentrations exceeding 11.0 mmol/L,
indicating a successful establishment of the T2DM model. Following two weeks of LJOO in-
tervention, the MET and LJOO groups showed a decrease in FBG concentrations compared
to the Model group, but did not reach statistical significance. However, by the fourth week,
FBG concentration had significantly decreased in both groups except for the NC group, indi-
cating a certain control effect of LJOO on blood glucose levels (Figure 2A). OGTT, which is
performed to assess glucose tolerance, is a major diagnostic tool for diabetes. Blood glucose
concentrations in all groups increased sharply after oral glucose administration, reaching a
peak within 30 min, and gradually decreasing thereafter, returning to pre-glucose levels
after 2 h. FBG levels in the Model group were significantly greater compared to those in
the NC group at indicated time points, while the values in the other experimental groups
lay in between those of the two groups (Figure 2B), indicating that the development of
T2DM leads to impaired glucose tolerance in mice but there is a certain degree of recovery
after intervention with MET and LJOO. The corresponding area under the curve (AUC)
comprehensively details the changes in blood glucose levels. AUCs were compared with
the corresponding values in the Model group, and both the MET and LJOO groups showed
significantly lower values (p < 0.01) (Figure 2C). GSP effectively indicates the average blood
glucose levels in mice in the last 1–2 weeks, unaffected by temporary fluctuations in blood
glucose concentrations. GLP-1 has a glucose-dependent hypoglycemic effect [13]. The
LJOO group showed reduced levels of GSP. Compared to the Model group, the LJOOL
and LJOOH groups showed a significant increase in GLP-1 concentrations in the serum
(p < 0.01) (Figure 2D,E). LJOO could induce high levels of GLP-1.
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position; (C) absolute molecular weight analysis; (D) the homogeneity of LJOO. Abbreviations:
fucoidan—Fuc, arabinose—Rha, N-Acetyl-D-Galactosamine hydrochloride—GalN, N-Acetyl-D-
Glucosamine hydrochloride—GlcN, xylose—Ara, glucose—Glc, galactose—Gal, xylose—Xyl, N-
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curve indicates the multi-angle laser light scattering signal, where the scattering intensity is di-
rectly proportional to the molecular weight and size of the compound; the scattered line depicts the
molecular weight obtained from fitting the two signals. dRI: differential refractive index detector.

The HOMA homeostasis model utilizes the correlation between FBG and FINS levels
as an indicator of the equilibrium between glucose metabolism and insulin secretion [14].
HOMA-IRI was employed for the assessment of insulin resistance [15]. Both LJOOL and
LJOOH significantly reversed high HOMA-IRI levels due to a high-fat diet and streptozo-
tocin (p < 0.01) (Figure 2F). H&E staining analysis of pancreatic tissue sections accurately
and visually depicts the distribution of islet cells and the level of insulin secretion. The
structure of pancreatic cells was found to be intact and clear in all groups, and the yellow-
circled area in the NC group indicated the region of pancreatic islet cells, distributed in a
cluster. The islet region in the Model group was significantly smaller with blurred borders
unlike that in the NC group. Compared with the Model group, the islet areas in the MET
and LJOO groups were significantly larger, and the whole islet structure was complete and
better clustered (Figure 2G).

3.3. LJOO’s Effects on Liver Histopathology and Lipid Metabolism of T2DM Mice

Disturbed glucose metabolism in T2DM mice exacerbates liver tissue injury and re-
sults in altered liver function-related indices (LDL-C, TG, TC, and HDL-C) [16]. Compared
with the NC group, hepatic LDL-C, TG, and TC concentrations were significantly higher
(p < 0.01), while those of hepatic HDL-C were significantly lower (p < 0.05) in the Model
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group (Figure 3A). MET effectively lowered cholesterol, TC, TG, and LDL-C. The
200 mg/kg dose administered in the LJOOH group regulated TC, TG, and LDL-C levels
more favorably, evidenced by significant alleviation by 77.87%, 66.23%, and 42.08%, re-
spectively, after 4 weeks of treatment, in comparison with the Model group (p < 0.01). To
further investigate the effect of LJOO, the fat in mouse livers was assessed by H&E staining
(Figure 3C). At 400× magnification, hepatocyte gaps appeared larger, cells were loosened,
and several cells were ruptured or underwent autolysis and necrosis; the number of lipid
droplets in the liver was significantly greater in the Model group than that in the livers of
mice in the NC group, while it was significantly lower in the LJOO group in comparison
with the Model group, indicating that LJOO inhibited the accumulation of fat in the livers
of mice. Taken together, the results indicate that LJOO can play a certain lipid-lowering
role and prevent the formation of fatty liver.
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3.4. LJOO’s Effects on Cecal Histopathology and Anti-Inflammatory Molecules in T2DM Mice

The elevation of specific inflammation markers, such as NF-κB, IL-6, TNF-α, and
IL-10, plays an integral role in metabolic disorders. IL-6, TNF-α, and NF-κB can alter
insulin sensitivity by stimulating crucial steps in the insulin signaling cascade [17]. Chronic
inflammation is intimately linked to various diseases, including diabetes, atherosclerosis,
and cancer. Natural polysaccharides exert anti-inflammatory effects [18]. After 4 weeks
of treatment, serum IL-6 levels were significantly enhanced in the Model group than in
the NC group (p < 0.01), while the reverse was observed for IL-10 concentration (p < 0.01).
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Serum TNF-α, NF-κB, and IL-6 levels were significantly lower in the MET, LJOOL, and
LJOOH groups than in the Model group (p < 0.01), while significantly increased serum
IL-10 expression (p < 0.01) was found compared to the Model group (Figure 3B). Taken
together, LJOO exerted certain anti-inflammatory effects on T2DM mice. H&E staining
of the cecum (Figure 3D) showed that the outer membrane of the cecal tissue, muscle
mucosa, and villi were intact and clear in the NC group, and the inflammatory granulocyte
infiltration in the intestinal mucosa and the destruction of the villi structure were more
severe in the Model group than in the NC group. After 4 weeks of LJOO treatment, the
number of villi in the LJOOH group increased significantly and were arranged in an orderly
pattern. LJOO intervention conferred a protective effect against T2DM—induced intestinal
inflammation. Huang et al. [19] reported that a polysaccharide extracted from the fruit
body of Sanghuangporus vaninii could alleviate hyperglycemia and hyperlipidemia in mice
with T2DM by exerting anti-inflammatory effects, and our findings are consistent.
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3.5. LJOO’s Effects on SCFAs Concentrations in the Cecum

Gut bacterial metabolites such as SCFAs affect immune cells and the gut. They may
serve as promising targets both in clinical treatment and the development of medications
for diabetes [20]. SCFAs include acetic, isobutyric, butyric, propionic, valeric, and iso-
valeric acids. The contents of propionic, isobutyric, and valeric acid in the NC group
were significantly enhanced than those in the Model group (p < 0.01) (Figure 4). After
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administrated of LJOOH for 4 weeks, the concentrations of propionic, isobutyric, butyric,
and isovaleric acid concentrations were significantly higher than those in the Model group
(p < 0.05), demonstrating that LJOO significantly upregulated SCFAs production by the
gut microbiota.
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3.6. LJOO’s Effects on Cecal Contents’ Compositions

The gut microbiota in humans is characterized by a degree of stability and diver-
sity [21]. Abundant empirical and converging evidence supports the notion that gut
microbiota plays a causal role in the regulation of glucose homeostasis [22]. Alpha di-
versity demonstrates microbial community diversity within a sample [23] (Figure 5A).
Compared to the mice in the NC group, Shannon and Simpson indexes in the Model
group reduced markedly while, in comparison with the Model group, LJOO administration
caused a significant increase in gut microbiota diversity, as evidenced by higher values
of the Shannon and Simpson indexes. Enhanced microbial richness and diversity were
demonstrated by principal coordinate analysis (PCoA) for beta diversity, which compares
the microbial community composition among samples [24]. The overall structure of the gut
microbiota was analyzed by PCoA (Figure 5B), which demonstrated marked changes in the
gut microbial composition following MET and LJOO treatment. The findings suggest that
T2DM significantly alters the structure of the intestinal microflora, while LJOO potentially
alleviates these effects.

The relative abundances of bacterial species were examined at both the phylum and
genus levels to evaluate alterations in the microbial community. The phylum level was
dominated by Bacteroidetes, Firmicutes, Proteobacteria, Verrucomicrobia, and Actinobacte-
ria (Figure 5C). A primary cause that underlies metabolic disorders and insulin resistance
is the rise in the F/B value. The F/B ratio is elevated in patients with T2DM [25]. The
F/B values in the NC, MET, LJOOL, and LJOOH groups were 1.63, 0.98, 1.23, and 1.07,
respectively, all significantly lower than the ratio in the Model group at 5.83 (p < 0.01)
(Figure 5D). At the genus level, Lactobacillus, Alloprevotella, Alistipes, Desulfovibri, Candi-
datus Saccharimonas, Dubosiella, Akkermansia, Helicobactera, and Bacteroides were dominant.
The abundances of Lactobacillus and Agathobacter increased while those of Alloprevotella,
Akkermansia, Ruminiclostridium, Dubosiella, Alistipes, and Bifidobacterium decreased due to
T2DM and, after LJOO treatment, the abundances showed some recovery (Figure 5E). The
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proportion of Lactobacillus in diabetic mice is known to be higher than that in the normal
mice, consistent with the results of this study [26].
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To further assess LJOO intervention’s effects on the representative microbiota in di-
abetic mice, LEfSe was employed to conduct genus-level linear discriminant analysis
(LDA ≥ 3.0). Compared across different groups (NC, Model, MET, LJOOL, LJOOH), the
results of LDA revealed 20 discriminant features at the level of the genus (Figure 5F). The
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five representative bacteria in the NC group were Dubosiella, Enterorhabdus, Faecalibaculum,
Anaerotruncus, and unidentified Enterobacteriaceae. One representative bacteria of the Model
group was Lactobacillus. Therefore, T2DM mice experienced alterations in gut dysbiosis
and the composition of their intestinal microbiota. Akkermansia, Bifidobacterium, Arcobacter,
Fusibacter, and Algoriphagus genera predominated among the gut microbiota of the LJOOL
group, and concomitantly, Parabacteroides, Weissella, and Pseudomonas played a vital role in
the LJOOH group. Parabacteroides and Algoriphagus belong to Bacteroidetes, and Weissella
and Fusibacter belong to Firmicutes. Commonly reported findings indicate that Akkermansia
and Bifidobacterium genera are negatively associated with T2DM [3]. Parabacteroides con-
tribute to disease development including diabetes, obesity, inflammatory bowel syndrome,
and autoimmune disorders [27]. Weissella has probiotics properties and produces several
bioactive molecules including biogenic amines, bacteriocins, folate, and enzymes, among
others [28]. Taken together, treatment with LJOO increased the abundance of dominant gut
bacteria in mice, which may explain why LJOO helps lower blood sugar.

3.7. LJOO’s Effects on the Metabolic Functions of Cecal Contents

Using Tax4Fun, functional predictions for the microbial communities in each group
were made. Tax4Fun is based on the 16S Silva database that is used for the functional
prediction of gut samples with high accuracy [29]. By comparative analysis using the
KEGG (level 2) database, metabolic functions of the gut microbiota across groups were
analyzed. Given the annotated results from the database, a t-test differential analysis was
simultaneously performed (Figure 6). Functional modules differed between NC and Model
groups (p < 0.05), including carbohydrate metabolism, replication and repair, amino acid
metabolism, and lipid metabolism. Fourteen significant (p < 0.05) and differential functional
modules between the Model and LJOOL groups were identified, mainly including the
biosynthesis of other secondary metabolites, endocrine and metabolic diseases, immune
system, and cardiovascular diseases. The functional module related to cardiovascular
diseases was significant and differential in the Model group compared with the LJOOH
group (p < 0.05). Seventeen differentially functional modules were statistically significant
(p < 0.05) between the Model and LJOOH groups. Cardiovascular diseases, including lipid
and atherosclerosis and diabetic cardiomyopathy pathways, are closely associated with
T2DM. These results hint potential mechanism of the beneficial effect of LJOO interven-
tion through the regulation of endocrine, metabolic, and cardiovascular diseases induced
by T2DM.

3.8. Correlational Analysis

To better illustrate the hypoglycemic effect of LJOO, a Spearman correlation analysis
was performed to examine the possible associations between gut bacterial abundance, host
biochemical markers, and SCFAs concentrations (Figure 7A). The microbes belonging to
Bifidobacterium and Alloprevotella were negatively correlated with FBG, AUC, GSP, HOMA-
IRI, liver TC, liver TG, liver LDL-C, IL-6, NF-κB, and TNF-α levels, but were positively
correlated with SCFAs levels. In contrast, the relative abundance of Lactobacillus, enriched
in the Model group, depicted an opposite correlational trend with SCFAs and various
biochemical markers. Bifidobacterium consists of anaerobic Gram-positive bacteria and
constitutes a predominant genus within the gut microbiota that is important in promot-
ing health-related properties [30]. Bifidobacterium, with probiotic properties, benefits host
health, and some of its strains regulate SCFAs metabolism and the gut microbial composi-
tion [31]. Wei et al. [32] reported that intermittent administration of a tryptophan-deficient
diet to T2DM mice can increase the relative abundance of Alloprevotella in the mouse in-
testines, thereby improving symptoms of hyperglycemia. LJOO could improve T2DM by
modulating the relative abundances of Bifidobacterium and Alloprevotella and regulating
SCFAs levels.
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Correlational network and hierarchical clustering were visualized to examine the
associations between biochemical markers, genera, and SCFAs (|r| > 0.5 and p < 0.05)
(Figure 7B). Dubosiella belongs to the family Erysipelotrichidae and has one known species,
Dubosiella newyorkensis found in the gut microbiota of mice [33]. There was an observed
increase in Dubosiella after feeding on a high-fat diet [34]. It correlates positively with body
weight gain and negatively with fecal SCFAs, suggesting its potential involvement in the
progression of gut microbiota dysbiosis [35]. The LJOO (LJOOL and LJOOH) groups also
showed fewer pathogenic Dubosiella with strong and positive correlation with liver TC,
whereas a significant and negative association with the levels of butyric acid, isovaleric acid,
and propionic acid. The elevated presence of Dubosiella could contribute to the development
of hyperlipidemia and hyperglycemia. In previous studies, similar results were reported,
wherein an increase in Dubosiella was observed in mice fed a high-fat diet [36].

4. Conclusions

We successfully isolated low molecular weight polysaccharide fractions from Laminaria
japonica extracts. Results from animal experiments indicated that LJOO potentially benefits
the improvement in the levels of FBG, AUC, HOMA-IRI, GLP-1, and inflammatory factors,
along with hepatic lipid metabolism in mice induced by a high-sugar and high-fat diet.
LJOO regulated intestinal flora composition, enriched the diversity of intestinal flora, and
increased cecal SCFAs concentrations. Moreover, the results of 16S sequencing based on
intestinal flora suggest that LJOO’s regulatory effect on blood sugar levels involves multiple
metabolic pathways. However, the targets and mechanism of LJOO action in glucose and
lipid metabolism need to be validated in further experiments.
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