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Abstract: Bioactive compounds (BCs) are known to exhibit antioxidant, anti-inflammatory, and
anti-cancer properties by regulating the cellular redox balance and histone acetylation state. BCs
can control chronic oxidative states caused by dietary stress, i.e., alcohol, high-fat, or high-glycemic
diet, and adjust the redox balance to recover physiological conditions. Unique functions of BCs
to scavenge reactive oxygen species (ROS) can resolve the redox imbalance due to the excessive
generation of ROS. The ability of BCs to regulate the histone acetylation state contributes to the
activation of transcription factors involved in immunity and metabolism against dietary stress. The
protective properties of BCs are mainly ascribed to the roles of sirtuin 1 (SIRT1) and nuclear factor
erythroid 2–related factor 2 (NRF2). As a histone deacetylase (HDAC), SIRT1 modulates the cellular
redox balance and histone acetylation state by mediating ROS generation, regulating nicotinamide
adenine dinucleotide (NAD+)/NADH ratio, and activating NRF2 in metabolic progression. In this
study, the unique functions of BCs against diet-induced inflammation, oxidative stress, and metabolic
dysfunction have been considered by focusing on the cellular redox balance and histone acetylation
state. This work may provide evidence for the development of effective therapeutic agents from BCs.

Keywords: bioactive compounds; anti-inflammation; anti-oxidative stress; anti-metabolic syndrome;
cellular redox balance; histone acetylation

1. Introduction

Bioactive compounds (BCs) are nutritional agents with diverse potentials exhibiting
anti-inflammation, anti-oxidative stress, and anti-metabolic syndrome. The ability of BCs
to modulate biological and physiological conditions may derive from their chemical and
biological structures for favorable bioavailability and biochemical function [1,2]. The unique
chemical structures of BCs enable them to effectively quench reactive oxygen species (ROS)
for redox balance [2]. BCs have been demonstrated to control the expression of target genes
and proteins via regulating epigenetic modifications, including the regulation of the histone
acetylation state [3,4]. In redox signaling, inflammation, oxidative stress, and metabolism
are considered electron-transfer processes reliant on the electron transport chain (ETC) [5,6].
The transfer of electrons to the final acceptor of the oxygen molecule is required for ATP
synthesis. During several processes modulated by electron donors and acceptors, redox
balance and stability are directly related to the metabolism and immune responses [7,8]. A
sustainable and stable redox balance is essential for maintaining physiological pathways
within the cells [7].

The function of BCs influences epigenetic changes that affect DNA repair and cell pro-
liferation through the deacetylation of histones or non-histone proteins [9,10]. Depending
on the redox environments, the post-translational modifications of histones are available
in the N-terminal of core histone protein [10,11]. The alteration in histone acetylation
is controlled by the opposing actions of histone acetyltransferases (HATs) and histone
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deacetylases (HDACs) [4,9]. The modulation of acetyl moieties can affect metabolic re-
programming and immune response. The hyperacetylation of histones has been reported
to result in DNA damage, whereas hyperacetylated non-histone proteins increase ubiq-
uitination [1,3]. Hypoacetylation with HDACs led to the exacerbation of diseases, while
significant decreases in HDAC activity were found in patients with several diseases [11].
Histone deacetylation targeting the chromatin remodeling and its mobility resulted in the
control of genomic binding for DNA recombination and access for histone-DNA interac-
tions [12]. The coordination of epigenetic regulators is likely based on the redox state, as
moieties’ accessing and binding features depend on the electric charge.

The dietary stress-induced change of the redox state causes a highly oxidative condi-
tion due to the excessive generation and accumulation of ROS, leading to oxidative stress,
inflammation, and metabolic dysfunctions [2,13]. The oxidation state can be altered by sup-
plementing BCs with the ability to scavenge ROS and electrons and activate sirtuin 1 (SIRT1)
and nuclear factor erythroid 2–related factor 2 (NRF2), a master regulator of anti-oxidative
responses [5,6]. Dietary stress, i.e., excessive alcohol consumption and a high-fat or high-
glycemic diet, can cause alterations in glucose and lipid metabolism, leading to excessive
fat accumulation and the production of ROS and inflammatory cytokines [14–16]. These
metabolic signaling changes can alter cancers, liver diseases, diabetes, pancreatitis, and
atherosclerosis [17–19]. The dietary stress triggers toll-like receptors (TLRs) and promotes
the activation of nuclear factor-κB (NF-κB) or activator protein 1 (AP-1) by acetylation,
increasing inflammation [14,16].

SIRT1 and NRF2 are considered prime targets for edible BCs [20–22]. SIRT1, a class III
HDAC, is encoded in a nuclear-located gene with the largest N-terminal and C-terminal
domains among its seven families [11,23]. The activation of SIRT1 adjusts the redox state
to prevent inflammation, oxidative stress, and disorders by facilitating the positive feed-
back loop with NRF2 signaling [24]. SIRT1 is reported to promote the formation of the
SIRT1-NF-κB or SIRT1-AP-1 axis and inactivate target transcription factors by deacetyla-
tion [25,26]. Cellular stress caused by excessive alcohol, high-fat, or high-glycemic diet may
induce the inhibition of SIRT1 by the inhibitory protein, p53-acetylated peptides, forming a
pseudo-substrate for SIRT1 inactivation [27,28]. However, supplementing BCs favors the
interaction with SIRT1 to activate NAD+-regulatory elements in the C-terminal domain,
resulting in the activation of SIRT1 [29–31]. In mouse liver, high-fat diet-induced p53 acety-
lation and transcriptional activity resulted in a lower level of SIRT1 [32,33]. However, the
activation of SIRT1 by supplementing BCs repressed p53 activity by deacetylating it [27,28].
The deacetylation ability of SIRT1 activates farnesoid X Receptor (FXR) to promote the
transcription of the small heterodimer partner (SHP), resulting in the repression of p53 and
an increase in SIRT1 expression [34–36].

The present review summarized the current studies on the BCs exhibiting protective
effects against inflammation, oxidative stress, and metabolic dysfunction by regulating the
cellular redox balance and acetylation states of histone and non-histone proteins. Excessive
alcohol, high-fat, or high-glycemic diet was considered dietary stress for the induction of
the immune system and metabolic disorders. The results of this work can be utilized to
provide a platform for developing therapeutic interventions by employing BCs.

2. Regulation of the Cellular Redox Balance and Histone Acetylation State
2.1. Regulation of Cellular Redox Balance

The cellular redox state is determined by the balance of equivalents representing re-
duced and oxidized ions [7,13]. The conformational alterations due to the shift of the redox
state have been regarded to induce alterations in several physiological and pathological
conditions [37]. The imbalance of the reduction toward the oxidation state due to the
excessive generation of ROS and reactive nitrogen species (RNS) or the lack of antioxidants
and their inactivation result in inflammation and oxidative stress [38].

The redox state of inflammatory cells and tissues is caused by the acetylation and
oxidation state, as those states produce lots of electrons and free radicals, including ROS
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and RNS [13]. The energy production process, such as mitochondrial oxidative phosphory-
lation, generates metabolic intermediates and reduces equivalents. Electrons donated from
nutrients are transferred to reducing equivalents such as NADH and to oxygen via electron
carriers [39]. The electron transfer process is governed by redox states of the mitochondrial
TCA cycle and ETC [7]. Dietary stress may disturb the normal transport process of elec-
trons and reactive metabolites, leading to the imbalance of redox states for the induction of
inflammation, oxidative stress, and metabolic dysfunction. The regulation of the cellular
redox state is mediated by the cross-talk between NRF2 and NF-κB, the redox-sensitive
transcription factors [40]. The antioxidant transcription factor NRF2 can modulate NF-κB
activation by reducing ROS and inhibiting the degradation of the inhibitor of κB (IκB).
Moreover, the pro-inflammatory transcription factor NF-κB can increase the recruitment
of HDAC to the antioxidant response element (ARE) with the concomitant interference
of NRF2 transcription [40,41]. The ability of BCs to lower the oxidation state can regulate
detrimental oxidative conditions by scavenging electrons and ROS/RNS, activating NRF2
through SIRT1 activation as well as inhibiting NF-κB.

2.2. Regulation of Histone Acetylation State

Epigenetic alterations that regulate histone acetylation states have been found to dys-
regulate genes mediated by inflammation, oxidative stress, and metabolic disorders [3,11].
Controlling the histone acetylation can be an effective immune response and metabolic reg-
ulation against cellular and tissue dysfunction. Upon dietary stress, HATs are activated and
acetylate lysine residues within lysine-rich amino-terminal tails of the core histones, such
as H2A, H2B, H3, and H4 [10], which are easily modified [42]. Positively charged amino
residues facilitate the tight structure with DNA, which is usually negatively charged [4,43].
The positive charge of the histone tail is neutralized by acetylation due to the covering
of the negatively charged acetyl group (CH3CO-). Therefore, the tight structure between
DNA and histone proteins is broken, allowing chromatin to access other transcription
factors to meet the redox balance. However, the removal of the acetyl group from histone
maintains the positive charge, enhancing the tight conformation between DNA and histone
amino residues. In this circumstance, the chromatin mobility to access and bind to other
transcription factors is condensed and inactivated [3,4] (Figure 1).

In response to dietary stress, including excessive alcohol, high-fat, or high-glucose
diets, cells and tissues are acetylated, which may induce increased HDAC expression and
the activation of TLRs [44]. As dietary stress is forced to generate lots of electrons, higher
levels of ROS/RNS cause mitochondrial dysfunction and oxidative damage, i.e., lipid
peroxidation in the oxidative and acetylated states [45,46]. The transition of histones to the
acetylation state leads to the activation of NF-κB, a critical transcription factor in inflam-
mation [25,26]. An imbalance in the histone acetylation state can be restored with BCs by
deacetylation through the activation of their primary target, SIRT1. The post-translational
deacetylation by SIRT1 has been controlled in response to cellular stresses [23,47], including
excessive alcohol, high-fat, or high-glycemic diet.

The function of SIRT1 as a deacetylase is attributed to its various abilities to modulate
redox states [24,48]. To inhibit inflammation and oxidative stress, SIRT1 represses NF-κB
activation while activating NRF2, respectively (Figure 2).
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Figure 1. Role of bioactive compounds (BCs) in dietary stress-induced inflammation, oxidative stress,
and metabolic disturbances. The role of BCs in dietary stress can be divided into two categories. One
is directly scavenging or quenching reactive radicals, such as ROS, due to their conjugated double-
bond chemical structure. The other role is to activate biological systems through the activation of the
enzyme, SIRT1, and the transcription factor, NRF2. The function of SIRT1 is to activate forkhead box
protein O (FOXOs) while inactivating NF-κB to suppress inflammation. BC-induced NRF2 activation
prevents oxidative stress by activating antioxidants, including superoxide dismutase (SOD), catalase
(CAT), and glutathione peroxidase (GPX). BCs prevent inflammation, oxidative stress, and metabolic
disturbances through the activation of SIRT1 and NRF2.

SIRT1 has also been reported to activate the peroxisome proliferator-activated gamma
coactivator 1 (PGC1), FOXO, and peroxisome proliferator-activated receptors (PPARs),
leading to fatty acid oxidation and mobilization [23,49]. The deacetylation of FOXOs by
SIRT1 activates SIRT1 transcription in a FOXO1-dependent manner, which facilitates the
positive loop to maintain high levels of SIRT1 expression [50]. In the fasting condition,
the increased glucagon levels and cAMP signaling modulate the localization of the cAMP
response element-binding protein (CREB) to the nucleus and the binding with its co-
regulator CREB-required transcription coactivator 2 (CRTC2) [51,52]. The binding of the
CREB-CRTC2 complex to the promoter of SIRT1 induces the transcriptional activation
of SIRT1. Interestingly, the activated SIRT1 deacetylates CRTC2 for degradation and
represses gluconeogenesis, resulting in a metabolic shift from gluconeogenesis to fatty acid
oxidation [51]. Another SIRT1 activation process is driven by decreased insulin-protein
kinase B (Akt) signaling, which translocates FOXOs to the nucleus [49]. SIRT1 is activated
by FOXO1 through the direct binding of the FOXO element to the SIRT1 promoter [50].
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Figure 2. BCs activate SIRT1 for histone deacetylation, whereas dietary stress stimulates HAT for
histone acetylation. Histones are the major components of chromatin and assemble with DNA to form
nucleosomes. Dietary stress-induced HATs acetylate histone lysine residues, neutralizing the histone
positive charge and enabling inflammatory gene transcription. However, BC-activated SIRT1 removes
acetyl groups from histones, leading to chromatin condensation and the inhibition of inflammatory
gene transcription.

3. Diet-Induced Alterations of Redox Balance and Histone Acetylation State
3.1. Excessive Alcohol Use

Excessive alcohol use increases inflammation and oxidative stress in macrophages
such as murine RAW 264.7 cells and bone marrow-derived macrophages (BMDMs) due to
an increased acetylation state of NF-κB, an essential transcription factor for inflammatory
responses [30,31]. Alcohol metabolites, such as the acetyl group and ROS, are generated
during the cytosolic oxidation of ethanol to acetaldehyde and the subsequent mitochondrial
oxidation to acetate [53,54]. Alcohol has been reported to acetylate the lysine residues
of NF-κB, enhancing its nuclear translocation and thus increasing inflammatory gene
expression [25,55]. Chronic alcohol consumption has been demonstrated to alter the
intestinal microflora and its permeability, enhancing the release of lipopolysaccharide
(LPS) [56,57]. LPS enters the liver and activates the resident macrophages, Kupffer cells,
to release pro-inflammatory cytokines such as tumor necrosis factor α (TNFα). The LPS-
induced TNFα, in turn, promotes liver injury and disease [58,59].

Excessive alcohol consumption significantly represses the transcription and activation
of SIRT1. The alcohol or LPS-induced NADPH oxidase 2 (NOX2) enhances ROS genera-
tion [60,61], shifts the microenvironment to a hyperoxidative state, leads to oxidative stress,
and suppresses SIRT1 [62,63]. As nicotinamide adenine dinucleotide (NAD+) is a cofactor
of SIRT1, the profound reduction of NAD+ during alcohol metabolism may also affect the re-
markable inactivation of SIRT1 [64,65]. NAD+ has been noted as an essential coenzyme for
cellular energy metabolisms such as glycolysis, fatty acid oxidation, and alcohol metabolism
concerning the NAD+/NADH redox balance [64,66]. Excessive alcohol consumption
stimulates macrophages, a central component of the innate immune system, promoting
inflammation and triggering the switch to aerobic glycolysis [67,68]. ROS accumulation,
which leads to inflammation and oxidative stress, induces hypoxia-inducible factor 1α
(HIF-1α) activation for the metabolic switch toward glycolysis in macrophages [68,69]. The
activation of HIF-1α due to the acetylation by alcohol, in turn, increases the expression



Foods 2023, 12, 925 6 of 28

of downstream target genes for glycolysis, such as glucose transporter 1 (GLUT1) and
hexokinase 1 (HK1) [31,68]. Interestingly, alcohol also alters mitochondrial respiration in
that ethanol increases basal respiration, ATP production, and proton leak but decreases
maximal respiration and spare respiratory capacity in macrophages [67,70].

BCs, such as astaxanthin and nicotinamide riboside, have been demonstrated to in-
hibit alcohol-induced inflammation, oxidative stress, and metabolic disorders due to their
abilities to quench ROS and deacetylate the associated transcription factors through the
activation of SIRT1 [30,31]. SIRT1 activates the antioxidant transcription factor NRF2 [30,53]
and inhibits the activity of AP-1 through deacetylation, thereby repressing ROS-generating
enzymes, such as NOX2 and cyclooxygenase-2 (COX-2) [48,71]. SIRT1 also inhibits NF-κB
activity by suppressing its acetylation and nuclear translocation in alcohol-stimulated
macrophages [30,72]. Notably, alcohol induces the phosphorylation of FOXO3 and inacti-
vates the role of p53 binding. Furthermore, p53, the down-regulator of SIRT1, inhibits SIRT1
expression [24,47,73]. Alcohol-induced alterations in metabolic pathways, including glycol-
ysis and mitochondrial respiration, have also been restored by SIRT1 due to its deacetyla-
tion [70,74]. BCs can also support the roles of adiponectin, an adipocyte-driven protein, to
repress inflammation and alcoholic liver injuries by inhibiting LPS-induced TNFα produc-
tion in Kupffer cells and murine macrophages through SIRT1 activation [60,75].

3.2. High-Fat Diet

A high-fat diet induces oxidative stress and disrupts the balance of the redox state,
which affects inflammatory signaling [38]. Inflammatory pathways enhance ROS produc-
tion and promote the redox imbalance toward oxidative stress [8,76]. Under high-fat diet
conditions, there is a positive feedback loop between oxidative stress and inflammatory
signaling. The induction of inflammatory genes is ascribed to the acetylation states caused
by a high-fat diet since the acetylated state promotes the binding of chromatins to DNA for
transcription [76–78]. As an adaptive response to a high-fat diet, an obese status emerges
with an increased acetylation state and a concomitant decrease in HDAC1 [1,15]. A high-fat
diet results in the hyperplasia of adipocytes, the uncontrolled expansion of adipocytes,
and excessive fat accumulation in adipose tissue [79]. Excessive fat deposition inhibits the
adipocyte activity to control lipid metabolism and energy expenditure, leading to inflam-
mation, dyslipidemia, hypertension, cardiac and liver damage, and cancer [80,81]. The fat
stored as triglycerides (TG) in white adipose tissue can be converted to brown-like tissue
by inducing uncoupling protein 1 (UCP1) and simultaneously increasing energy expendi-
ture [82]. The fat conversion leads to excessive oxygen consumption in mitochondria [83,84],
consequently decreasing oxygen availability and resulting in reductive conditions.

A high-fat diet adversely affects the control of the hepatic energy metabolism. A
high-fat diet has been demonstrated to induce insulin resistance with metabolic disorders
in mice [18,52]. The ability of the liver to regenerate tissue in detoxification was negatively
correlated with the protein level of HDAC1 in male rats [85]. In addition, liver proliferation
was inhibited by CCAAT enhancer-binding protein α (C/EBPα) through HDAC1 in older
male mice [85–88]. A high-fat diet also induced metabolic dysfunction in the liver through
increased fatty acid synthase (FAS) and stearoyl-CoA desaturase and inhibited HDAC3,
which is recruited to the promoters of the lipogenic genes during fasting [89]. Likewise,
HAT-mediated acetylation in the liver increased FAS and concomitantly decreased HDAC9
expression in mice [89]. Increased HDAC3 in the liver in response to a high-fat diet reduced
insulin sensitivity and lipogenesis [89]. The high-fat diet lowered the SIRT1 expression by
decreasing CREB and increasing the recruitment of carbohydrate response-element binding
protein (ChREBP) to bind to the SIRT1 promoter [51].

Furthermore, a high-fat diet promotes the interaction of proteasome activator subunit
3 (REGγ) with SIRT1, leading to the degradation of SIRT1 and increasing the acetylation
state of autophagy proteins. The suppressed autophagy-dependent degradation of lipid
droplets causes liver steatosis [90]. The high-fat feeding decreased SIRT1 protein levels in
the white adipose tissues of mice by proteolytic cleavage [15]. These results indicate that
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a high-fat diet alters the acetylation state, leading to oxidation, which can be restored by
supplementing BCs through the redox balance.

3.3. High-Glycemic Diet

Long-term high-glycemic diets lead to chronic metabolic disorders, resulting in high
blood glucose, which causes multiple organ failure [91,92]. Hyperglycemia induces oxida-
tive stress and reduces endothelial progenitor cells with the impairment of their ability to
undergo endothelial differentiation and angiogenesis in response to vascular injuries [93,94].
HDAC2 has been reported to respond to hyperglycemia or diabetes-induced oxidative
stress and has been implicated in high glucose-induced damage in endothelial progeni-
tor cells [43,94]. In addition, hyperglycemia suppressed expressions of heme oxygenase
1 (HO-1) and SIRT1, which are restored by treatment with HDAC2 siRNA [94,95]. The
repression or loss of HDAC2 attenuated the injuries in endothelial progenitor cells. HO-1
has been reported as an NRF2-regulated gene for the prevention of vascular inflammation
and oxidative stress [96]. Taken together, a high-glycemic diet suppresses the HO-1/SIRT1
pathway and causes oxidative stress and vascular injuries with the induction of HDAC2.

Glucose and insulin levels are elevated in response to the chronic high-glycemic diet,
which is responsible for the inactivation of pancreatic β-cells. The pancreatic β-cells have
been demonstrated to sense glucose levels by interacting with pancreatic duodenal home-
obox 1 (PDX1) or HIF-1α [97,98]. At high glucose levels, PDX1 is involved in acetylating
the promoter of genes related to insulin secretion by activating p300. However, PDX1 is
mediated with HDAC1 and HDAC2 in relatively low plasma glucose levels, leading to the
repression of insulin gene transcription by deacetylation [99,100]. The activity of HIF-1α is
known to be repressed in high glucose levels since methylglyoxal, a reduced derivative of
pyruvic acid generated during glycolytic pathways, inhibits HIF-1α transcription by sup-
pressing the acetylation with p300 [101]. High glucose levels in adipocytes result in c-Jun
N-terminal kinase (JNK) activation, leading to SIRT1 degradation [102]. In contrast, glucose
starvation inhibits the interaction of REGγ, a proteasome activator, with SIRT1 by the 5′

AMP-activated protein kinase (AMPK), leading to an increase in SIRT1 [90]. Therefore,
BCs may need to activate SIRT1 and HO-1 to regulate the glucose metabolism to prevent
hyperglycemia-induced damage and disease.

4. Protective Roles of Bioactive Compounds (BCs)

Relatively small quantities of chemicals that are present in natural sources, i.e., plant,
animal, and algae, and that have health benefits are considered BCs [103]. BCs are classified
by their chemical structure and biochemical functions. Examples of BCs include carotenoids,
bioactive fatty acids and peptides, polyphenols, glucosinolates, triterpene, and phytos-
terols [103,104]. Gut microbiota, essential for the modulation of intestine functions such
as the fermentation and absorption of short-chain fatty acids, interact with BCs [57,105].
The biodiversity and activity of gut microbiota depend on various pathophysiological
events, including immune function and energy metabolism [56,106]. Gut dysbiosis induced
by the prolonged intake of alcohol, high-fat, or high-glycemic diet can increase bacterial
lipopolysaccharide, oxidative stress, pro-inflammatory cytokines, intestinal inflammation,
and intestinal permeability [107,108]. The relationship between dietary BCs, gut microbiota,
and metabolism has demonstrated that gut dysbiosis, the imbalance of gut microbiota
associated with an unhealthy outcome, can be attenuated by supplementing BCs.

4.1. Inhibition of Inflammation

Inflammation is one of the responses triggered by the innate immune response. ROS
and redox-sensitive transcription factor NF-κB are induced in response to the inflammatory
stimulus, such as dietary stress [109]. The dietary stress also elevates the gut-derived
LPS production and translocation into the systemic circulation, triggering TLR4 and NF-
κB activation and enhancing pro-inflammation cytokines [14]. The production of pro-
inflammatory cytokines such as TNFα and interleukins (ILs) affects the activation of
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NF-κB and mitogen-activated protein kinase (MAPK) cascades. The MAPK signaling
cascades, including extracellular signal-regulated kinases (ERKs), JNKs, and p38, are
activated by transforming growth factor β-activated kinase 1 (TAK1). TLRs activate this
signaling by recognizing changes in various molecular patterns and recruiting suitable
adaptors to stimulate the downstream signaling pathways and generate pro-inflammatory
cytokines. In addition, NF-κB induces the production of adhesion molecules to facilitate
phagocyte infiltration.

By inhibiting pro-inflammatory cytokines effectively, other downstream inflammatory
pathways and cascades are blocked [110]. One of the critical roles of BCs in the immune
response is maintaining balanced pro- and anti-inflammatory signals to avoid overreaction
leading to tissue damage and disease [11,68]. The selective functions of BCs, such as
astaxanthin, nicotinamide riboside, and resveratrol, come from their ability to activate
SIRT1 [111,112]. Typical roles of SIRT1 in regulating inflammation, metabolic disorder,
apoptosis, and cell cycle regulation have been discovered [23,113]. SIRT1 inhibits NF-κB
transcriptional activity by deacetylating its subunit, RelA/p65, and it suppresses NF-κB-
mediated TNFα, inhibiting inflammation [25,26]. SIRT1 represses the p300/CREB binding
protein (p300/CBP), a central acetyltransferase, and inhibits p65 acetylation, which is
essential for turning off NF-κB-mediated gene expression [72]. In addition, the p300/CBP is
known to acetylate poly (ADP-ribose) polymerase 1 (PARP1) for NF-κB activation [113,114].

4.2. Inhibition of Oxidative Stress

Excessive ROS production is triggered by the innate immune system upon dietary
stimulation. ROS, such as hydroxyl radical (HO•), superoxide anion (O2

−), and hydrogen
peroxide (H2O2), are composed of radical and non-radical oxygen species formed by the
partial reduction of oxygen [46,115]. In response to cellular damage by ROS, endogenous
antioxidants such as catalase and superoxide dismutase are activated as cellular and tissue
defenses [37,116]. Excessive ROS production beyond the antioxidant defense capacity
disrupts the redox balance and defense systems, leading to oxidative stress and various
pathogenic pathways, including DNA damage, mitochondrial dysfunctions, and endo-
plasmic reticulum stress [117]. Exogenous antioxidants may be required to regulate the
excessive ROS and circumvent chronic cellular inflammation. The effective inhibition
of ROS-induced oxidative stress can proceed in two ways. One is scavenging ROS and
free radicals generated in the system, and the other is blocking the pathways that derive
oxidative stress [6,116]. BCs are suitable agents to provide roles against oxidative stress
in both ways. The chemical structure of BCs is highly effective for scavenging generated
ROS and free radicals and balancing redox reactions [118,119]. BCs activate NRF2 to reg-
ulate ROS production with its downstream target genes, HO-1 and NAD(P)H quinone
dehydrogenase 1 (NQO1) [96,120]. In tumor cells, the suppression of NRF2 increases ROS
production, inducing autophagy and cell death by AMPK activation [121,122]. Furthermore,
the activation of SIRT1 by supplementing BCs modulates p53 and FOXO3a by deacety-
lation [123,124], leading to the activation of antioxidant enzymes. The oxidative stress
induced by D-galactose in human trophoblast HTR8/SVneo cells can be prevented by form-
ing a SIRT1/FOXO3a/ROS signaling pathway to scavenge ROS [125]. SIRT1 also exhibits
antioxidant properties by deacetylating p53 [126,127] and NRF2 inhibitors [86–88]. Diabetic
nephropathy driven by p53 acetylation is inhibited through the deacetylation of p53 by
SIRT1 [20,47]. SIRT1 activates NRF2 by inhibiting p53 through deacetylation, formulating
the SIRT1/p53/NRF2 pathway to regulate the pathogenesis of diabetic nephropathy [20,47].
Evidence suggests that NRF2 inhibits ROS production with SIRT1, regulating redox balance
and inducing antioxidants for ROS scavenging.

NRF2 binds to Kelch-like ECH-associated protein 1 (Keap1) in the cytoplasm in
normal conditions. Binding Keap1 to Cullin3, a scaffolding protein, results in the degra-
dation of NRF2 through ubiquitination [128–130]. Electrophiles such as sulforaphane and
tert-butylhydroquinone interfere with the proteasome-mediated degradation of NRF2 by
binding to Keap1 and altering the conformation of ligase that facilitates the escape of NRF2
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from proteasomal degradation [77,131,132]. Upon the stimulation of oxidative stress, NRF2
is dissociated from Keap1, translocated to the nucleus, and bound to the ARE [88,133].
Under relatively low oxidative stress conditions, NRF2 is acetylated by various stimuli and
then activated as a master regulator for antioxidant genes, including catalase, glutathione
peroxidase, and superoxide dismutase [6]. Acetylated NRF2 by p300/CBP likely binds to
DNA in the promoter region of genes encoding detoxification enzymes [134]. However, the
hyper-acetylation of NRF2 in highly oxidative conditions fails to exert its unique functions
due to its high redox sensitivity [6,78]. Indeed, the activity of NRF2 is decreased at high
levels of oxidative stress, such as chronic obstructive pulmonary disease [78]. The inhibi-
tion of HDACs at such highly oxidative conditions increases the acetylation state of NRF2,
decreasing its stability and activity, leading to impaired antioxidant properties and the
concomitant reduction of NRF2-regulated genes [95,135]. This impairment is abrogated by
lowering the acetylation state of NRF2 using HDACs, particularly HDAC2 [95]. However,
the deacetylation of NRF2 by HDACs in normal or relatively low oxidative conditions
reduces the NRF2 activity and its downstream genes [135]. The evidence indicates that
the functions of NRF2 as an antioxidant may depend on its acetylation state, balancing
delicately between the production and the elimination of ROS.

4.3. Inhibition of Metabolic Disorders

Dietary stress, such as excessive alcohol, high-fat, or high-glycemic diet, activates
the innate immune system, including the reprogramming of energy metabolism favoring
aerobic glycolysis in macrophages [136]. The altered energy metabolism in response to
oxidative stress or inflammation causes rapid ATP production [69,137] and excessive mito-
chondrial ROS generation, affecting the electron transport chain related to mitochondrial
respiration [39,116], consequently resulting in redox imbalance. The dietary stimulation
can reduce the cytosolic NAD+/NADH ratio, leading to mitochondrial dysfunction with in-
creased ATP production and proton leakage [31,39]. The changes in energy metabolism and
mitochondrial dysfunction can be reversed by supplementing BCs with SIRT1 activation.
SIRT1 has been reported to suppress the diet-induced HIF-1α activation and inhibit aerobic
glycolysis by deacetylation. It has also been known to enhance PGC1α-mediated genes
and promote mitochondrial proliferation and oxidative phosphorylation [46,138]. When
oxidative stress emerges, high glucose levels due to metabolic disturbances can damage
cells. The increased glucose may activate the function of SIRT1 on the NRF2-ARE signaling
pathway as an adaptive pathway to avoid cellular damage [5,133]. The SIRT1-mediated
adaptive pathway has similar effects on the metabolism by supplementing BCs [139]. SIRT1
also modulates mitochondrial biogenesis and oxidative metabolism to protect against
metabolic disturbance by regulating mitochondrial contents and β-oxidation [64,65].

In lipid metabolism, the activation of SIRT1 promotes the liver kinase B1 (LKB1) and
AMPK, constituting the SIRT1/LKB1/AMPK axis [140,141]. The SIRT1-driven axis plays a
critical role in hepatic fatty acid oxidation through the deacetylation or phosphorylation
of related transcription factors, including FOXO1 and sterol regulatory element-binding
protein 1 (SREBP-1) [50,98,140]. Activated FOXO1 induces adipose triglyceride lipase
(ATGL), the rate-limiting enzyme for lipolysis, while SREBP-1 promotes lipogenesis by
inducing FAS [46,142]. The activation of AMPK by SIRT1 upregulates FOXO1 but inhibits
the activity of SREBP-1 to prevent lipid accumulation in high fat-fed mice and HepG2
cells [143].

5. Roles of BCs in Regulating Cellular Redox Balance and Histone Acetylation State
5.1. Astaxanthin

Astaxanthin (ASTX), abundant in marine animals including krill, shrimp, crawfish, As-
teroidea crabs, and lobster, is a lipid-soluble xanthophyll carotenoid with anti-inflammatory
and antioxidant effects [144]. Due to its chemical structure of the conjugated double bond,
ASTX is highly effective for quenching or scavenging ROS, attenuating NOX2 and COX-2,
which are enzymatic sources for the production of ROS [119,145]. Moreover, ASTX can
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easily pass through the membrane bilayer due to its configuration with an oxo functional
group without toxic side effects [109,118]. The unique features of ASTX contribute to its
potential for various biological, biochemical, and physiological activities, including the
activation of SIRT1 and NRF2 [30,146].

The anti-inflammatory and antioxidant properties of ASTX have been shown in
macrophages stimulated with lipopolysaccharide, hydrogen peroxide, or alcohol [146,147],
apolipoprotein E-knockout mice [148], or hepatic stellate cells [149]. ASTX has been shown
to protect against diabetes, liver diseases, cancers, cardiovascular diseases, and pancreatitis
by regulating NF-κB and NRF2 [150,151]. The ability of ASTX to exert anti-inflammatory
and antioxidant properties in ethanol-stimulated macrophages may be due to the activation
of SIRT1 and NRF2, in addition to enhancing cellular NAD+ levels [30]. External stimula-
tion, such as excessive alcohol exposure, elevated NOX2 expression, and induced cellular
oxidative stress, thereby rushing macrophages to produce large amounts of ROS [152,153].
ASTX supports NAD+, a cofactor to activate SIRT1, which facilitates FOXO3 binding to
p53 to suppress p53 and activates itself. Furthermore, the ability of ASTX to recover the
reduction state by scavenging ROS contributes to the regeneration of NAD+ from NADH,
leading to the activation of SIRT1.

Under the dietary stress condition, NF-κB lysine residues are acetylated to allow
the release from IκB, enhancing nuclear translocation and DNA binding, resulting in
the transcription of its target inflammatory genes [43,154]. ASTX inhibits the nuclear
translocation of NF-κB by deacetylating it [25,146] and counteracts NF-κB by inducing
its corepressors, such as the transducin-like enhancer of split 1 (TLE1) through SIRT1
activation [155]. SIRT1 can also inactivate the coactivators of NF-κB, such as p300/CBP,
to not acetylate p65 NF-κB in the nucleus [72]. Upon stimulation, p300/CBP acetylates
PARP1 and directly interacts with p300 to activate NF-κB, which is prevented by SIRT1
through PARP1 deacetylation [113,114]. The function of ASTX may be due to the ability of
SIRT1 to deacetylate NF-κB and inhibit its activity by preventing its nuclear translocation
and modulating interaction with transcriptional repressors or coactivators. ASTX reduced
the hepatic lipid accumulation from a high-fat diet by activating PPARα and regressing
PPARγ and Akt in mice [109,156]. The inhibition of Akt activity by ASTX causes a decrease
in the nuclear translocation of SREBP-1 and thus reduces hepatic lipogenesis. ASTX may
also induce hepatic autophagy by activating PPARα and inhibiting PPARγ and Akt [151].
The clearance of lipids by ASTX supplementation may be ascribed to the ability of SIRT1 to
deacetylate the functional proteins involved in each pathway [30].

5.2. Butyrate

Butyrate, found in butter and cheese, is a short-chain fatty acid formed from dietary
fibers by colonic microbiota through fermentation [157–159]. Butyrate formation is af-
fected by the gut microbiota’s structure, diversity, and composition, which is mediated by
pathological routes such as inflammatory and metabolic diseases, diabetes, and atheroscle-
rosis [160,161]. Butyrate can be an anti-inflammatory and anti-carcinogenic agent by
mediating drug, energy metabolism, and intestinal homeostasis [162]. Colonocytes mainly
consume butyrate [159], and small amounts reach the portal vein and systemic circulation to
deliver bacteria-formed butyrate to the liver and involve the hepatic metabolism [157,163].
Butyrate inhibits intestinal inflammation and colorectal cancer by preventing HDACs, de-
pending on the cellular energy state [105]. Butyrate inhibits cell proliferation in energy-rich
cells but is used for energy in energy-deficient cells [158]. In the liver, butyrate inhibits
HDAC3 activity and induces fibroblast growth factor 21 (FGF21) expression to increase fatty
acid oxidation and ketogenesis [164], as well as PGC1α expression and TCA cycle flux [1].
In HepG2-C3 and primary human hepatocytes, butyrate activates the aryl hydrocarbon
receptor, a specific nuclear receptor that regulates cytochrome p450 (CYP) enzymes and
their target genes in drug metabolism [157]. The potential effects of butyrate on drug
metabolism are likely due to its epigenetic action of inhibiting HDACs in the liver [157,165].
In brown adipose tissue, butyrate increases PGC1α and UCP1, indicating that butyrate
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increases thermogenesis along with energy dissipation and improves glucose tolerance
and insulin levels in high-fat-fed mice [156]. Butyrate exhibits protective properties against
glucose intolerance and insulin resistance induced by a high-fat diet by inhibiting HDAC
activity [160]. In addition, butyrate activates NRF2 in a small intestine epithelial cell line
(IEC-6 cells) and a human colorectal adenocarcinoma cell line (HT-29 cells) by inhibiting
HDAC activity [166].

Recent studies have shown that butyrate inhibits the activation and proliferation of
T-cell receptor (TCR)-driven gut human lamina propria CD4 T cells and thus prevents
inflammatory cytokine production through inhibiting HDACs [167], as evidenced in murine
splenic and human peripheral blood CD4 T cells [168–170]. Interestingly, the ability of
butyrate to enhance histone acetylation is possibly associated with the G protein-coupled
receptor (GPCR) signaling in the inactivation of intestinal lamina propria CD4 T cells,
altering cellular metabolism [167] and inducing PPARγ signaling pathways [158].

5.3. Polyphenols
5.3.1. Curcumin

Curcumin, found in the Indian spice turmeric, is a yellow-color polyphenol with potent
antioxidant, anti-inflammatory, and anticancer properties [171–173]. Curcumin has been
demonstrated to restore the impaired antioxidant function of NRF2 as a potential treatment
for obesity and diabetes [174,175]. It inhibits skin tumorigenesis in mice [176] by preventing
COX-2 expression by repressing NF-κB activity in mouse skin [177]. Curcumin inhibits
the acetylation of histone and non-histone proteins as a HAT inhibitor [172]. It inhibited
p300/CBP by inducing apoptosis in cancer cells through p53 signaling [172,178]. Curcumin
has been understood to prevent the diet-induced elevation of the acetylation state, leading
to NF-κB inactivation and the inhibition of inflammation [179,180]. Under high glucose
levels, curcumin suppressed NF-κB activity and the production of IL-6 and TNFα [181]. El-
evated blood glucose levels stimulate inflammatory signaling through the NF-κB pathway,
indicating a close relationship between redox imbalance and inflammation [16]. Curcumin
supplementation reversed the high-fat diet-induced insulin resistance and increased HAT
levels due to its ability to adjust the balance between HATs and HDACs [180]. The usage
of curcumin has been extended to protect against diabetes by inhibiting the endothelial
nitric oxide synthase and transforming growth factor beta 1 (TGF-β1) in the kidney of rats
through inhibiting p300/CBP and, thus, the repression of NF-κB [182].

Curcumin has been mediated to compensate for the deficiency of NRF2 antioxidant
action by restoring the redox balance, which contributes to inhibiting inflammatory signal-
ing [177,183]. In oxidative or insulin-resistant conditions due to a high-fat diet or diabetes,
the ability of curcumin to repress Keap1 expression during inflammatory signaling leads
to the upregulation of NRF2 [173]. It induced the transcription and translation of HO-1 in
mouse skin in vivo and cultured murine epidermal cells through NRF2 activation [177,183].
The ability of curcumin may derive from its chemical structure of two electrophilic α and
β-unsaturated carbonyl groups. The modification of Keap1 cysteine by this electrophilic BC
is recognized to inhibit Keap1 ability, which suppresses NRF2 activation [183]. Curcumin
stabilizes NRF2 by blocking 26S proteasomal degradation and inhibits the Cullin3-E3
ubiquitin ligase (RBX1) complex for NRF2 ubiquitination by modifying cysteine residue in
Keap1, C151. Therefore, the binding capacity of Keap1 to NRF2 altered by curcumin can
lead to the nuclear translocation of NRF2 [131,184].

Despite its benefits in suppressing high-fat-induced metabolic disorders and inflam-
mation, curcumin remains a bioavailability challenge due to its limited absorption. The
intestine is a barrier to the application of curcumin [171]. Encapsulation is one way to
circumvent curcumin delivery to enhance its bioavailability and potential health benefits
for humans [185].
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5.3.2. Epigallocatechin-3-Gallate

Epigallocatechin-3-gallate (EGCG), a major flavonoid compound of green tea, exhibits
health-beneficial properties, including antifibrotic, antioxidant, anti-cancer, and antihy-
pertensive properties [186–188]. Interestingly, EGCG exhibits a potent inhibitor of HAT
activity, whereas green tea polyphenol shows an HDAC inhibitor in human prostate cancer
LNCaP and PC3 cells [189]. Since green tea polyphenol contains the major polyphenolic
compounds catechins, the effects of EGCG and green tea polyphenol on HAT and HDAC
may be different. The ability of EGCG to inactivate HAT is due to its interaction with
HAT enzymes rather than its reduction [189,190]. The ability to reduce HAT activity pre-
vents obesity-induced inflammation, weight gain, and elevated blood glucose levels in
male C57BL/6 mice [191] and female Sprague Dawley rats [192]. The inhibitory effects
of EGCG on HAT activity prevent NF-κB acetylation and inhibit its activity with p300 at
the inflammatory cytokine promoters such as IL-6 [190,193]. High-dose supplementation
of EGCG, however, can cause hepatotoxicity owing to its pro-oxidant effects [194]. These
pieces of evidence demonstrate that the protective effects of EGCG against obesity induced
inflammation and metabolic disorders are dose-response phenomena by controlling the
acetylation state via the inhibition of HAT activity.

5.3.3. Resveratrol

Resveratrol, enriched in grapes, red wine, and berries, is a natural polyphenolic
compound exhibiting protective effects such as anti-inflammation, anti-oxidative stress,
and antiviral and antibacterial immunity [111,112,195]. The properties of resveratrol can be
divided into two categories. One is due to its ability to regulate the redox state, and the
other is for controlling the histone acetylation state. The former property corresponds to
its chemical structure with conjugated double bonds [112,195]. As resveratrol scavenges
free radicals, including ROS, the diet-induced oxidation state in the microenvironment can
change to the reduction state with a concomitant decrease in oxidative stress [111]. The
latter property is related to its ability to activate HDACs, such as SIRT1, a key enzyme
for the protective roles of resveratrol [21]. Indeed, two pathways of resveratrol have
been shown to suppress inflammation. In a human colon-derived myofibroblast cell,
resveratrol reduced TNFα-induced ROS production and enhanced SIRT1 activation [196].
Additionally, it reduced the TNFα-induced activation of intercellular adhesion molecule-1
(ICAM-1), which causes inflammation without the involvement of SIRT1 using EX-527,
SIRT1 inhibitor, and knockdown of SIRT1 [196]. In addition, SIRT1 is known to repress
NF-κB by deacetylating the RelA/p65 subunit at lysine 310 [21,196,197]. Collectively,
resveratrol inhibited TNFα-induced inflammation through redox- as well as acetylation-
regulated pathways.

The protective function of resveratrol against lipid peroxidation in cell membranes and
DNA damage may be due to its property of scavenging or quenching ROS [111]. The thera-
peutic effects of resveratrol have been found in metabolic and cardiovascular disorders,
cancers, tuberculosis, and other age-dependent diseases [21,111,112]. The multiple effects
of resveratrol are attributed to its ability to activate SIRT1 [198,199]. In Mycobacterium
tuberculosis-infected mice, resveratrol inhibits TAK1, preventing phosphorylation and
ubiquitination from inactivating associated signaling such as MAPK and NF-κB pathways
through SIRT1 activation [200]. In peritoneal macrophages of mice and patients with
active tuberculosis, SIRT1 expression is influenced by the TLR2-p38 pathway. In paraquat-
induced lung-injured mice, resveratrol inhibits oxidative stress and lung injury through
potent signaling between SIRT1 and NRF2. Resveratrol upregulated SIRT1 expression
in mice lung tissue exposed to paraquat and attenuated oxidative stress and lung injury
by activating NRF2 [21]. The relationship between SIRT1 and NRF2 seems complicated
in resveratrol therapy. SIRT1 activates NRF2 by reducing its acetylation state, which is
elevated by an oxidative stress response [135]. The anti-oxidant properties of NRF2 may
depend on its acetylation state through the delicate balance of acetylation and deacetyla-
tion. SIRT1, activated by resveratrol, has been reported to promote nuclear translocation,
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DNA binding, and the transcriptional activity of NRF2, leading to NRF2-mediated gene
expression [77,201,202]. Evidence has shown that increasing the acetylation state of NRF2
reduces the stability of NRF2, which impairs its antioxidant properties [95]. Resveratrol
deacetylates SIRT1 and enhances the stability of NRF2 in cells or tissues, as oxidative stress
is accompanied by its acetylation state.

Resveratrol has been demonstrated to reduce the expression of fibronectin and TGF-β1
induced by advanced glycation end products in the kidney of diabetic rats and mesangial
cells [201,202]. The potency of resveratrol was due to its remarkable antioxidant properties
through the NRF2/ARE pathway activated by SIRT1 [201,202]. Metabolic stimuli, such as
high levels of glucose owing to metabolic disorders, may encourage cells to adopt adaptive
signaling pathways to mitigate damage. Cells can adapt the NRF2/ARE antioxidant
pathway in response to metabolic stimuli as an adaptively activated pathway [5,133]. The
supplementation of resveratrol requires the role of SIRT1 as a deacetylase for the adaptive
activation pathway [97].

5.4. Nicotinamide Riboside

Nicotinamide riboside (NR), a natural precursor of NAD+, comprises pro-vitamin B3
in cow milk [203,204]. NR activates SIRT1 by supplying the cofactor, NAD+. NR supports
NAD+, a critical modulator of cellular processes, including metabolic pathways, and pro-
motes SIRT1 expression [55,66]. NR exerted anti-inflammation and anti-oxidative effects
and repressed metabolic disturbances in ethanol-exposed macrophages through SIRT1
activation [31,65,205]. NR is converted to bioavailable NAD+ by nicotinamide riboside ki-
nase (NRK) and nicotinamide mononucleotide adenylyltransferase (NMNAT) or the NAD+
salvage pathway by converting nicotinamide [64,205], which leads to activating SIRT1.

Inflammatory macrophages may shift the glucose metabolism toward aerobic glycol-
ysis [67,68] based on the innate immune response [136]. NR, however, regulates energy
metabolism, including glycolysis and mitochondrial respiration, through SIRT1 activa-
tion [31,48]. NR inactivated HIF-1α by deacetylation [206] and repressed its downstream
genes, such as GLUT1, pyruvate dehydrogenase kinase 1 (PDK1), and lactate dehydro-
genase α (LDHα), which were increased in macrophages upon ethanol exposure [31,53].
The capacity of NR to mediate energy metabolism derives primarily from its role in SIRT1
activation. The induction of HIF-1α is enhanced by lactate, resulting in the upregulation
of glycolysis and the repression of the TCA cycle by activating PDK1 [207–209]. Pyruvate,
the final product of glycolysis, is converted to acetyl-CoA in mitochondria by pyruvate de-
hydrogenase (PDH), whose activity is suppressed by PDK1 via phosphorylation [210,211].
Considering the repression of GLUT1, PDK1, and LDHα expression by SIRT1, the metabolic
disturbances induced by excessive alcohol consumption can be reprogrammed by NR
through SIRT1 activation and its deacetylation capacity [31,48]. NR also regulates mito-
chondria biogenesis in hepatocytes through SIRT1′s ability to deacetylate PGC1α [48,52].

5.5. Sulforaphane

Sulforaphane (SFN), an isothiocyanate compound found in cruciferous vegetables
such as broccoli, kale, cauliflower, brussels sprouts, and cabbage, can induce phase II
detoxifying/antioxidant enzymes by activating NRF2 [212]. The chemical structure of SFN,
a β-D-thioglucose group linked to a sulfonated aldoxime moiety, is effective in treating
cancers in the liver, breast, ovary, thyroid, and lung [212–214]. Under oxidative stress
conditions, SFN activates NRF2 to bind to ARE in the promoters of antioxidant enzymes,
exhibiting antioxidant and anti-inflammatory properties [214]. SFN suppresses cancer cells
such as HCT116 colon cells and human embryonic kidney 293 cells by simultaneously in-
hibiting the activities of HDACs such as HDAC2 and HDAC3 [213,215]. The inactivation of
HDACs in cancer cells is likely due to increased acetylation in histone H3 and H4 mediated
by SFN metabolites, including SFN-N-acetyl-cysteine [216–218]. SFN has also been re-
ported to increase the levels of ROS initiating the apoptotic pathways [2] while it decreases
ROS levels in several cancer cells already in the apoptotic process [214]. The evidence
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indicates that the effects of SFN on ROS production are dose-and time-dependent and are
involved in preventing cancer cell proliferation through the activation of caspase 3 and
8 [213,219]. SFN can suppress pro-survival pathways such as NF-κB activation [220,221]
and induce caspase-mediated cell death by repressing HDAC6 activity and increasing the
acetylation state of p21 and Bcl-2-associated X protein (BAX) promoters [214,219]. The
inhibition of HDAC6 by SFN in prostate cancer cells increases the acetylation state of heat
shock protein 90 (Hsp90) and decreases the expression of the androgen receptor (AR) [222].

SFN enhances NRF2 expression in prostate cancer TRAMP C1 cells via demethylation
or acetylation [223]. SFN was demonstrated to act as an HDAC inhibitor since it decreased
HDAC1, 4, 5, and 7 at the protein level in cancer cells [213,223]. It inhibited class I HDACs,
such as HDAC2, and class IIa HDACs such as HDAC4, 5, 7, and 9, isoforms in 3T3-L1
adipocytes [215]. In TRAMP C1 cells, SFN increased the acetylated histone 3 levels, which
elevated binding DNA to the NRF2 promoter, inducing its expression [223]. SFN also
inhibits adipocyte differentiation, which leads to insulin resistance and type 2 diabetes due
to triglyceride storage disorders [79,218]. HDACs were reported to be negatively correlated
to adipocyte differentiation as the activities of HDAC1, 2, 5, and 9 are downregulated
during adipocyte differentiation [224]. The repression of HDACs results in hyperacetyla-
tion in the promoters of adipogenic genes, including PPARγ, fatty acid-binding protein
4 (FABP4), and FAS, and p300 at the promoter of C/EBPα, respectively [225,226]. Addi-
tionally, the suppression of HDACs by inhibitors appeared to inhibit the differentiation of
adipocytes [227,228]. The effects of SFN on adipocyte differentiation through the activity of
HDACs need to be elucidated in future studies. Recently, SFN has been elicited to prevent
cell cycle arrest and apoptosis in oral cancer cells by inhibiting HDACs [212,213]. The
function of SFN has been shown to suppress cancer cell proliferation and the activity of
HDACs, especially under oxidative stress with increased ROS or decreased mitochondrial
membrane potential [212,218]. The anticancer properties of SFN are due to its potential
to inhibit HDACs activity, cell cycle arrest, and apoptosis, as well as antioxidants and
anti-inflammatory potential through activating NRF2 and repressing NF-κB.

5.6. Ginsenoside

Ginseng, a well-known medicinal herb, has been identified to contain bioactive ingre-
dients, including ginsenosides, polysaccharides, steroids, and flavonoids. Ginsenosides
are the primary pharmacologically active ingredients in ginseng [229,230]. More than
250 identified ginsenosides were classified into three categories [231]. However, the ef-
fects of total ginsenosides extracts (TGS) are discussed in this review. TGSs have been
shown to affect oxidative stress, inflammation, and diabetes and regulate autophagic and
apoptotic properties by mediating glucose and lipid metabolism [229,232]. TGS enhances
mitochondrial energy metabolism by mediating mitochondrial oxygen consumption, respi-
ration, and ATP production in several cell lines, such as cardiomyocytes, skeletal myoblasts,
and vascular endothelial and epithelial cells [233,234]. The beneficial effects of TGS on
cardiomyocytes and neurons are ascribed to its ability to activate SIRT1 to promote mi-
tochondrial biosynthesis through the SIRT1/PGC1α axis and prevent brain injury and
ischemic heart [138,235]. Considering that PGC1α binds and coactivates NRF2 in the mi-
tochondrial transcription factor A (TFAM) promoter, TGS is regarded to activate NRF2
to improve mitochondrial function [235,236]. Cumulative evidence suggests that TGS
protects brain ischemia by modulating TLR4/MyD88 and SIRT1 pathways associated with
NRF2/ARE pathways [237,238].

Ginsenosides inhibit inflammation by suppressing inflammatory signaling pathways
such as NF-κB and producing pro-inflammatory cytokines [239,240]. They repress MAPK
phosphorylation induced by LPS, promote the activation of CREB [241], and block the
activation of JAK2/signal transducer and the activator of transcription 3 (STAT3) in LPS-
induced RAW 264.7 macrophages [230]. Ginsenosides repress NF-κB subunit p65, COX-2,
ERK, JNK, and MAPK p38 in acute liver injury by exploiting their anti-inflammatory capa-
bilities via NF-κB and MAPK pathways [242]. Ginsenosides also inhibit liver fibrosis by
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regulating TNFα, IL-1β, IL-6, and caspase-1 in response to the JNK- and p38/ERK path-
ways. The protective effects on liver injury are associated with the SIRT1/NRF2/NF-κB
signaling pathway [243,244]. The function of ginsenosides to inhibit cell surface receptors
such as TLR4 and its downstream targets, NF-κB and MAPK, leads to liver protection from
LPS-induced acute injury in mice [245]. Ginseng is effective in treating colon, lung, and
breast cancers [246], and its combination therapy with antitumor drugs has been reported
to improve therapeutic efficacy [247,248]. The antitumor effects of ginseng are partly at-
tributed to its metabolites, 20s-protopanaxadiol, by repressing the phosphorylation of the
epidermal growth factor (EGF) and its receptor (EGFR) and inhibiting the activation of
ERK1/2, p38, and c-JNK [249]. Ginsenosides have been found to inhibit cancer cell growth
by altering the tumor microenvironment and enhancing antitumor immunity, with the se-
lective inhibition of the ROS/ERK pathway [250,251] and blocking the EGF-EGFR-ERK1/2
or ERK-Akt pathway [252,253]. Antidiabetic effects of ginsenosides have been discovered
through their ability to reduce gluconeogenesis while promoting glucose transport and
insulin production. Furthermore, their hepatoprotective and anti-inflammatory potential
as antioxidants or immunosuppressants can help their antidiabetic effects partly through
the STAT5-PPARγ, AMPK-JNK, or NF-κB pathways [254,255]. Collectively, the beneficial
effects of ginseng or ginsenosides can be ascribed at least partly to their ability to regulate
the cellular redox balance or histone acetylation state through the activation of SIRT1 and
NRF2 and their downstream genes.

6. Conclusions

BCs inhibit inflammation, oxidative stress, and metabolic disorders by regulating di-
etary stress-altered oxidative microenvironments. The role of BCs is achieved by controlling
the cellular redox balance and histone acetylation state in response to biological conditions.
The selective functions of BCs can be classified into two categories. One facilitates the
reductive microenvironment from an oxidation state by quenching or scavenging free
radicals, such as ROS. The other regulates the activity of transcription factors related to
the immune system and metabolism. The former function is attributed to their chemical
structures, such as conjugated double bonds, related to bioavailability, while the latter
has the ability to activate the protective pathways by the induction of SIRT1 or NRF2 and
its target genes. The function of BCs in adjusting cellular redox balance and the histone
acetylation state to interact with a metabolic balance is highly complicated, as several
crosstalks among enzymes and proteins are involved. Potential mechanisms of action by
BCs to modulate cellular redox balance and histone acetylation state are summarized in
Table 1. BCs exhibit multiple complex properties, enabling the opposite function simultane-
ously. The transition to the reductive microenvironments can be related to the activation of
SIRT1 and its interaction with NRF2. BCs are utilized to maintain the NAD+/NADH ratio
in glucose and lipid metabolism, one of the vital factors for SIRT1 activation. Therefore,
BCs are required to guide their precise target functions for optimal actions. More detailed
information on the underlying mechanisms in the prevention of dietary stress-induced
immune and metabolic disorders needs to be elucidated in future studies.
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Table 1. BCs regulate cellular redox balance and histone acetylation state.

BCs Effects Model Mechanisms Ref

Astaxanthin

↓ Oxidative stress
↓ Inflammation

In vitro ↓ ROS, ↓ NOX2 and COX-2 [119,145]
Macrophage stimulated

with LPS and H2O2

↑ SIRT1, ↑ NRF2, ↑ antioxidant enzymes
↓ NF-κB nuclear translocation [146,147]

apolipoprotein
E-knockout mice ↑ NRF2, ↑ antioxidant enzymes [148]

Hepatic stellate cells ↑ NRF2, ↑ antioxidant enzymes [149]
Macrophages

stimulated
with ethanol

↑ SIRT1, ↑ NRF2, ↑ NAD+ levels [30]

↓ hepatic lipid High-fat diet fed mice ↑ PPARα, ↓ PPARγ and Akt
↓ SREBP1c nuclear translocation [109,156]

↑ hepatic autophagy
Cerulein-induced
acute pancreatitis

in mice
↑ PPARα, ↓ PPARγ and Akt [151]

Butyrate

↓ Insulin resistance High-fat diet fed mice ↓ Fasting blood glucose and insulin
↑ PPARα, ↑ AMPK and p38 [160]

↓ Inflammation Colorectal cancer ↓ HDACs [105]

↑ Hepatic fatty
acid oxidation

High-fat diet fed mice
HepG2 cells

↓ HDAC3 activity
↑ FGF21 and PGC1α expression [164]

↑ Hepatic drug
metabolizing ability

HepG2-C3 cells
Primary

human hepatocytes

↑ Aryl hydrocarbon receptor
↑ Cytochrome p450 [157]

↑ Thermogenesis in
brown fat High-fat diet fed mice ↑ PGC1α and UCP1, [156]

↓ Glucose intolerance
Insulin resistance High-fat diet fed mice ↓ HDAC activity [160]

↑ Antioxidant effects
in intestine

IEC-6 epithelial cells
HT-29 colorectal

cancer cells
↑ NRF2, ↓ HDAC activity [166]

↓ Inflammation

Human gut lamina
propria CD4 T cell
Murine splenic cell
Human peripheral
blood CD4 T cells

↓ HDAC activity
↓ Inflammatory cytokine production
↑ PPARγ signaling pathways

[167–169]

Curcumin

↑ Antioxidant

Oxidative or insulin-
resistant conditions ↑ Keap1 expression and NRF2 [173]

Obesity and diabetes ↑ Antioxidant function of NRF2 [174,175]

Mouse skin
Murine epidermal cells ↑ HO-1 expression and NRF2 [177,183]

↓ Skin tumorigenesis Mouse skin ↓ COX-2 expression, ↓ NF-κB activity [176,177]

↑ Apoptosis Glioma cell ↓ Histone acetylation, ↓ p300/CBP [172,178]

↓ Inflammation
Mantle cell lymphoma
High-fat diet-fed rats

↓ Acetylation state
↓ NF-κB activation and inflammation [179,180]

High glucose-
induced monocyte ↓ NF-κB activity, ↓ IL-6 and TNFα [181]

↓ Hyperglycemia
and Diabetes

High-fat diet-fed rats ↑ HAT levels, ↑ insulin sensitivity [180]

STZ-induced
diabetic rats

↓ iNOS and TGF-β1
↓ p300/CBP and NF-κB [182]
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Table 1. Cont.

BCs Effects Model Mechanisms Ref

EGCG

↑ Apoptosis in
prostate cancer cells LNCaP and PC3 cells ↓ HAT activity, ↑ cell cycle arrest

↑ p21/waf1 and Bax [189]

↓ Inflammation

High-fat/western-style
diet-induced
obese mice

↓ HAT activity, ↓ body weight
↓ Hepatic lipids and inflammation [191]

High-fat-fed
rat (female) ↓ IL-1β and IL-6, ↑ SOD and COMT [192]

Resveratrol ↓ Inflammation

RAW 264.7 cells
JB6 cells

↑ Scavenge free radicals
↓ Lipid peroxidation and DNA damage [111]

Paraquat-induced lung
injured mice ↑ SIRT1 expression and NRF2 activation [21]

Human colon-derived
myofibroblast cells

↓ TNFα-induced ROS and ICAM-1
↑ SIRT1 activation [196]

Jurkat lymphoid
HeLa and H4
epithelial cells

↓ TNFα-induced NF-κB and MAPK
↓ cytotoxicity and caspase activation [197]

Mycobacterium
tuberculosis-
infected mice

↓ TAK1, NF-κB and MAPK
↑ SIRT1 activation [200]

Diabetic rats
Mesangial cells ↓ Fibronectin and TGF-β1 [201,202]

NR

↑ Antioxidant
↓ Inflammation

Ethanol-exposed
macrophages ↑ SIRT1 activation [31,205]

↓ Lipid accumulation Lieber-DeCarli ethanol
liquid diet-fed mice

↑ SIRT1 and PGC1α activation
↑Mitochondrial function [48]

Energy metabolism Ethanol-exposed
macrophages

↑ SIRT1 activation, HIF-1α activation
↓ GLUT1, PDK1, LDHα

[31]

SFN

↑ Antioxidant Cancer cells ↑NRF2 activation
↑ Detoxifying/antioxidant enzymes [212]

↑ Cancer prevention

HCT116 colon cells
Human embryonic

kidney 293 cells
↓ HDAC2 and HDAC3 [213,215]

Cancer cell lines

↑ ROS for initiation of apoptosis
↓ ROS during apoptosis

↑ Caspase 3 and 8, ↑ p21 and BAX
↑ NF-κB activation, ↓ HDAC6 activity

↓ HDAC1, 4, 5, and 7
↑ Histone 3 acetylation, ↑ NRF2

[213,214]
[220,223]

Adipocyte
differentiation 3T3-L1 adipocytes

↓ HDAC2, HDAC4, 5, 7, and 9
↓ PPARγ, FABP4, FAS,
↓ p300 and C/EBPα

[215]
[79,218]
[225,226]
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Table 1. Cont.

BCs Effects Model Mechanisms Ref

TGS

↑ Energy metabolism

Cardiomyocytes
Skeletal myoblasts

Vascular endothelial
cells Epithelial cells

↑Mitochondrial oxygen consumption,
↑ Cellular respiration
↑ ATP production

[233,234]

Cardiomyocytes
and neurons

↑ SIRT1/PGC1α axis, ↑ NRF2
↑Mitochondrial biosynthesis [235,236]

↓ Inflammation

Inflammatory
condition ↓ NF-κB and proinflammatory cytokines [239,240]

LPS-
stimulated microglia ↓MAPK phosphorylation, ↑ CREB [241]

LPS-induced RAW
264.7 macrophages ↓ JAK2/STAT3 activation [230]

CCl(4)-induced acute
liver injured mice

↓ NF-κB subunit p65 and COX-2
↓ ERK, JNK, and MAPK, p38 [242]

Thioacetamide-
induced liver injured

mice
D-GalN and

LPS-induced liver
injured mice

↓ TNFα, IL-1β, IL-6, and caspase-1
↓ liver fibrosis, ↓ NF-κB, p38/ERK

↑ SIRT1 and NRF2
[243,244]

D-GalN and
LPS-induced acute

injured mice
↓ TLR4, ↓ NF-κB and MAPK [245]

Cancer cell lines

↓ EGF and EGFR phosphorylation
↓ ERK1/2, p38, and c-JNK activation

↓ ROS/ERK pathway, ↓
ERK-Akt pathway

[249]
[250,251]
[252,253]

↑ Anti-diabetes
High-fat diet and

STZ-induced
diabetic rats

↓ Gluconeogenesis, ↑ glucose transport
↑ insulin production [254,255]
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