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Abstract: DNA-metabarcoding is becoming more widely used for routine authentication of meat-
based food and feed products. Several methods validating species identification methods through
amplicon sequencing have already been published. These use a variety of barcodes and analysis
workflows, however, no methodical comparison of available algorithms and parameter optimization
are published hitherto for meat-based products’ authenticity. Additionally, many published methods
use very small subsets of the available reference sequences, thereby limiting the potential of the
analysis and leading to over-optimistic performance estimates. We here predict and compare the
ability of published barcodes to distinguish taxa in the BLAST NT database. We then use a dataset
of 79 reference samples, spanning 32 taxa, to benchmark and optimize a metabarcoding analysis
workflow for 16S rDNA Illumina sequencing. Furthermore, we provide recommendations as to
the parameter choices, sequencing depth, and thresholds that should be used to analyze meat
metabarcoding sequencing experiments. The analysis workflow is publicly available, and includes
ready-to-use tools for validation and benchmarking.

Keywords: DNA metabarcoding; amplicon sequencing; food authenticity; food adulteration; next
generation sequencing; bioinformatics; validation; benchmarking

1. Introduction

Commercial food and feed are subjected to international regulations, ensuring that
they are safe and conform to the packaging declarations. Meat products are especially
prone to adulteration. This can be the replacement of expensive ingredients with cheaper
meat products, misinformation by the addition of undeclared components, or the absence
of declared components [1,2]. Classical DNA-based methods such as Polymerase Chain
Reaction (PCR) amplification, restriction fragment length polymorphism, or DNA-chips, as
well as protein-based methods such as ELISA are limited by their target-based approach.
As such, their results are limited to a binary answer regarding a single component and
they may not be able to identify all ingredients present in a sample. Sanger sequencing,
on the other hand, is a widely used untargeted method for the identification of food
ingredients. Unlike targeted methods, untargeted methods do not require prior knowledge
of specific targets and can analyze a broader range of ingredients. However, it should be
noted that the Sanger sequencing application is limited to pure samples [1]. MALDI-based
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methods are being developed to overcome these challenges, but the collection of reference
spectra is still a work-intensive process [3]. Next-generation sequencing (NGS) methods
for food authenticity have been developed in the last decade, taking advantage of the
untargeted possibilities of the technology and of existing extensive databases of nucleotide
sequences [4,5].

Some NGS methods focus on a metagenomics approach, i.e., sequencing of all DNA-
sequences in a sample [6,7]. Other methods use a metabarcoding approach, in which a small
conserved DNA fragment is amplified and sequenced, while sequence differences allow
for specific taxa identification [8–14]. This method allows untargeted species identification
and increased parallelization of sample processing and analysis, while taking advantage of
the massive amount of reference sequences available in dedicated databases. The choice of
barcode is however non-trivial and can have a strong effect on the method’s performance:
barcodes should be short enough to still be detectable in highly degraded samples, while
still allowing to distinguish between closely related organisms [15]. Metabarcoding presents
several advantages over metagenomics: decreased costs, larger reference collections, and
less complex analysis, however at the cost of lower taxonomic resolution, being limited
to a subset of the taxonomy, and being prone to PCR artifacts [16]. For these reasons,
metabarcoding methods are currently widely used for food authenticity determination in a
wide-range of matrices [8–12,14,17–19].

Various methods for sample preparation and sequencing of meat products were
validated and published, focusing on the two main short-read sequencing technolo-
gies [8,10,11,13,14]. While the IonTorrent platform offers proprietary data analysis solutions,
a number of alternative bioinformatics workflows are published for Illumina sequencing
data [8,9,11,14]. However, currently published workflows present various drawbacks:
(1) none of them is freely available beyond the publication; (2) parameter choices in these
workflows appear to be arbitrary, with no comparison of different parameters and/or tools,
and can widely differ between workflows; (3) most validations were performed using a very
limited subset of reference databases, yielding over-optimistic validation performances.

Our goal here is three-fold. Firstly, we aim to assess the possibilities of using large
databases such as the NCBI NT database [4] for metabarcoding analysis and compare
predicted performances of different metabarcoding methods. Secondly, our goal is to
benchmark a selection of algorithms and parameter sets and validate an optimized analysis
workflow. To this end, we used a dataset of 79 real samples, spanning 32 individual taxa.
We methodically optimized the bioinformatics analysis on this dataset and present a set of
parameters for optimal analysis performance. Lastly, we calculate the accuracy of the analy-
sis and formulate recommendations regarding the limit of detection and sequencing depth.
Both the dataset and software programs used in this study are made freely available to help
future improvement and practical applications in food authenticity analysis laboratories.

2. Materials and Methods
2.1. Reference Material

The 79 reference samples used in the study were acquired from commercial providers
DLA Proficiency Tests GmbH (www.dla-lvu.de; accessed on 1 December 2022), Laborvergle-
ichsuntersuchungen Gbr, (www.lvus.de; accessed on 1 December 2022), and LGC Standards
(www.lgcstandards.com; accessed on 1 December 2022) were part of interlaboratory ring
trials [10], or prepared from certified reference materials or materials whose identity was
determined by a certified veterinarian and Sanger sequencing (see Table S1). Some of these
samples were used in a previous study [9].

Samples were prepared and sequenced as previously described [9]. Raw sequencing
data are deposited to the European Nucleotide Archive with Project accession PRJEB57117.

Down-sampling was performed using the SeqTK ‘sample’ tool [20]. The sample size
and replicate number were concatenated and used as a seed for the random read selection
process. The same seed was used on forward and reverse reads.

www.dla-lvu.de
www.lvus.de
www.lgcstandards.com
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The BLAST NT database was downloaded on 12 November 2021 and the tax dump
files on 19 November 2021 [4].

2.2. In Silico Barcode Analysis

Recovery and analysis of the barcode sequences from the BLAST NT Database [4] was
performed using the BaRCoD v1.1.1 pipeline [21]. Briefly, the nucleotide database was
filtered to include only Amniote sequences. Primer sequences (Table S2) were searched
using the BLAST+ command line tools, with parameters reproducing the implementation
of the Primer-BLAST tool. For this, we used a coverage value of 80% and an identity
value of 65% [22,23]. Sequences flanked by facing primer sequences were considered
barcodes and extracted, and a new BLAST database was created using these sequences.
Barcode sequences were then dereplicated in a taxon-wise fashion, primer sequences
were removed using cutadapt [24], and global pairwise alignment was performed with
VSearch [25]. The pairwise alignments were used to calculate hamming distances. To
determine a consensus level for each sequence, we considered all sequences within a given
identity level (1-hamming distance/sequence length), the lowest node shared by a majority
of taxa was determined as a consensus taxon determined using TaxidTools [26], and the
NCBI taxonomy classification [4]. Conspecific probability was calculated as previously
described [27].

2.3. Metabarcoding Analysis

Sequencing data analysis was performed with FooDMe v1.6.3 [28]. Parameters indi-
cated thereafter were used if not specified otherwise in the text or figures.

2.3.1. Reads Preprocessing

Primer sequences (Table S2) and their reverse complements were trimmed from the 5′

and 3′ ends of the reads, respectively, using cutadapt [24] with an error rate of 0.1. Trimmed
reads were filtered with fastp [29] to discard reads shorter than 50 bp and trim trails using
a window of 4 bp with a minimal quality of 25.

2.3.2. De Novo Identity Clustering

Identity clustering was performed with VSearch [25]. Reads were merged with the
‘–fastq_mergepairs’ function, and a quality filter was applied to keep pseudo-reads between
70 and 100 bp and a maximum of 2 expected errors. Pseudo-reads were dereplicated before
being clustered with the ‘–cluster_size’ function, using identity levels between 0.97 and
1.0 (dereplication), and OTUs were sorted by size, discarding clusters with less than 2 reads.
If required, chimeras were detected and removed using the ‘–uchime_denovo’ function.

2.3.3. Denoising

Denoising was performed with DADA2 [30]. Read pairs were filtered to remove those
with more than 2 expected errors using the ‘filterAndTrim’ function. Forward and reverse
error rates were determined with the ‘learnError’ function, and reads were corrected using
the error model in the ‘dada’ function. Finally, corrected reads were merged with the
‘mergePairs’ function while allowing for 1 mismatch. If necessary, chimeras were detected
and filtered using the ‘removeBimeraDenovo’ function using the ‘per-sample’ method.

2.3.4. Taxonomic Assignment

A mask was created for the BLAST NT database [4] by filtering sequence ID corre-
sponding to Vertebrate taxa. Sequences corresponding to extinct taxa were then filtered
from this list. OTUs or ASVs were then searched against the masked database using the
BLAST+ program [22] using ‘megablast’ searches with filters for e-value (1.0× 10−10), iden-
tity (97), and coverage (100). Results were then filtered by applying a bitscore filter [31] of 4,
meaning that for each OTU/ASV, matches with a bitscore difference to the best match for
this cluster above 4 were discarded. The consensus taxon for each cluster was determined
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with TaxidTools [26] by applying a majority vote on the matching taxa, with a minimum
threshold of 0.51. The consensus corresponds to the lowest node common to at least X
fractions of the taxa, X being the consensus level [32].

2.4. Performance Analysis

Run performances were determined using the ‘benchmark’ module of FooDMe [28].
The observed compositions of each sample were compared to their expected values
(Table S1). For this, a concentration threshold of 0.1% was applied and correspondences
between expected and predicted values were considered at the genus level. Precision scores,
recall scores, average precision scores, and F-scores were calculated using the appropri-
ate functions of the ‘scikit-learn’ or ‘yardstick’ libraries [33,34]. Euclidean distance was
determined with NumPy’s ‘linalg.norm’ function [35]. Relative error was determined as
E = |predicted − expected| ÷ expected.

2.5. Figure Preparation and Statistical Analysis

Figures were prepared in R using the ‘tidyverse’, ‘ggpubr’, ‘rstatix’, ‘yardstick’, and
‘cowplot’ libraries [34]. Variations within groups were analyzed using the Kruskal-Wallis
test. Variations between groups were analyzed using ANOVA on quantile-normalized
values (Average precision) or original values (Distance). Yield, average precision, and
distance distribution were compared using the Wilcoxon test and p-values were corrected
for multiple comparisons using FDR correction. Different levels of p-values threshold are
indicated as follows: n.s. (p ≤ 1); * (p < 0.05); ** (p < 0.01); *** (p < 0.001); **** (p < 0.0001).

3. Results
3.1. Barcode Specificity

Successful identification of the taxon associated with each barcode depends on both
the availability of the sequences in the reference database and their differentiability from
sequences associated with other taxa. Several distinct methods have been published for
birds and mammals barcoding (Table 1 and Table S2) [8,11,14,36–38], targeting different con-
served genes: the 16S ribosomal small subunit (16S), Cytochrome B (cytB), or Cytochrome
oxidase 1 (COI/COX1). The 16S rDNA-based metabarcoding method published by Dobro-
volny et al. in 2019 [11] is currently being adopted as an official method by the German
consumer protection authorities and its performances were carefully measured in a recent
series of studies [9–11,39]. We, therefore, chose to focus our benchmarking and optimization
efforts on this method. Nevertheless, we wanted to compare the predicted performances
of this method to other published barcoding methods, as potential shortcomings could be
overcome by an alternative barcode.

Table 1. Comparison of barcode number and assignment rank for different targets.

Method
Number of

Taxids
Retrieved

Median
Number of
Barcode per

Taxid a

Median
Length of

Barcode [bp] b

97% Identity 100% Identity
Sequences Assigned at Max. Sequences Assigned at Max.

Species Level
[%]

Genus Level
[%]

Species Level
[%]

Genus Level
[%]

16S_dobrovolny 7701 3 75 66.77 85.36 81.98 93.27
16S_xing 6383 3 204 78.53 95.07 93.29 98.21

cox1_palumbi 2293 5 522 90.16 97.82 97.08 98.63
cytB_meyer 10,909 25 333 91.31 98.47 95.29 98.89

cytB_palumbi 10,078 35 741 94.55 99.17 97.93 99.56
cytB_VDLUFA 18,136 16 220 89.95 98.52 94.38 98.85

miniCOI_palumbo 5482 2 151 82.55 95.46 92.86 97.71

a Unique sequences only. b Not including primer sequences.

For this purpose, we first extracted all Amniota (the clade grouping birds and mam-
mals taxa, as well as reptiles) barcode sequences for seven different primer sets using a
local implementation of the Primer-BLAST algorithm [21,23]. For each different barcode,
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we determined all other barcodes within 97% identity distance. We then determined the
taxonomic assignment consensus that would result in either a 97% or 100% identity clus-
tering for this sequence, based on a strict majority consensus of all barcodes clustering
together at the identity level (Table 1).

Of over 35,000 Amniota taxa represented in the BLAST NT database, the methods
based on cytochrome B amplification were the ones that yielded barcodes for the most
taxa (over 10,000), with the VDLUFA method yielding barcodes for over 18,000. The
COX1/COI methods, on the other hand, were the most restricted, yielding barcodes for
under 5500 taxa. All methods yielded high assignment quality for both 97% identity and
100% identity, with more than 95% and 97% of barcodes being assigned at the genus level
or below, respectively. The 16S-based method published by Dobrovolny et al. (2019) [11]
performed significantly worse at the 97% identity level, with 10% fewer barcodes assigned
at the genus level or better, and only slightly worse at the 100% identity level. This might
be because the amplicon sequence for this method is especially short (~75 bp excluding
amplification primers).

Because most taxa in the BLAST NT database are not relevant for food authenticity,
we looked closer at a list of food- and feed-stuff-relevant or -adjacent species curated by the
German Consumer Protection and Food Safety Office [40,41]. We examined whether each
barcoding method could retrieve at least one barcode for each mammal and bird species in
this list (Table 2).

Table 2. Food- and feed- relevant and -adjacent species amplifiability predictions for different
barcoding methods. A ‘+’ indicates that at least one sequence was retrieved for the given organism
using the method in the header, and a grayed ‘0’ indicates that no sequence was retrieved for
this organism.

Organism Taxid Common Name 16S Dobro-
volny 16S Xing COX1

Palumbi
cytB

Meyer
cytB

Palumbi
cytB

VDLUFA
MiniCOI
Palumbo

Addax
nasomaculatus 59515 Addax + + + + + + +

Ailuropoda
melanoleuca 9646 Giant panda + + 0 + + + +

Alcelaphus
buselaphus 59517 Hartebeest + + 0 + + + +

Alcelaphus caama 59519 Red hartebeest + + 0 + + + +
Alces alces 9852 Eurasian elk + + 0 0 0 + +

Alectoris chukar 9078 Chukar partridge + + + + + + +
Ammotragus lervia 9899 Barbary sheep + + + + + + +

Anas
platyrhynchos 8839 Duck + + + + + + +

Anser anser 8843 Greylag goose + + + + + + +
Anser cygnoides 8845 Chinese goose + + 0 + + + +
Anser indicus 8846 Bar-headed goose + + + + + + +
Anser rossii 56281 Ross’ goose 0 0 0 0 0 0 0
Antidorcas
marsupialis 59523 Springbok + + + + + + +

Bison bison 9901 Bison + + 0 + + + +
Bison bonasus 9902 Wisent + + + + + + +

Bos mutus 72004 Yak + + 0 + + + +
Bos taurus 9913 Cattle + + + + + + +

Bubalus bubalis 89462 Water buffalo + + + + + + +
Cairina moschata 8855 Muscovy duck + + 0 + + + +

Canis lupus 9612 Grey wolf, dog + + + + + + +
Capra aegagrus 9923 Wild goat + + + + + + +

Capra hircus 9925 Domestic goat + + + + + + +
Capra ibex 72542 Ibex + + + + + + +
Capreolus
capreolus 9858 Roe deer + + 0 + + + +

Cavia porcellus 10141 Guinea pig + + 0 + + + +
Cervus elaphus 9860 Red deer + + + + + + +
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Table 2. Cont.

Organism Taxid Common Name 16S Dobro-
volny 16S Xing COX1

Palumbi
cytB

Meyer
cytB

Palumbi
cytB

VDLUFA
MiniCOI
Palumbo

Cervus nippon 9863 Sika deer + + 0 + + + +
Columba livia 8932 Domestic pigeon + + 0 + + + +

Connochaetes gnou 59528 Black wildebeest + + 0 + + + +
Connochaetes

taurinus 9927 Blue wildebeest + + + + + + +

Coturnix coturnix 9091 Common quail + + 0 + + + +
Coturnix japonica 93934 Japanese quail + + 0 + + + +

Cygnus olor 8869 Mute swan + + 0 + + + +
Dama dama 30532 Fallow deer 0 0 0 0 0 + 0
Damaliscus
pygargus 9931 Bontebok + + + + + + +

Equus asinus 9793 Donkey + + + + + + +
Equus caballus 9796 Horse + + + + + + +
Equus quagga 89248 Plain zebra 0 0 0 0 0 + 0
Equus zebra 9791 Mountain zebra + + + + + + +
Felis catus 9685 Cat + + + + + + +

Gallus gallus 9031 Chicken + + + + + + +
Gazella dorcas 37751 Dorcas gazelle + + 0 + + + +

Gazella
subgutturosa 59529 Black-tailed

gazelle + + 0 + + + +

Glis glis 41261 Fat dormouse + + 0 + + + +
Hippotragus niger 37189 Sable antelope + + 0 + + + +

Kobus
ellipsiprymnus 9962 Waterbuck + + 0 + + + +

Lama glama 9844 Llama + + + + + + +
Lepus europaeus 9983 European hare + + 0 + + + +

Macropus
fuliginosus 9316 Western gray

kangaroo + + 0 0 0 + 0

Macropus
giganteus 9317 Eastern gray

kangaroo + + 0 + + + +

Marmota marmota 9993 Alpine marmot 0 0 0 0 0 0 0

Martes martes 29065 European pine
marten + + 0 + + + +

Meleagris
gallopavo 9103 Turkey + + + + + + +

Muntiacus reevesi 9886 Reeves’ muntjac + + 0 + + + +
Mus musculus 10090 Mouse + + + + + + +

Myodes glareolus 447135 Bank vole + + + + + + +

Numida meleagris 8996 Helmeted
guineafowl + + 0 + 0 + +

Oryctolagus
cuniculus 9986 Rabbit + + + + + + +

Oryx dammah 59534 Scimitar-horned
oryx + + + + + + +

Oryx gazella 9958 Gemsbok + + + + + + +
Osphranter

robustus 9319 Common
wallaroo + + 0 + + + +

Osphranter rufus 9321 Red kangaroo + + + + + + +
Ovibos moschatus 37176 Musk ox + + 0 0 0 + +

Ovis aries 9940 Sheep + + + + + + +
Ovis orientalis 469796 Asiatic mouflon + + + + + + +

Phasianus
colchicus 9054 Common

pheasant + + 0 + + + +

Rangifer tarandus 9870 Reindeer + + + + + + +
Rattus norvegicus 10116 Rat + + + + + + +
Struthio camelus 8801 Ostrich + + 0 + + + +

Sus scrofa 9823 Pig + + + + + + +
Syncerus caffer 9970 African buffalo + + + + + + +

Tragelaphus oryx 9945 Eland + + + + + + +
Tragelaphus spekii 69298 Sitatunga + + 0 + + + +

Vulpes vulpes 9627 Red fox + + + + + + +

Surprisingly, the 16S and the VDLUFA-cytochrome B methods performed better on
the selected species than all other methods. This is likely due to the higher conservation
of the primer-binding regions for these methods across the birds and mammals classes.
Notably, no methods could find barcodes corresponding to Anser rossii (Ross’ goose) and
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Marmota marmota (alpine marmot), which might reflect the absence or bad quality of
mitochondrial sequences for these species in the database. The 16S methods were unable to
retrieve barcodes for Dama dama (fallow deer) and Equus quagga (plains zebra), whereas the
VDLUFA method was able to. The inability of the Dobrovolny method to amplify fallow
deer was reported before [9] and the method has since then been improved to overcome
this problem [42].

Aside from that, the 16-based Dobrovolny method [11] features several advantages.
Firstly, the very short amplicons make this method the most suitable for highly processed
matrices, where DNA might be heavily degraded [15,43]. Secondly, its ability to amplify
most species of interest (Table 2) and a large spectrum of Amniota taxa (Table 1) was shown
in silico. Thirdly, there is a growing body of literature on the suitability of this method
for metabarcoding experiments, including interlaboratory validation [9–11]. This method
also presents some drawbacks, namely comparatively bad predicted performances at 97%
identity clustering, and the species rank for 100% identity clustering (Table 1). However,
for meat speciation in food and feed, identification at the genus level is usually sufficient
for the detection of fraud.

3.2. Workflow Benchmarking and Optimization

The metabarcoding data analysis workflow can be separated into three main phases:

1. Reads preprocessing, where primer sequences are removed, and bad quality bases
are trimmed;

2. Clustering, where reads satisfying a given identity level are grouped together;
3. Taxonomic assignment, where clusters of reads are assigned to taxonomic nodes.

Each of these steps can be performed using a variety of different algorithms, each with
several parameters, whose values can have a strong impact on the quality of the analysis.
Several studies of meat-products metabarcoding have been published in the past years, each
using different analysis workflows and reference databases (Table S3). In order to objectively
compare different algorithms and parameters, we collected 16S metabarcoding experiments
for 79 different samples, totalizing 32 different species (Table S1). The dataset is enriched
for taxa at around 1%, which is the threshold commonly used in diagnostic laboratories
as a lower limit for legal action in case of undeclared species. For each parameter set, we
analyzed all samples assigning reads using the full BLAST NT database. The workflow’s
performances were determined both qualitatively and quantitatively. Qualitatively, we
compared the observed and expected composition of the samples at the genus level, and
we calculated the average precision, which is the geometric mean of the precision and recall.
Quantitatively, we determined the yield of the analysis as the number of reads retained
through to taxonomic assignment and calculated the Euclidean (or L2) distance between the
vector of predicted values and the vector of expected values, reflecting how far predictions
are from the expected compositions of the samples.

3.2.1. Benchmarking Clustering Parameters

The main bottleneck of the analysis is to obtain read clusters that accurately de-
scribe the real composition of the sample. Several clustering methods have been de-
scribed, amongst which de novo identity clustering and denoising are the main represen-
tatives [30,44–46]. We here compared the effects of clustering reads with a 95%, 97%, and
100% (dereplication) identity threshold and using denoising (Figure 1).

While the clustering algorithm choice made no significant difference in the qualita-
tive and quantitative accuracy of the results (Figure 1A,B), the denoising method had a
significantly higher yield than de novo clustering with either identity level (Figure 1C). The
median yield for denoising was 99%, with most samples above 98%, whereas it fell to a
median yield of 97% for dereplication, with samples as low as 93% yield. Additionally, the
clusters produced by the denoising algorithm were much closer to the real sample compo-
sition, as shown by the splitting level, calculated by taking the log10 of the ratio of cluster
number to expected components in each sample (Figure 1D). The splitting level median
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was close to one for denoising, indicating that each “real” sequence was split between
10 clusters. This level was increasingly high with increasing identity level for the de novo
identity clustering method. It reached a median value of 2.5 for the dereplication, indicating
that each “real” sequence was split between over 300 clusters. This had a significant impact
on the run time of the workflow (Figure 1E). The dereplication method ran over 20 min per
sample per core, whereas other methods ran for under 10 min per sample per core. This is
consistent with previous work showing a more accurate clustering using denoising [27,45].
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clidean distance between predicted and expected compositions; (C) Workflow yields in the number
of reads after the read merging step (Merged), after clustering (Clustered), and after taxonomic
assignment (Assigned). The dots indicate the median value within each group and the lines represent
the range of the distribution. Differences between the groups’ means were tested with the Wilcoxon
test for paired samples, using Denoising as the reference group. (D) Amplicon sequence splitting
level is expressed as the log10-fold change between the expected number of taxa in each sample and
the number of predicted sequence clusters. (E) Average analysis runtime for the 79 samples dataset,
expressed in minutes per core per sample. Violin plot outlines represent the kernel density function
of the distribution, the included white boxplots represent the range (lines), quartiles (box edges) and
median (middle line of the boxes) of the distribution, and outliers are represented by a black point.
Different levels of p-values threshold are indicated as follows: *** (p < 0.001); **** (p < 0.0001).

When using denoising, we noticed that it was important to allow for one mismatch
for reads merging (Figure S1). Using a strict identity for merging resulted in a considerable
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yield loss of up to 8%, while allowing one mismatch did not affect the quantitative and
qualitative accuracy of the results while maximizing yield. This is due to the short size
of the amplicon, which combined with a long read length means that the entire barcode
(~75 bp) is used as an overlapping sequence for merging.

We also checked whether detecting and filtering chimeric reads after denoising in-
fluenced the results. Although filtering chimera slightly affected yield, in the order of a
few percent of the reads, neither the quantitative nor the qualitative performances of the
workflow were affected (Figure S2). This likely indicates that very few chimeric sequences
are formed during both PCR and sequencing steps using the previously published 16S
method [9,11].

In conclusion, we show here that all four tested clustering algorithms yield similar
results. However, using denoising while allowing one mismatch in the overlapping se-
quences during read merging maximizes yield and gives clusters closer to the expected
sample composition.

3.2.2. Optimization of Taxonomic Assignment

Consensus sequences for each cluster need to be assigned to a taxonomic node. This
was done using the ‘megablast’ tool by looking for highly similar sequences in the BLAST
NT database. As only part of the database is relevant for the identification of birds and
mammals, the database was pre-filtered to exclude taxa not belonging to the Vertebrate
clade. A BLAST search typically yields many results, most of which are far off the target.
In order to narrow the search, several filters are available [31]. We applied a first hard filter
consisting of an expect-value (E-value; describes the number of hits one might expect to
see by chance in the database) and an identity level (the fraction of identical nucleotides
between hit and query) thresholds. Results were then post-filtered using bitscore difference
to keep only results within a certain distance to the best result for this query. Finally, each
cluster was assigned to a taxonomic node based on a minimal consensus level, between 51%
(majority consensus) and 100% (last common ancestor). Using this process, it is possible to
assign a taxonomic node to all clusters, even with divergent results, although the consensus
may be at the genus or higher rank [32].

The E-value threshold did not influence the assignment accuracy (Figure S3). This is
due to the downstream decision of considering only the top results from the BLAST search.
It is, however, important to note that using an E-Value threshold lower than 1.0 × 10−20

returned no hits from the BLAST search.
Because the multiple filtering process can have complex synergistic effects, we used

a matrix design to test a range of values for each filter: BLAST identity level was varied
between 95% and 100%, bitscore difference between 0 and 8 bits, and minimal consensus
between 51% and 100%. We then checked if any filter, or combination of filters, had a
significant effect on the result’s accuracy using analysis of variance (ANOVA).

The ANOVA of average precision values showed a significant effect on each individual
filter (Figure 2A). As well as combined effects of the minimal consensus and bitscore
filters. However, when omitting the parameter value of 8 for the bitscore filter, which
gave significantly worse results than any other (Figure 2C), the interaction effect was not
observed anymore. We, therefore, analyzed each effect individually. Average precision
improved gradually with improving BLAST identity values, yielding the best results for
100% identity values (Figure 2B). In this context, the bitscore filter was redundant with the
identity filter and yielded similar results for any value below 8 (Figure 2C). Consensus
gave the best results with values of 80% or below, the value of 100% (last common ancestor)
gave significantly worse results (Figure 2D).
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line of the boxes) of the distribution, and outliers are represented by a black point. Different levels of
p-values threshold are indicated as follows: n.s. (p ≤ 1); * (p < 0.05); *** (p < 0.001); **** (p < 0.0001).
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For the Euclidean distance, ANOVA only detected a significant effect of the consensus
filter (Figure 2E). Here again, all values below 100% yielded similar results (Figure 2F).
The loss of quantitative accuracy at 100% is most likely due to the decrease in qualitative
performance at this level, leading to a misassignment of sequences, ultimately resulting in
a different predicted composition.

Based on these results, the taxonomic assignment appears very robust to different
filtering values within the measured ranges. Best results are observed with a BLAST
identity value of 100%, the bitscore difference filter should allow for a maximum of 4 bits
difference and consensus should be determined using a majority vote (51%). More stringent
parameters (lower bitscore difference and higher minimum consensus level) could be used
if necessary to distinguish highly similar sequences, without predicted adverse effects.

3.3. Detection Limit

A common strategy to filter noise from real signals is to set a minimal proportion
threshold under which the signal is considered negative. To find the optimal threshold,
we calculated precision, and recall in 0.01% of total composition increments (Figure 3A).
Recall rapidly decayed after 1%, consistent with the fact that many components were
present at a 1% proportion in the dataset. Precision rapidly increased before reaching a
plateau at around 0.1%. To find the optimal threshold, we calculated the F2-score, which
is the geometric mean of the recall and precision, whereby the recall is considered twice
as important as the precision. The F2-score maximum was reached at a threshold value of
0.093%, which can be rounded to 0.1%. This threshold value agrees with the previously
published values for small curated databases [10,11].
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Figure 3. Workflow performances and determination of a minimal composition threshold. (A) The
precision-recall curve shows the precision (blue), recall (green) and F2-scores (red) over a range
of thresholds. The dashed grey line shows the threshold with the maximum F2-score. The X-axis
is log10 scaled. (B) Relative quantification error in the function of the expected proportion in the
sample. Each dot represents a single true positive result. The grey line represents the local estimated
scatterplot smoothing. Both axes are log10 scaled.

3.4. Performance Evaluation

Based on the choice of parameters and threshold exposed previously, we calculated
various performance metrics for the workflow at both species level, which is the highest
resolution that can reasonably be obtained, and genus level, which, although not as res-
olutive as species, generally yields sufficient information for authenticity determination.
At the species and genus levels, respectively, we observed a precision of 90% and 98%,
meaning that 10% and 2% of the determined taxa were not expected in the samples. We
also observed a recall of 93% and 96%, respectively, meaning that 7% and 4% of the taxa
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present in the sample were not found (Table 3). These results include 18 samples containing
fallow deer (Dama dama) to various levels (Table S4). As we showed earlier, and as was
previously published, fallow deer is a known miss for the 16S Dobrovolny method used
here [9]. When correcting for fallow deer, the precision and recall increased to 90% and
96% at the species level, and 98% and 99% at the genus level. This is slightly lower than
the previously reported 100% precision and recall for the method. However, these reports
were based on the use of a custom database containing 51 entries at most [9–11]. The
database used here contains entries for 16S sequences of over 7700 taxa (Table 1). It should
be noted that the performance values reported here are slightly under-estimated. This is
due to the fact that some proficiency test samples contain trace amounts of species not
added intentionally, e.g., LVU_2018_B, DLA45/2019-2, and DLAptAUS2/2020-3.1, where
the majority of participants detected red deer, goat, and horse, respectively, in addition
to the expected species [47]. Similarly, several prediction errors are likely linked to incor-
rect sample compositions: both replicates of the LGC 7244 samples are false negative for
chicken, due to chicken being detected under the 0.1% threshold, which was also reported
in a previous study with another bioinformatic method [9]. The same study reported a goat
positive result for the unintentional traces of goat in sample DLA45/2019-2, which we also
observed with our method.

Table 3. Qualitative performance summary of the workflow.

Evaluation Rank

Confusion Matrix Performance Metrics

True
Positives

False
Positives

False
Negatives Recall Precision

Species a 490 (84%) 56 (10%) 39 (7%) 93% 90%
Species b 490 (86%) 56 (10%) 21 (4%) 96% 90%
Genus a 494 (95%) 6 (1%) 21 (4%) 96% 99%
Genus b 494 (98%) 6 (1%) 3 (1%) 99% 99%

a Including 18 Dama dama components. b Corrected for Dama dama.

We also measured the quantitative performance of the workflow by comparing ex-
pected vs. predicted proportions of components in the samples. For this, we calculated the
absolute value of the difference between expected and predicted proportions and normal-
ized it by the expected proportion (Figure 3B). The relative quantification error peaked at
about 60% for components present at 1% in the samples and decreased to a few percent
for components making up more than half of the sample. However, a large variance was
observed, and the relative error varied to up to five times the expected amount for some
low-concentration components. These values are within the variance reported previously,
which was shown to be comparable to quantitative real-time PCR assays [9].

In conclusion, the workflow presented here is a very robust screening method for
detecting components at 1% or higher. Results should however be interpreted with care
and confirmed with a parallel assay such as quantitative or digital PCR, in particular, if
quantification is needed.

3.5. Effects of Sequencing Depth on Prediction Recall and Variance

To determine the effects of sequencing depth on the precision and robustness of the
results, we selected a subset of 35 samples with at least 350,000 read-pairs each, and whose
composition structure was similar to that of the full dataset (Figure S4). We then randomly
selected subsets of the samples to produce down-samples with 1000 to 200,000 reads each,
in 8 independent replicates. Recall and Euclidean distances were then determined for each
down-sample as previously described.

Apart from the sample with 1000 reads, all sampling depths led to comparable results
in terms of recall and variance thereof (Figure 4A,B). With only 1000, we could observe a
drop in the recall in many samples, which was associated with an increase in the variance
of the recall within sample replicates. Only marginal improvements could be observed
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above 5000 reads, and until 80,000 reads. Above 80,000 reads, no increase in recall could be
measured. The Euclidean distance, however, did not vary across the measured range of
sampling depths (Figure 4C).
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Figure 4. Effects of subsampling of prediction recall and robustness. (A) Sample recall across a range
of sampling depths from 1000 to 200,000 reads. (B) Recall variance across a range of sampling depths.
Each dot represents a sample. (C) Euclidean distance does not vary in the observed sampling depth
range. Violin plots outlines represent the kernel density plot of the distribution, the included white
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the distribution, outliers are represented by a black point. Different levels of p-values threshold are
indicated as follows: n.s. (p ≤ 1); * (p < 0.05); **** (p < 0.0001).

The performance plateau reached at 5000 reads is consistent with a previous study
on environmental samples metabarcoding [48], while theoretical calculations for metage-
nomics experiments proposed 15,000 reads for taxa identification at a 1% threshold [6].
These values are however results of simulations and should be verified experimentally.
Most importantly, these do not account for random noise, which might become more visible
when sequencing at low depths.
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4. Discussion

Our aims here were threefold: (1) Compare the suitability of different published bar-
code sequences to distinguish mammal and bird species in the full BLAST NT database
(2) Optimize the data analysis workflow for Illumina 16S rDNA sequencing using a large
dataset of reference samples representative of typical food samples; (3) Validate the work-
flow and provide minimal input data criteria for accurate and reproducible analysis.

The choice of the barcode for metabarcoding analysis is not trivial and can heavily
influence the results of the experiments. One must consider how common this sequence is
in the taxa of interests, whether it is specific enough to distinguish different species, and
whether it can reliably be amplified from the samples. We here compared a selection of
7 different published barcodes used for either Sanger-based species identification [36–38]
or in metabarcoding experiments [8,11,14]. These sequences target either the 16S rDNA,
COI/COX1, or cytB genes. For each of these, we determined how many taxa could be
retrieved from the BLAST NT database. We measured the taxonomic specificity of each
sequence retrieved this way. Finally, we specifically checked whether a set of usual food
components or contaminants [40] could be identified using these sequences. We observed
that cytB-based methods and especially the VDLUFA method [38], had the best-predicted
performances across the Vertebrate clade. The 16S method from Dobrovolny et al. suffered
from a lower predicted accuracy but was expected to be able to amplify sequences from
most taxa of interest. In addition, it has the advantage of using a very short sequence of
~75 bp, allowing the analysis of highly processed products in which nucleic acids may
be degraded [15]. This method is also currently being validated on a large scale and was
previously shown to work for a range of food and feed products [9,10]. For these reasons,
we chose to focus on this method for the rest of the study. It should however be noted that
we predicted the cytB-based VDLUFA method to perform also very well, amplifying and
distinguishing a large range of species. It could be a good complement to the Dobrovolny
method, provided that the longer sequences of ~220 bp can be amplified from the samples
to analyze.

We then set on optimizing the data analysis workflow by comparing different algo-
rithms and parameter combinations on a set of reference samples. These span 32 taxa
of interest and are enriched for concentrations at around 1%, which is the limit usually
used for legal labeling obligations. The data analysis workflow can be separated into three
main steps. Firstly, the reads are checked for quality, amplification primers and sequencing
adapters are removed, and bad quality trailing bases are trimmed. Then the reads are
grouped into clusters of similar sequences. Finally, each cluster is assigned to a taxonomic
node [49]. With the selected method, the barcode is significantly shorter (~75 bp) than the
sequencing reads (150 bp). In this case, the sequencing read goes through the amplicon.
After primer trimming, the reads are halved, and trailing bad quality bases are already
removed. Optimization of the read trimming was, therefore, not necessary here. This
should, however, be considered when using a longer barcode, or when sequencing with
shorter read lengths available on Illumina platforms.

The clustering step is important as it determines which sequences will be used to in-
terrogate the reference database, and ultimately determine sample composition. Classically,
reads are clustered in Operational Taxonomic Units (OTUs) by identity threshold, in general
with an identity level of 97%, although it was discussed in recent years that much higher
thresholds should be used [27,46]. The accuracy of OTUs is now largely contested, and
new statistical methods have been published that aim at determining Amplicon Sequence
Variants (ASVs) using denoising procedures [30]. ASVs are expected to better represent the
sample composition, whereas OTUs generally overestimate diversity [45]. While OTUs at
97% identity group highly similar sequences and 100% identity would simply dereplicate
sequencing reads without filtering noise, ASVs address both issues by determining the
correct sequences based on read quality scores. However, several publications nuanced
this claim, putting ASVs on par with OTUs [50,51]. Here, we compared the effects of iden-
tity clustering at 95%, 97%, 100% (dereplication), and denoising and found no significant
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differences in terms of prediction accuracy. ASVs did result in a slightly higher yield, and
the number of clusters determined was much closer to the true composition of the sample,
resulting in a faster processing time than dereplication. For these reasons, we chose to keep
working with ASVs, although OTUs led to highly similar results. We expect this result to
be generalizable to different barcodes.

Most published meat-metabarcoding methods used reference databases containing
only a selected number of entries (between 2 and 500). This has the advantage of ensuring
that the database only contains high confidence, high quality sequences and drastically
simplifies taxonomic assignment. However, this has the drawback of hiding a large chunk
of potential adulteration with species not present in the reference database. Taxonomic
assignment using the full BLAST NT database as a reference revealed challenges due to
mislabelling of sequences, the presence of low quality sequences, and large heterogeneity
in taxa representations. We used a set of filters that enabled us to overcome these hurdles.
We restricted the BLAST search by using a mask selecting taxa placed under the Vertebrate
node, thus ensuring that no other sequences would contaminate the results. Furthermore,
we then applied a coverage threshold of 100%, ensuring that only sequences aligning to
the totality of the barcode would be recovered. The minimal identity level required was
varied between 95% and 100%, and we determined that it should optimally be 98% or
higher. We then used a filter based on the bitscore value of each result, representing the
quality of the alignment between the barcode and the reference. Although the E-value is
commonly used for filtering BLAST results, this value varies with the size of the database,
rendering an E-value filter obsolete as the database grows in size, whereas the bitscore only
depends on the alignment and therefore only varies with the barcode used [52]. Therefore,
we determined the bitscore of the best alignment for each barcode sequence and kept only
these results that were within a certain distance of the best results. We found the optimal
value for the bitscore difference to be between 0 and 4. These filtering procedures typically
resulted in a few different possible taxa. In order to determine the most likely taxon for
each sequence, we used a consensus threshold [32] and found the optimal value of the
minimal consensus to be between 51% and 80%. This allowed the assignment of a unique
taxon to each barcode sequence in the sample, albeit at a rank depending on the confidence
of the BLAST result. Most results were assigned at the species or genus level, allowing for a
meaningful interpretation of the results. We expect the parameter choices for the taxonomic
assignment step to be highly dependent on both the database and the barcode used. They
should therefore be revalidated for each barcode and when the database is updated.

Errors stemming from the PCR-amplification and sequencing processes almost always
result in a low amount of wrongly assigned reads that need to be filtered. Fixing a threshold
at which results become significant becomes increasingly difficult as the detection limit
decreases. We here determined the best threshold to be at around 0.1% to optimally balance
precision and recall of the analysis, while ensuring a detection limit at 1% of the true
sample composition. The optimized workflow resulted in 1% of both false-positive and
false-negative results, while the quantification accuracy was comparable to that of other
DNA-based methods [9]. Moreover, the results were identical to those of a previously
published analysis of part of this dataset using a different bioinformatics workflow and a
database consisting of only 51 entries [9]. These validation values indicate that the workflow
allows for robust screening methods. The cost-effectiveness of NGS-based methods is an
important consideration for laboratories. It was previously calculated that metabarcoding
can be more cost-efficient than PCR when parallelizing enough samples [9]. In order to
estimate the number of reads required for a robust analysis, we down-sampled a part of our
dataset and calculated the recall and variability of the analysis for a range of 1000 to 200,000
reads. We determined that the results did not significantly improve beyond 5000 reads.
This is far below the previous recommendations of 120,000 to 200,000 reads [9,11]. There is
therefore a potential for further decreasing the costs of metabarcoding analysis. This result
is in line with previous calculations [48], but should be verified experimentally.
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The use of the full BLAST NT database allows us to take full advantage of the untar-
geted aspect of metabarcoding methods, however, it comes with its own set of limitations
as the database contains some doubtful sequences and annotations and is highly biased
towards commercially interesting and model species. One could consider using the BOLD
database, which is more tightly curated than BLAST [5]. This database is, however, largely
incomplete for 16S rDNA sequences, and more suitable for cytB or COI/COX1 sequences.
Several publications have tried to address this problem directly, either by selecting se-
quences with trustful metadata and setting some quality filters [27], or by assigning quality
scores to each sequence and using them to either filter the database or assign confidence
scores to metabarcoding results [53]. These approaches should be explored in future works,
with the aim of optimizing food authentication methods.

In order to improve reproducible analysis and ease the dissemination of the metabar-
coding methods in laboratories, we packaged the analysis workflow in a free open-source
software [28]. The workflow is implemented using Snakemake [54] and runs on UNIX plat-
forms. It allows for scalable and reproducible automated analysis of amplicon sequencing
runs on Illumina platforms. It also contains a module comparing the workflow’s results to
the theoretical composition of the samples, making the validation process straightforward.
Another module allows us to run the same analysis using different sets of parameters and
compare the results with each other, significantly simplifying the process of finding the
optimal set of parameters for new barcodes or matrices.

5. Conclusions

The results of the present study demonstrate the accuracy and robustness of the
16S metabarcoding method as a tool for meat authenticity testing. This study proposes
standardization of the data analysis and shows that it can be used with non-curated
nucleotide databases such as the BLAST NT database, thereby expanding the detection
range. Furthermore, the workflow presented here is versatile and can be adapted to other
food matrices, such as plants, seafood, insects, or spice mixtures, making it a valuable tool
for a wide range of products. With the increasing demand for transparency and traceability
in the food supply chain, this method has the potential to play a significant role in helping
to ensure that consumers can trust the food they are eating.
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