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Abstract: In this study, the possible solubility properties and water-holding capacity mechanism
of edible bird nest (EBN) were investigated through a structural analysis of soluble and insoluble
fractions. The protein solubility and the water-holding swelling multiple increased from 2.55% to
31.52% and 3.83 to 14.00, respectively, with the heat temperature increase from 40 ◦C to 100 ◦C. It
was observed that the solubility of high-Mw protein increased through heat treatment; meanwhile,
part of the low-Mw fragments was estimated to aggregate to high-Mw protein with the hydrophobic
interactions and disulfide bonds. The increased crystallinity of the insoluble fraction from 39.50% to
47.81% also contributed to the higher solubility and stronger water-holding capacity. Furthermore,
the hydrophobic interactions, hydrogen bonds, and disulfide bonds in EBN were analyzed and
the results showed that hydrogen bonds with burial polar group made a favorable contribution to
the protein solubility. Therefore, the crystallization area degradation under high temperature with
hydrogen bonds and disulfide bonds may be the main reasons underlying the solubility properties
and water-holding capacity of EBN.

Keywords: edible bird nest; hydrophobic interactions; crystallization area; solubility properties;
water-holding capacity

1. Introduction

Edible bird’s nest (EBN), the swiftlet’s nest, is a kind of natural food product produced
from the saliva of swiftlets of the Aerodramus species. EBN has been regarded as a high-
grade health food and the choice of functional food as a traditional Chinese medicine for
its nutritional and therapeutic values in ancient China. The health benefits [1] related to
EBN consumption, such as anti-cough, skin-whitening, nourishing lungs and resolving
phlegm, blood circulation, and improving brains and bodies, have attracted considerable
attention. EBN extract has been used as one of the popular ingredients in foods, drinks, and
nutraceutical products. Currently, EBN is basically purchased as a health food supplement
for its high protein and sialic acid content in Asia, especially in China and Malaysia [2],
and traded worldwide after harvesting or in processed form.

Proteins, especially glycoproteins with hydrophilic and polar characteristics [2], were
found to be the major component of EBN, contributing up to 60% by weight [3]. On the one
hand, EBN proteins show a strong water-holding capacity, with swelling multiples of 5.28 to
8.66 after soaking in 60 ◦C water for 14 h [4]. The strong water-holding capacity maintains
the more favorable texture that ensures the quality and consistency of EBN products for
customers to taste, such as instant EBN congee, EBN beverages, etc. On the other hand,
the poor solubility and low extractive rate of EBN have been a concerning obstacle for
further structural research and soluble mechanism exploration in the extraction process.
It was reported that the extraction yield of the EBN protein increases under temperatures
between 60 ◦C and 80 ◦C. However, the extraction yields were generally below 20% under
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different heating methods, and higher temperatures produced an incomplete break-down
of complex proteins [5].

In order to increase the solubility and to further investigate the structural character-
istics of EBN, different extraction methods have been applied to extract most of the EBN
soluble fraction, while other components remain in the insoluble fraction [5]. According to
the traditional consumption method, EBN requires softening by soaking in water for hours
and was then heated with distilled water to 60–100 ◦C and the solubility of the protein
was about 37–60% [6]. Moreover, an over-stewing method was modified to enhance the
solubility of EBN in water, but the extracted protein was mainly denatured and remained
as large proteins [7]. Several other extractants have been employed for the extraction,
including salt, alkaline, acid, and enzymatic hydrolysis, but those are unsuitable to acquire
the valuable essence of EBN and the active component extractions [8]. Recent studies also
investigated that dynamic high pressure micro-fluidization (DHPM) treatment significantly
improved the solubility and had effects on the structural properties of proteins in the EBN
water-insoluble fraction [9]. However, due to its poor solubility and low extractive rate,
further structural research of EBN has reached a bottleneck [10] and protein sequences
deposited in the database still remain limited and lack technological advancements. Fur-
thermore, information on EBN’s solubility and water-holding capacity mechanism is not
currently available in the literature.

Consequently, an exploration of EBN’s solubility and water-holding capacity mech-
anism is of great demand. Based on the major components of EBN, we analyzed the
solubility properties and structural changes in correlation with the heat temperature from
soluble and insoluble fractions. Further discussions were combined with the comparison of
the crystallinity to clarify the changeable trend regarding the amorphous or semi-crystalline
region and crystalline region of the protein. Thus, this article puts forward an assumption
model of the soluble mechanism and possibly explains the reasons for the water absorption
and maintenance characteristics of EBN.

2. Materials and Methods
2.1. Materials and Chemicals

Dry edible birds’ nest samples (Aerodramus fuciphagus) originated from Indonesia
and were kindly donated by Xiamen Yanzhiwu Sinong Food Co., Ltd. (Xiamen, China).
Edible birds’ nest samples with a higher content of protein (66.18 ± 0.76%) were milled
by a high-speed universal crusher (SS-1022, Shengshun, Jinhua, China) and then passed
through a 120-mesh sieve. A sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) kit and protein marker were obtained from Bio-Rad (Hercules, CA, USA).
1-anilinonaphthalene-8-sulphonate (ANS) was obtained from Sigma-Aldrich Co., Ltd. (St.
Louis, MO, USA).

2.2. Preparation of Extracts of EBN Samples
2.2.1. EBN Extraction

Briefly, 1.0 g of sample was weighed accurately and mixed with distilled water (50 mL)
in the tube under the temperature of 40 ◦C, 55 ◦C, 70 ◦C, 85 ◦C, and 100 ◦C for 30 min, respec-
tively. Then, the samples were centrifuged at 16,000× g for 20 min, and the supernatants
and sediments were lyophilized for further experiments.

2.2.2. Protein and Sialic Acid Extraction Rate

Bradford protein assay was used to quantify the protein extraction rate of EBN samples,
and the absorbance was measured at 595 nm [11]. The sialic acid content was evaluated
based on using high-performance liquid chromatography (HPLC) (Waters 2695) with
ZORBAX SB-C18 column (4.6 mm × 150 mm, 5µm). The acetonitrile and water solution
(5:95) were used as a mobile phase, with a flow rate of 1.0 mL/min. A fluorescent detector
was used, with the excitation wavelength at 230 nm and emission wavelength at 425 nm [5].
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2.2.3. Water-Holding Capacity

The free water in the test tube was removed and the weight and volume of the bird’s
nest after water absorption and swelling were recorded. The water-holding weighing
multiple and water-holding swelling multiple were calculated, and the average of three
replicates was taken.

Water-holding weighing multiple= Water swelling weight/sample dry weight (1)

Water-holding swelling multiple= Water swelling volume/sample dry weight (2)

2.3. Soluble Compositions Analysis
2.3.1. SDS-PAGE Analysis

SDS-PAGE was carried out according to the methods described by Siti Najihah Zuke-
fli [12] with slight modification. Sixty microliters of protein extract (8 mg/mL) was mixed
with 20 µL of SDS sample buffer with 1% β-mercaptoethanol and then heated in a 100 ◦C
water bath for 8 min. Then, the samples were separated using 5% separating gel and
10% stacking gel with a constant voltage of 200 V for 30 min for lectrophoretic analysis.
The protein marker with a broad range molecular weight from 10 to 250 kDa was used to
estimate the molecular weight of soluble protein distribution under different temperatures.

2.3.2. Intrinsic Fluorescence Spectroscopy Analysis

Intrinsic fluorescence spectroscopy was performed according to the method of Liu
with slight modifications [13]. All samples were diluted to the protein concentrations of
0.1 mg/mL using phosphate buffer (pH 7.0, 10 mmol/L). The samples were excited at
280 nm, and the emission spectra were recorded at 300–500 nm with a constant slit width
of 5 nm for both excitation and emission.

2.3.3. Surface Hydrophobicity Analysis

Surface hydrophobicity (S0) was determined by the method of Sha Huang [14] by
assessing fluorescence intensity with fluorescence probe 8-anilino-1-naphthalene sulfonate
(ANS). A series protein concentration of 4-mL EBN extractions (0.5, 1.0, 1.5, 2.0, 2.5, 3.0,
3.5, 4.0 mg/mL) were dissolved in 20 mmol/L phosphate buffer (pH 7.4) and quickly
mixed with 20 µL of ANS solution (8.0 mmol/L in 20 mmol/L phosphate buffer, pH 7.4),
respectively. Then, the fluorescence intensity was measured after 2 min by F-7000 spectro-
fluorometer at 365 nm (excitation wavelengths) and 520 nm (emission wavelengths). The
constant excitation and emission slit were kept 5 nm. The slope of the fluorescence intensity
against protein concentration (mg/mL) plot (calculated by linear regression analysis) was
regarded as the number surface hydrophobicity.

2.3.4. Secondary Structure Analysis

The circular dichroism spectroscopy (CD spectra) values of the samples were recorded
using a Chirascan V100 machine (London, UK). The EBN extract (300 µL) with a concen-
tration of 0.2 mg/mL was placed inside and the wavelength was set to 190–250 nm [15].
The relative content of secondary structure (α-helix, β-sheet, β-turn, and random coil) was
calculated using the CD Pro software.

2.4. Insoluble Compositions Analysis
2.4.1. Amino Acid Composition Analysis

The amino acids composition of insoluble EBN were analyzed by high-performance
liquid chromatography (HPLC). The liquid chromatographic conditions were referred to Li
et al. [15]. Each sample was weighed into a high-temperature hydrolysis tube and added
8 mL 6 mol/L HCl; then, N2 was used to seal the tube and it was hydrolyzed at 120 ◦C for
22 h. After that, NaOH solution was added to the sample to neutralize the hydrochloric
acid until the volume was 25 mL, filtered and precipitated by filter paper, and centrifuged
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at 10,000 rpm for 10 min. We took out 400 µL of the supernatant from each mixture to
determine the free amino acids.

2.4.2. Secondary Structure Analysis

The Fourier transform infrared (FTIR) spectrums were collected by Nicolet iS50 FT-IR
equipped with an attenuated total reflectance (ATR) adapter, using spectral resolution
4 cm−1 and 32 scans [16]. Approximately 20–30 mg of freeze-dried powder samples
was placed on the ATR sample compartment and compressed until the reflection was
obtained [17]. Spectra were gathered in reflectance mode between 4000 and 400 cm−1.
Three pellets’ measurements for each sample were performed and FTIR spectra were
displayed as reflection values. Band positions related to the secondary structure were
calculated using the OMNIC software to support the initial identification of band positions
by deconvolution.

2.4.3. Relative Crystallinity Analysis

X-ray diffraction (XRD) of the samples was conducted by an X-ray diffractometer
(Bruker, D8 PHASER, Berlin, Germany), with the powder X-Ray diffraction using a copper
tube operating at 40 kV and 200 mA and producing Cu-Kα radiation of 0.154 nm wave-
length. The diffraction data were collected from 2θ values (5◦ to 55◦) [18], where θ is the
angle of incidence of the X-ray beam of sample at a rate of 4◦/min and a step size of 0.03◦ at
room temperature. The relative crystallinity (RC) was calculated according to the following
equation [19]:

RC = (Ac)/ (Ac + Aa) × 100% (3)

where Ac refers to the crystalline peak area and Aa refers to the amorphous peak area. All
measurements were performed in triplicate.

2.5. Different Combination of Cross-Linking Agents

In order to explain the dissolving properties including strong water-holding capacity
and gain a better understanding of the mechanism of the dissolving progress based on bond
analysis, different combinations of cross-linking agents were added to the EBN samples,
supposing that single solutions of SDS, urea, and β-mercaptoethanol only interrupted
the intermolecular hydrophobic interactions, hydrogen bonds, and disulfide bonds, re-
spectively. After treatment under the temperatures of 55 ◦C and 85 ◦C, the samples were
prepared according to 2.2 to analyze the solubility.

2.6. Statistical Analysis

All analyses were performed in triplicate (n = 3) and the results were presented as the
mean ± SD. The significant difference in means of analyses was determined by analysis
of variance (ANOVA) and Duncan test with SPSS (V17.0, SPSS Inc., Chicago, IL, USA).
Additionally, the differences were considered significant when p < 0.05 was obtained

3. Results
3.1. Solubility and Water-Holding Capacity of EBN

The heating process played an important role in the solubility of the protein. At higher
temperatures, the hydrophobic amino acids are exposed to the environment, making the
electrostatic repulsion within the protein molecule increase, and the formation of insoluble
high-molecular-weight co-aggregates decreased, thereby resulting in an increased solubility
of the protein [20]. The solubility of protein and sialic acid as affected by temperature
increase from 40 ◦C to 100 ◦C is shown in Figure 1. As shown in Figure 1, the temperature
has a remarkable impact on the solubility. As the heat temperature increased, the protein
and sialic acid solubility increased from 2.55% to 31.52% and 0.05% to 26.86%, respectively,
with an obvious turning point at the temperature of 70 ◦C. Under low temperature, the EBN
protein molecule structure remains stable and represents low solubility. However, under
higher temperature, especially over 70 ◦C, the break of chemical bonds and formation of
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soluble protein aggregates occurs and probably explains the increase in water solubility [21],
which was further confirmed by the results of SDS-PAGE in the follow study.
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Figure 1. Influence of temperature on water-holding capacity and solubility of edible bird’s nest.

As a glycoprotein, EBN has a high water-holding capacity. The effect of heat treatment
on the water-holding weighing multiple and swelling multiple were investigated and the
results are shown in Figure 1. It was observed that the water-holding weighing multiple and
swelling multiple of EBN were affected by temperature as well. The water-holding capacity
of EBN also increased during heat treatment, which consequently resulted in the increase of
weighing and swelling multiple. The results were consistent with the trend of solubility. As
the heat temperature increased from 40 ◦C to 100 ◦C, the water-holding weighing multiple
and swelling multiple increased from 3.83 to 13.67 and 3.83 to 14.00, respectively. It is a
common practice to use heat treatments to modify the functional properties of proteins [22].
Proper thermal denaturation of EBN proteins possibly affects interaction with water as
well as promotes the solubility without further protein aggregation or coagulation [23].

3.2. Structure Analysis of EBN Soluble Fraction
3.2.1. SDS-PAGE Analysis

The composition of soluble EBN protein under different heating temperatures was
analyzed using SDS-PAGE under reducing conditions (+β-mercaptoethanol) and the results
are shown in Figure 2. The molecular weight distribution of soluble fractions was observed
with a wide molecular weight (Mw) ranging from 10 to 250 kDa. It generally consisted
of two subunits from 37 kDa to 50 kDa that can be cleaved into low-Mw fragments and
two subunits from 100 kDa to 150 kDa that can be cleaved into high-Mw fragments. As
shown in Figure 2, the protein banding patterns among the different temperature-heated
samples were similar; the reported protein band of 43 kDa, 50 kDa, 108 kDa, and 128 kDa
were all observed. However, the intensities of the protein bands of high molecular weight
(108 kDa and 128 kDa) gradually increased with the temperature increase process. This
result may be attributed to the aggregation of the soluble low molecular weight (43 kDa and
50 kDa) proteins and/or the increasing solubility of high molecular weight proteins at high
temperature. A similar phenomenon was also observed [24] and suggested a certain degree
of intermolecular disulfide bond cross-linking might result from the glycation process [25].

Further investigation was carried out through different cross-linking agents to verify
the contribution of hydrophobic interactions, hydrogen bonds, and disulfide bonds to
protein stability. The electrophoresis of the extracted EBN proteins under the temperatures
of 55 ◦C and 85 ◦C are shown in Figure 3. It was observed in both a and b that in lane
3, re-heated at 100 ◦C for 30 min, there existed large molecular weight protein-protein
compounds that were unable to penetrate the pores of the separating gel. However,
samples with SDS and β-mercaptoethanol solution presented a certain depolymerization of
larger molecular weight protein-protein compounds into smaller molecular weight protein
subunits. This indicated that the protein structure of EBN was mainly supported by the
hydrophobic interactions and disulfide bonds, following by hydrogen bonds [26].
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Figure 3. The SDS-PAGE of extracted protein ((a) was 55 ◦C and (b) was 85 ◦C) re-heated at 100 ◦C
for 30 min. 1 were marker; 2 were the extracted proteins; 3 were the extracted proteins re-heated at
100 ◦C; 4, 5, and 6 were the extracted proteins re-heated at 100 ◦C with 1% SDS, 8 M urea, and 1%
β-mercaptoethanol, respectively.

3.2.2. Intrinsic Fluorescence and Surface Hydrophobicity (S0)

The number of tryptophan residues and their microenvironment can be estimated
through the intrinsic fluorescence value [27]. The effect of heat treatment on the conforma-
tional transformation and tertiary structure of soluble EBN were further characterized by
intrinsic fluorescence and the results are shown in Figure 4A. As the temperature increased,
the peak values (λ max) of the samples were decreased with a blue shift about 15 nm at the
maximum emission fluorescence wavelength. The significant blue shift indicated the signif-
icant structural modifications owing to the heat treatment, which can unfold the protein,
and the introduced glucose residues that may affect the polarity of protein. Consequently,
the micro-environmental non-polar chromophore of the aromatic amino acid inside the
protein was enhanced and further confirmed the significant structural modifications during
heat treatment [28]. A similar conclusion was reported by Qunyan Fan [9] to explain the
blue shift resulting from conformational rearrangement of EBN proteins.
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S0 is known as a vital factor that influences solubility and is usually used to evaluate
the lever of hydrophobic amino acid residues on protein surfaces and characterize the
conformation changes in proteins. Hydrophobic core and distribute hydrophilic tend to
be buried in proteins’ native structure and charged amino acids on the surface [27]. The
H0 of the soluble EBN proteins extracted at different temperatures were measured and
the results are shown in Figure 4b. As shown in Figure 4b, the S0 values increased from
74.1 to 849.0 when the heat temperature increased from 40 ◦C to 100 ◦C, with an obvious
turning point at 70 ◦C. These results are consistent with the change trend of solubility and
indicated that more and more hydrophobic groups of EBN were exposed by the heating
treatment. It may correspond to the surface exposure of hydrophobic domains originally
inside the proteins, which causes protein unfolding and aggregation, thereby increasing
surface hydrophobicity [29] and presenting more structural changes of the EBN protein
and is possibly related to the improved solubility [30].

3.2.3. CD Spectroscopy Analysis

The secondary structures of soluble EBN proteins in solution were investigated using
CD spectroscopy and the results are shown in Figure 5. As shown in Figure 5, the CD
spectra of soluble EBN protein samples displayed negative peaks at approximately 212 nm.
The increase of heating temperature resulted in a slight increase of the observed negative
molar ellipticity, which was considered as an indicator of the loss of the corresponding
secondary structural elements [31]. Further results of the contents of secondary structural
elements were calculated using CD Pro software. Detailed data of α-helix, β-sheet, β-turns,
and random coil contents are listed in Table 1. It was noticed that among the secondary
structure contents, the α-helix increased from 8.50% to 33.80%, while the β-sheet decreased
from 31.90% to 15.90% after the heat treatment of EBN samples. An explanation could be
that the heating process possibly weakens the intermolecular interaction (i.e., the hydrogen
bands between hydrogen atoms of amide and oxygen atoms of carbonyl) [32] and results
in a reduction of β-sheet. These results were consistent with the FTIR measurements and
suggested that EBN extraction preserves the native structure with higher β-sheet contents.
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3.3. Structure and Crystallinity Analysis of EBN Insoluble Fraction
3.3.1. Amino Acids Analysis

It has been reported that the high degree of glycoproteins and the amount of hy-
drophilic amino acids may contribute to the solubility improvement during the heat
treatment. Consequently, the insights of the basic amino acid composition of the EBN
insoluble fraction were discussed to further explore the relationship with solubility [33].

The basic composition of EBN raw material amino acids are listed in Table 2. As a good
source of natural proteins, EBN contains all essential amino acids, among which the higher
content amino acids in EBN were aspartic acid and valine, with values of 5.31 g/100 g and
4.21 g/100 g, respectively. The most concentrated sulfur amino acid was cysteine, with a
value of 0.67 g/100 g, which might contribute to the formation of disulfide bonds during
heat treatment. A similar result was indicated by AHLAM ABDASLAM M ALI [34] who
also analyzed the major amino acids of EBN.

Table 2. Amino acid (AA) compositions (g/100 g) of the EBN insoluble fraction.

AA g/100 g Raw Material 40 ◦C 55 ◦C 70 ◦C 85 ◦C 100 ◦C

Asp 5.31 5.72 5.76 5.70 5.60 5.49
Glu 4.26 4.57 4.59 4.56 4.58 4.51
Ser 3.49 4.03 3.78 3.94 3.68 3.75
His 1.98 2.17 2.28 2.16 2.09 2.05
Gly 2.07 2.22 2.24 2.20 2.21 2.16
Thr 3.44 3.82 3.73 3.76 3.67 3.66
Arg 3.60 3.90 3.96 3.89 3.87 3.75
Ala 1.69 1.94 1.78 1.83 1.76 1.78
Tyr 3.04 3.44 3.52 3.43 3.36 3.23

Cys-s 0.67 0.77 0.69 0.76 0.86 0.61
Val 4.21 4.47 4.53 4.47 4.77 4.40
Met 0.55 0.55 0.55 0.03 0.82 0.56
Phe 3.46 3.75 3.79 3.73 3.86 3.60
Ile 1.85 1.97 2.00 1.96 2.07 1.93

Leu 3.84 4.15 4.16 4.13 4.06 4.01
Lys 2.09 2.30 2.29 2.29 2.72 2.23
Pro 3.97 4.28 3.23 4.22 4.03 4.13

Total 56.02 61.23 60.18 60.23 61.23 60.68

The components of proteins are important to explain the solubility behavior in so-
lutions because the hydrophobicity of amino acid side chains determines the protein’s
solubility [35]. The total amount of the EBN insoluble fraction’s amino acid compositions
under different extraction temperature was overall 60%. On the whole, there was no signif-
icant change in the major distributions of amino acids. The amounts of acidic amino acids
(Asp, Glu), alkaline amino acids (His, Arg, Lys), and aromatic amino acids (Tyr, Phe) have
no remarkable difference.

However, as shown in Table 2, most of the non-polar amino acids (Ala, Val, Met, Phe,
Ile, Leu, Pro), which accounted for over 20 g/100 g, existed in the insoluble fractions and
the heat treatment accelerated the soluble process of polar amino acids (Ser, Thr, Tyr, Cys,
Gly), which increased from 7.76 g/100 g to 12.57 g/100 g. In particular, changeable contents
of serine and glycine were observed, from 4.03 g/100 g to 3.68 g/100 g and 2.24 g/100 g
to 2.16 g/100 g, which can form rich intramolecular and intermolecular hydrogen bonds
with alanine, respectively. The soluble mechanism can promisingly be explained by the
interactions of solvents with proteins since the amino acid residues of proteins are exposed
to the environment during the soluble process [36].

3.3.2. FTIR Analysis

The secondary structure of insoluble EBN heat-treated samples was characterized by
using FTIR analysis. It has been reported that the FTIR peaks at approximately 1655 and
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1535 cm−1 were attributed to amide I and II bands, which were usually evaluated as the
most obvious spectral features of proteins [37]. It is observed in Figure 6a that the intensity
of the regions of 1650 cm−1 (C = O) and 1540 cm−1 (C-N) from amide I and II slightly
decreased with the increase of the heat temperature.
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The spectra in the wavenumber range of 1700–1600 cm−1 were analyzed by OMNIC
8.0 software to obtain the area of the resolved peaks and convert the information into
the secondary structure contents. The resolved peaks corresponded to the secondary
protein structures: α-helices (1646–1664 cm−1), β-sheets (1615–1637 and 1682–1700 cm−1),
β-turns (1664–1681 cm−1), and random coils (1637–1645 cm−1) [21]; the results of calculated
secondary structure contents are summarized in Figure 6b. The changes in these contents
indicate the changes in the secondary structure of the protein [38].

The secondary structure of the insoluble fraction of EBN was mainly composed of
β-sheets. With the increase of temperature, the content of β-sheets increased from 45%
to 49% and the content of α-helix decreased from 25% to 20%. It is estimated that the
hydrogen bond that stabilized the protein structure was broken and the EBN protein
unfolded; moreover, the content of ordered structures in the protein molecule decreased,
causing the molecular structure to loosen [39]. The heat treatment changed the protein
secondary structure by breaking the intermolecular hydrogen bonds and increasing protein
solubility.

3.3.3. Relative Crystallinity Analysis

X-ray diffraction is usually used for the quantitative determination of various parame-
ters for the characteristics without destroying the sample, and it was employed to examine
the structural phase of EBN insoluble fractions; the results are presented in Figure 7. Since
the EBN contains a high amount of protein, the X-ray diffraction pattern showed a broad
band at 2θ = 9.2◦ and 2θ = 20.3◦, which indicated the partially preponderantly crystalline
structure of the samples. As shown in Figure 7, the peak intensity of insoluble fractions
increased from 39.50% to 47.81% when the heat temperature increased from 40 ◦C to 100 ◦C,
which demonstrated the increase in the crystallinity of EBN during the heating process in
comparison with raw material.

On the one hand, the gradual increase of major peaks observed indicated that the in-
crease of temperature could induce the degradation of the semi-crystalline and amorphous
structure regions of EBN, thereby leading to a looser and smoother structure of protein,
which contributed to the increase in solubility [40]. On the other hand, a high degree of
crystallinity provided more opportunities for the insoluble fraction of proteins to bind more
water molecules, thus performing the stronger water-holding capacity, which is consistent
with the previous study in 3.1. The presence and intensity of these peaks is possibly related
to the diffraction of the amino acids of the protein surrounding the other functional groups
that contributes to making the material more amorphous or semi-crystalline in nature [41].
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A similar assumption was raised to suggest that the increase of the amorphous structure of
the system will increase the solubility of crystalline substances [13].
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3.4. Chemical Bond Analysis

Based on the above investigations of EBN soluble and insoluble fractions, it can be
concluded that hydrophobic and hydrogen bonding transformation mainly contribute to
the solubility of the protein [42]. Further research was conducted to analyze each specific
chemical bond based on the protein solubility, on the assumption that the single solution
of SDS, urea, and β-mercaptoethanol only interrupt the intermolecular hydrophobic inter-
actions, hydrogen bonds, and disulfide bonds, respectively. Two groups of samples were
analyzed under the heat temperatures of 55 ◦C and 85 ◦C to contrast the influence of heat
treatment on the interaction of different bonding.

Figure 8 showed the protein solubility of EBN samples extracted from different com-
bined buffer systems under 55 ◦C and 85 ◦C. Based on breaking specific intermolecular
chemical bonds, the solubility of EBN samples in different extraction solutions were ob-
served, which showed that the macroscopic structure of the protein was supported by
various chemical bonds [43]. It is clear to compare the specific chemical bond and mutual
interactions responsible for stabilizing the structure of extracted samples to analyze in
general according to the data of protein solubility in Figure 8. These indicated that in-
creasing temperature could enhance the interactions between hydrophobic interactions
and hydrogen bonds and between disulfide bonds and hydrophobic interactions but have
little influence on the effect of disulfide bonds. This is also supported by recent published
conclusions that the exposure of buried polar groups makes a favorable contribution to
protein stability and solubility, which might even be greater than the contribution of non-
polar group burial [44]. Consequently, hydrogen bonding and polar group burial make a
favorable contribution to protein stability, which also referred as the basis of the extraction
of other water insoluble proteins, such as silkworm silk and spider silk protein, due to the
existing hydrogen bonds in highly ordered β-sheet forms [45].
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Figure 8. Protein solubility of EBN samples extracted from different combined buffer systems. All of
the buffer system contained phosphate buffer solution. A, B and C were added 1% SDS, 8 M urea
and 1% β-mercaptoethanol, respectively. D was the combination of 1% SDS and 8 M urea. E was the
combination of 8 M urea and 1% β-mercaptoethanol. F was the combination of 1% SDS, 8 M urea and
1% β-mercaptoethanol.

3.5. Solubility and Water-Holding Capacity Mechanism Assumption

The possible solubility properties and water-holding capacity mechanism of EBN is
shown in Figure 9. It was estimated that the EBN protein can be divided into amorphous
region and crystalline region stabilized mainly by hydrogen bonding. The higher hydrogen
bonded EBN protein with higher crystalline implies a more condensed structure.
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Figure 9. Solubility and water-holding capacity mechanism assumption model of EBN.

At low temperature condition, the amorphous or semi-crystalline region of the protein
absorbed water with slight volume swelling and weaker hydrogen bonds were destroyed
easily, contributing to the solubility of low-Mw fragments (43 kDa and 50 kDa). Further-
more, at higher temperature, the crystallization region absorbed water to swell, and the
volume increased obviously. The crystallization region was destroyed and the solubil-



Foods 2023, 12, 688 12 of 14

ity of high-Mw fragments (108 kDa and 128 kDa) increased. Meanwhile, heat treatment
contributed to the reformation intermolecular hydrogen bond and the exposure of more
hydrophobic groups to form hydrophobic interactions and the re-crosslinking of cysteine
residues to form disulfide bonds, thus part of the low-Mw fragments aggregated to high-
Mw fragments of 108 kDa and 128 kDa.

4. Conclusions

In this study, the solubility properties and water-holding capacities were investigated
during heat treatment. The solubility and water-holding multiples increased with heat
treatment and the intensities of protein banding patterns at different temperature changed
during the increase process. For the soluble fractions, intrinsic fluorescence and surface
hydrophobicity results indicated that more hydrophobic groups of EBN were exposed.
Additionally, the secondary structure was analyzed through CD to observe a reduction of
β-sheet and an increase of α-helix. As for the insoluble fractions, most of the non-polar
amino acids (Ala, Val, Met, Phe, Ile, Leu, Pro) still existed and secondary structural results
from FTIR analysis revealed the breaking of more intermolecular hydrogen bond with the
increase of protein solubility. Furthermore, the increase of crystallinity during heat process
offered more chances to bind water molecule and resulted in the stronger water-holding
capacity. Further research was conducted to analyze each specific chemical bond based
on the protein solubility. Finally, the solubility and water-holding capacity mechanism
assumption concluded that hydrophobic interactions and disulfide bonds mainly contribute
to the aggregation process.
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